Klaus Scharnhorst  Publications
K. Scharnhorst: Results for the strong coupling
lattice Schwinger model with Wilson fermions from a
study of the equivalent loop model.
Physical Review D 56:6(1997)36503659
(DOI: 10.1103/PhysRevD.56.3650)
[arXiv:heplat/9505001, University of Wales Swansea Preprint SWAT/95/72].
[INSPIRE record]
Abstract:
Salmhofer has demonstrated the equivalence of the strong coupling
lattice Schwinger model with Wilson
fermions to a selfavoiding loop model on the square lattice with
a bending rigidity η = 1/2. The present paper applies two approximate
analytical methods to the investigation of critical properties of
the selfavoiding loop model with variable eta,
discusses their validity, and makes a comparison with known
Monte Carlo results. One method is based on the independent loop
approximation used in the literature for studying phase transitions
in polymers, liquid helium, and cosmic strings. The
second method relies on the known exact solution of the selfavoiding
loop model with η = 2^{1/2}. The present investigation confirms
recent findings that the strong coupling lattice Schwinger model becomes
critical for κ_{cr} ~ 0.380.39. The phase transition is of
second order and lies in the Ising model
universality class. Finally, the central charge of the model at criticality
is discussed and predicted to be c = 1/2.
The article is cited in:

C.B. Lang: 7vertex model series.
Karl Franzens University Graz WWW page (1995):
https://web.archive.org/web/20041101190507/http://physik.kfunigraz.ac.at/~cbl/cblv7series.html.

H. Gausterer, C.B. Lang: Strongcoupling lattice Schwinger model
on large spherelike lattices.
Nuclear Physics B 455[FS](1995)785795
(DOI: 10.1016/05503213(95)00533X)
[arXiv:heplat/9506028].

K. Scharnhorst: The exact equivalence of the twoflavour
strong coupling lattice Schwinger model with Wilson fermions
to a vertex model. Nuclear Physics B 479[FS](1996)727745
(DOI: 10.1016/05503213(96)004026) [arXiv:heplat/9604024]
= paper [22]

K. Scharnhorst: The exact equivalence of the oneflavour
lattice Thirring model with Wilson fermions to a twocolour
loop model. Nuclear Physics B 503(1997)479504
(DOI: 10.1016/S05503213(97)004239) [arXiv:heplat/9611005].
= paper [24]

M. Wohlgenannt:
The Schwinger model  From strong coupling to fixedpoint actions.
Diploma Thesis, KarlFranzensUniversität Graz, Graz, 1998, 82 pp.
( http://physik.unigraz.at/itp/files/wohlgenannt/diplomarbeit.ps.gz ).

K. Scharnhorst: Isocliny in spinor space and Wilson fermions.
Nuclear Physics B 581[PM](2000)718742
(DOI: 10.1016/S05503213(00)002844) [arXiv:heplat/0002022].
= paper [28]

Ch. Gattringer, Th. Kloiber, V. Sazonov:
Solving the sign problems of the massless lattice Schwinger model with a dual formulation.
Nuclear Physics B 897(2015)732748
(DOI: 10.1016/j.nuclphysb.2015.06.017)
[arXiv:1502.05479].

D. Göschl, Ch. Gattringer, A. Lehmann, Ch. Weis:
Simulation strategies for the massless lattice Schwinger model in the dual formulation.
Nuclear Physics B 924(2017)6385
(DOI: 10.1016/j.nuclphysb.2017.09.006)
[arXiv:1708.00649].

D. Göschl:
Dual simulation of the massless lattice Schwinger model with topological term and nonzero chemical potential.
EPJ Web of Conference 175(2018)07002, 8 pp.
(DOI: 10.1051/epjconf/201817507002)
[arXiv:1709.04280].
The article is part of:
35th International Symposium on Lattice Field Theory (Lattice 2017),
EPJ Web of Conference 175(2018).
Up, or back to:
home page of Klaus Scharnhorst /
Department of Physics and Astronomy
© K. Scharnhorst
.
Document last modified: October 29, 2018
Document address: http://www.nat.vu.nl/~scharnh/cite23.htm