Klaus Scharnhorst  Publications
M. Bordag, K. Scharnhorst: O(alpha) radiative correction
to the Casimir energy for penetrable mirrors.
Physical Review Letters 81(1998)38153818 [hepth/9807121]
(DOI: 10.1103/PhysRevLett.81.3815).
[SPIRES record]
Abstract:
The leading radiative correction to the Casimir energy for
two parallel penetrable mirrors (realized by δfunction potentials)
is calculated within QED
perturbation theory. It is found to be of order alpha like the known
radiative correction for ideally reflecting
mirrors from which it differs, for a mirror distance much larger than
the electron Compton wavelength,
only by a monotonic, powerlike function of the frequency at which
the mirrors become
transparent. This shows that the O(α^{2}) radiative correction
calculated recently by Kong and Ravndal for ideally
reflecting mirrors on the basis of effective field theory methods
remains subleading even for the physical case of
penetrable mirrors.
The article is cited in:

H. Gies: Probing the quantum vacuum  Perturbative effective
action approach in QED and QCD and its applications;
Doctoral Thesis, EberhardKarlsUniversität Tübingen,
Tübingen, 1999, 264 pp..

J. Feinberg, A. Mann, M. Revzen: Casimir effect: The classical limit.
Annals of Physics (New York) 288(2001)103136
[hepth/9908149]
(DOI: 10.1006/aphy.2000.6118).

S.K. Lamoreaux: Resource letter CF1: Casimir force.
American Journal of Physics 67(1999)850861
(DOI: 10.1119/1.19138).

F. Pinto: Engine cycle of an optically controlled vacuum energy
transducer.
Physical Review B 60(1999)1474014755
(DOI: 10.1103/PhysRevB.60.14740).

A.W.C. Lau, D. Levine, P. Pincus:
Novel electrostatic attraction from plasmon fluctuations.
Physical Review Letters 84(2000)41164119
[condmat/0006266]
(DOI: 10.1103/PhysRevLett.84.4116).

W. Dittrich, H. Gies: Probing the quantum vacuum. Perturbative
effective action approach in quantum electrodynamics and its
application.
Springer Tracts in Modern Physics, Vol. 166.
Springer, Berlin, 2000 (DOI: 10.1007/354045585X).

F. Ravndal: Problems with the Casimir vacuum energy.
Extended version of a contributed talk at
`Vacuum Energy and the Cosmological Constant', NORDITA,
Copenhagen, August 2426, 2000;
hepph/0009208, 10 pp..

F. Ravndal, J.B. Thomassen: Radiative corrections to the Casimir
energy and effective field theory.
Physical Review D 63(2001)113007, 7 pp.
[hepth/0101131]
(DOI: 10.1103/PhysRevD.63.113007).

K. Melnikov: Radiative corrections to the Casimir
force and effective field theories.
Physical Review D 64(2001)045002, 10 pp.
[hepph/0101228]
(DOI: 10.1103/PhysRevD.64.045002).

M. Bordag, U. Mohideen, V.M. Mostepanenko: New developments in the
Casimir effect.
Physics Reports 253(2001)1205
[quantph/0106045]
(DOI: 10.1016/S03701573(01)000151).

J.O. Andersen: Effective field theories for the Casimir effect at
finite temperature. University of Utrecht preprint ITFUU01/28;
quantph/0108009,
4 pp..

L.C. de Albuquerque, R.M. Cavalcanti: When the Casimir energy is not
a sum of zeropoint energies.
Physical Review D 65(2002)045004, 10 pp.
[hepth/0108240]
(DOI: 10.1103/PhysRevD.65.045004).

K.A. Milton: The Casimir Effect  Physical Manifestations
of ZeroPoint Energy. World Scientific, Singapore, 2001
(Available at the address: http://ebooks.worldscinet.com/ISBN/9789812810526/9789812810526.shtml).

M.I. Caicedo, N.F. Svaiter: Effective Lagrangians for scalar
fields and finite size effects in field theory.
Journal of Mathematical Physics 45(2004)179196
[hepth/0207202]
(DOI: 10.1063/1.1629138).

F.A. Barone, R.M. Cavalcanti, C. Farina: Radiative corrections
to the Casimir effect for the massive scalar field.
hepth/0301238,
6 pp. (Work presented at the
XXIII. Brazilian National Meeting on Particles and Fields, Aguas
de Lindoia, Brazil, Oct 1519, 2002).

