Welcome to the Heller lab. We expose the secrets of the biomolecular world using quantitative single-molecule tools.



Research

The workings of living systems are the result of the rich physics that emerges from their nanoscopic building blocks. This intriguing nanoscopic world is becoming increasingly accessible to quantitative observation and nanomanipulation techniques. We explore and exploit the physics of biomolecular systems such as DNA and molecular motors using quantitative experimental analysis and modeling at the single-molecule level. In our research endeavors we develop innovative biophysical research methodologies and push the limits of quantitative experimental analysis and (nanoscale) imaging methods.

Research interests

  • Physics of DNA & small molecule-DNA interactions (DNA intercalation)
  • Physics of ice binding proteins and crystal growth
  • Single-molecule analysis of DNA compaction, repair, replication and transcription
  • Developing new and/or enhanced quantitative biophysical methods based on force spectroscopy, microfluidics and (super-resolution) microscopy
More on research.


Selected publications

  • Nonlinear mechanics of human mitotic chromosomes, Meijering AEC, Sarlos K, Nielsen CF, Witt H, Harju J, Kerklingh E, Haasnoot GH, Bizard AH, Heller I, Broedersz CP, Liu Y, Peterman EJG, Hickson ID, Wuite GJL, Nature, 605 545 (2022)
  • Imaging unlabeled proteins on DNA with super-resolution, Meijering AEC, Biebricher AS, Peterman EJG, Wuite GJL, Heller I, Nucleic Acids Research, 48 e34 (2020)
  • Single-molecule polarization microscopy of DNA intercalators sheds light on the structure of S-DNA, Backer AS, Biebricher AS, King GA, Wuite GJL*, Heller I*, Peterman EJG*, Science Advances, 5 eaav1083 (2019)
  • Hyperstretching DNA, Schakenraad K, Biebricher AS, Sebregts M, ten Bensel B, Peterman EJG, Wuite GJL, Heller I*, Storm C*, van der Schoot P*, Nature communications, 8 2197 (2017)
  • Single-molecule observation of DNA compaction by meiotic protein SYCP3, Syrjanen, JL*, Heller I*, Candelli A, Davies OR, Peterman EJG, Wuite GJL, Pellegrini L, eLife, 6 e22582 (2017)
  • Sliding sleeves of XRCC4–XLF bridge DNA and connect fragments of broken DNA, Brouwer I*, Sitters, G*, Candelli A, Heerema SJ, Heller I, de Melo AJ, Zhang H, Normanno D, Modesti M, Peterman EJG, Wuite GJL, Nature, 535 566 (2016)
  • The impact of DNA intercalators on DNA and DNA-processing enzymes elucidated through force-dependent binding kinetics, Biebricher AS*, Heller I*, Roijmans RFH, Hoekstra TP, Peterman EJG, Wuite GJL, Nature communications, 6 7304 (2015)
  • Optical tweezers analysis of DNA-protein complexes, Heller I, Hoekstra TP, King GA, Peterman EJG, Wuite GJL, Chemical Reviews, 114 3087 (2014)
  • STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA, Heller I, Sitters G, Broekmans OD, Farge G, Menges C, Wende W, Hell SW, Peterman EJG, Wuite GJL, Nature Methods, 10 910 (2013)
  • Influence of electrolyte composition on liquid-gated carbon-nanotube and graphene transistors, Heller I, Chatoor S, Männik J, Zevenbergen MAG, Dekker C, Lemay SG, J. Am. Chem. Soc., 132 17149 (2010)
  • Identifying the mechanism of biosensing with carbon nanotube transistors, Heller I, Janssens AM, Männik J, Minot ED, Lemay SG, Dekker C, Nano Letters, 8 591 (2008)
More publications.