F.A. Barone, R.M. Cavalcanti, C. Farina: Radiative corrections
to the Casimir effect for the massive scalar field.
Renormalization Group and Anomalies.
Proceedings of the International Conference on Renormalization
Group and Anomalies in Gravity and Cosmology,
Ouro Preto, Minas Gerais, Brazil, 17  23 March 2003, Editors
M. Asorey, I.L. Shapiro.
Nuclear Physics B  Proceedings Supplements 127(2004)118122
[hepth/0306011]
(DOI: 10.1016/S09205632(03)024113).

Y. Aghababaie, C.P. Burgess: Effective actions, boundaries and
precision calculations of Casimir energies.
Physical Review D 70(2004)085003, 6 pp.
[hepth/0304066]
(DOI: 10.1103/PhysRevD.70.085003).

T. Emig, R. Büscher: Towards a theory of molecular forces
between deformed media.
Nuclear Physics B 696(2004)468491
[condmat/0308412]
(DOI: 10.1016/j.nuclphysb.2004.06.006).

F.A. Barone, R.M. Cavalcanti, C. Farina: On the twoloop Casimir effect.
In: M. Novello, S.P. Bergliaffa, R. Ruffini (Eds.): The Tenth Marcel Grossmann Meeting.
On Recent Developments in Theoretical and Experimental General Relativity,
Gravitation and Relativistic Field Theories.
Proceedings of the MG10 Meeting held at Brazilian Center for Research in Physics (CBPF),
Rio de Janeiro, Brazil, 2026 July 2003. 3 Vols..
World Scientific, Hackensack, NJ, 2005, Vol. C, pp. 22292231

I.V. Fialkovsky, V.N. Markov, Yu.M. Pis'mak:
Field of homogeneous plane in quantum electrodynamics.
International Journal of Modern Physics A 21(2006)26012616
[hepth/0311236]
(DOI: 10.1142/S0217751X06029053).

R. Büscher:
Casimir forces and geometry.
Ph.D. Thesis, Universität Köln, Cologne, 2005, 127 pp.
(Available at the address: http://kups.ub.unikoeln.de/volltexte/2005/1541/).

R.M. Cavalcanti, C. Farina, F.A. Barone:
Radiative corrections to Casimir effect in the λφ^{4}model.
hepth/0604200, 24 pp..

T. de Melo Britto:
O efeito Casimir a um e dois laços
[The Casimir effect at one and two loops].
Ph.D. Thesis, Universidade Federal do Rio de Janeiro,
2006, 154 pp.
(Available at the address: http://teses.ufrj.br/IF_D/ThiagoDeMeloBritto.pdf).
[in Portuguese, English abstract]

S.Y. Buhmann, D.G. Welsch:
Dispersion forces in macroscopic quantum electrodynamics.
Progress in Quantum Electronics 31(2007)51130
[quantph/0608118]
(DOI: 10.1016/j.pquantelec.2007.03.001).

R. Moazzemi, S.S. Gousheh:
A new renormalization approach to the Dirichlet Casimir effect for
φ^{4} theory in (1+1) dimensions.
Physics Letters B 658(2008)255265
[arXiv:0708.3428]
(DOI: 10.1016/j.physletb.2007.08.098).

R. Moazzemi, M. Namdar, S.S. Gousheh:
The Dirichlet Casimir effect for φ^{4} theory in (3+1)
dimensions: a new renormalization approach.
Journal of High Energy Physics (JHEP) (2007) No. 09, 029, 19 pp.
[arXiv:0708.4127]
(DOI: 10.1088/11266708/2007/09/029).

B. Markun:
Casimir effect in smectic liquid crystals.
Ph.D. Thesis, University of Ljubljana, Ljubljana, 2007, 103 pp.
(Available at the address:
http://www.dlib.si/?URN=URN:NBN:SI:docOLS00ZE1).

M. Bordag, I.V. Fialkovsky, D.M. Gitman, D.V. Vassilevich:
Casimir interaction between a perfect conductor and graphene described by the Dirac model.
Physical Review B 80(2009)245406, 5 pp.
[arXiv:0907.3242]
(DOI: 10.1103/PhysRevB.80.245406).

S.S. Gousheh, R. Moazzemi, M.A. Valuyan:
Radiative correction to the Dirichlet Casimir energy for
λφ^{4} theory in two spatial dimensions.
Physics Letters B 681(2009)477483
[arXiv:0911.3707]
(DOI: 10.1016/j.physletb.2009.10.058).

M. Bordag, G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko:
Advances in the Casimir Effect.
International Series of Monographs on Physics, Vol. 145.
Oxford Science Publications.
Oxford University Press, Oxford, 2009.
Up, or back to:
home page of Klaus Scharnhorst /
Theoretical Physics /
Department of Physics and Astronomy
© K. Scharnhorst
.
Document last modified: April 27, 2011
Document address: http://www.nat.vu.nl/~scharnh/cite25.htm