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Chapter 1

High energy processes with hadrons

1.1 Diagrammatic approach

The basic degrees of freedom that feel the strong interactions, quarks and gluons, are confined into hadrons,
strongly interacting particles. Considering the nucleons (light hadrons), the characteristic energy and
distance scales are given by the nucleon mass, A ~ My, or taking into account the color degrees of
freedom one may prefer a scale A ~ My /N, ~ 300 MeV. We refer to this as (M) or 0(Q") if we consider
high-energy processes. Such processes are characterised by hard kinematical variables that are of order )
with Q2 > A2%. Depending on details, the high-energy scale @ can be the CM energy, Q ~ /s or it can
be a measure of the exchanged momentum.

Figure 1.1: Schematic illustration of the contribution of a hard
subprocess, parton (p;) + parton (p2) — parton (ki) + par-
ton (kg), to the (2-particle inclusive) scattering process hadron
(P1) + hadron (P;) — hadron (K;) 4 hadron (K>) + X, at
the level of the amplitude. The process being hard implies for
the hadronic momenta P; - P, ~ P, - K1 ~ @2, etc.

The basic framework for the strong interactions is QCD. Hadrons, however, do not correspond to free
particle states created via the quark and gluon operators in QCD. The situation thus differs from that
of QED with physical electrons and photons. In the latter case one knows how in the calculation of an
S-matrix element contraction of annihilation and creation operator in the field and particle state lead to
the spinor wave function. For positive times €2 =t > 0 one has

O1i(Olp: 5) = (01 (€) b (p, 9)[0) = (O[i(0)[p, s) €77 = wi(p, 5) ™" 7", (1.1)
with p° = +E, = +/p% + m2. Such a matrix element is 'untruncated’ as seen e.g. from

d'k e i(k+m) “i(l”s)(

In a process involving a composite hadronic state | P), contractions with
one or several of the quark and gluon operators may be involved, leading
to nonzero matrix elements for a quark between the hadron state and a
remainder, but also for nonzero matrix elements involving multi-parton
field combinations,

(X[ (O P), (X|A* () ()] P), .. .

101
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Correlators, describing parton distributions

For a particular hadron and a parton field combination, one may collect those operators that involve
hadron |P) into (distribution) correlators

Po:P) = 3 / G (PIT O (XI0)P) 8+ Px — P)

¢ e'PE (Pl (0)9(8)|P), (1.3)

where a summation over color indices is understood. It is often convenient to use momentum space fields,
p) = [d*z e'P"(x), for a free field expansion leading to

e—iEpt eiEpt
vi(p,t) = Z (Uz‘(lh s) b(p, 5)@ +vi(=p; ) dT(—P» 8)2Ep> ) (1.4)

S

Gilp) = Y (wi(p. ) b(, 5) 2m)3(p? — m?) (")

S

+ vi(=p5) d' (=p.s) (2m)6(p* — m?) 0(—1") ). (15)

For the correlator we have

2m)*6*(p —p') @i(p; P) = (P[Y;(p") ¢i(p)| P). (1.6)

1
(2m)*
This latter form is convenient for interpretation of the nature of the correlators because for a free field we
have

(X|¢i(p)|P) = (Px|b(p,s)|P)ui(p,s) (2m)d(p* —m?) 6(p°)
+ (Px|d'(—p, s)|P)vi(—p,s) (2m)5(p* — m?) 6(—p°).

One also encounters correlators involving matrix elements of the form

@ (P, p1; P) = ( Ed'y € TP P (P (0) A (n) $i(€)| P), (L.7)
or with momentum space operators (for gluons A,(p) = [ d*z 'P® A4, (z)) one has
1 _
(2m)'0"(p —p') @4 (P, p1; P) = @) (Pl;(p") A (p1) ¥i(p — p1)|P). (1.8)
Pictorially one has for the correlators,
or

We will not attempt to calculate these, but leave them as the soft parts, requiring nonperturbative QCD
methods to calculate them. In particular, although being 'untruncated’ in the quark legs, they will no
longer exhibit poles corresponding to free quarks. These are fully unintegrated parton correlators for initial
state hadrons, in general quite problematic quantities. For example, they are by themselves not even color
gauge-invariant, an issue to be discussed below. We will later also discuss similar correlators for final
state hadrons. When more hadrons are involved, one needs to consider two-hadron correlators, involving
two-hadron states (or correlators involving hadronic states in initial and final state), etc. If the hadrons
are well-separated in momentum phase-space with P; - P; ~ Q?, one expects on dimensional grounds
that incoherent contributions are suppressed by 1/(P; — Pj)2 ~ 1/Q?. Such a separation in momentum
space requires a hard inclusive scattering process (Q? ~ s), which then at high energy and/or for large
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momentum transfer still can be factorized into forward correlators. The inclusive character is needed to
assure that partons originate from one hadron, leaving a (target) jet. In turn, partons decay into a jet
in which we limit ourselves to the consideration of an identified hadronic state (which could in principle
also be a multi-particle, e.g. two-pion, state). In all of the hadronic states mentioned before one can also
consider polarized hadronic states. The spin of quarks is contained in Dirac structure and that of gluons
in the Lorentz structure of correlators.

The basic idea in the diagrammatic approach is to realize that the correlator involves hadronic states and
quark and gluon operators. The correlators can be studied independent from the hard process, provided
we have dealt with the issue of color gauge invariance. The correlator is the Fourier transform in the
space-time arguments of the quark and gluon fields. In the correlators, all momenta of hadrons and quarks
and gluons (partons) inside the hadrons are soft which means that p> ~ p- P ~ P2 = M% < Q% ~ s.
The off-shellness being of hadronic order implies that in the hard process partons are in essence on-shell.
Consistency of this may be checked by using QCD interactions to give partons a large off-shellness of &(Q)
and check the behavior as a function of the momenta. In these considerations one must also realize that
beyond tree-level one has to distinguish bare and renormalized fields.

Correlators, describing parton fragmentation

In the hard process final state partons decay into a jet, in the discussion of which we limit ourselves to the
consideration of an identified hadronic state (which could in principle also be a multi-particle, e.g. two-
pion, state). For the fragmentation process of a parton (with momentum k) into hadrons (with momentum
P;,) we combine the decay matrix elements in the (fragmentation) correlator, for quarks

Byl = 3 g [ e QO X) K. X7, 0)10)
X

= Gyt [ € OOt arT 00, "

where an averaging over color indices is implicit. In a momentum space representation for the operators,

we have
1

(2m)* 0% (k — K') Aj (ks K) = > (0 (k) [ Kn, X) (K, X[0;(k')[0). (1.10)
X

)

Pictorially we have

In particular, we note that in fragmentation correlators, one no longer deals with plane wave hadronic
states, but with out states | K}, X). There are a a number of other subtleties in these definitions. The use
of intermediate states X and in addition one specified state with momentum K} needs some explanation.
First note that the unit operator can be written as

I=> X)X =) In (1.11)
X n=0
with (assuming at this stage one type/flavor of hadrons)

I, = %/df{l . dK, o (Ky) .t (K,)[0)(0]a(KY) .. a(K) (1.12)
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containing the n-particle states (with dK being the invariant one-particle phase-space). Thus the summa-
tion appearing in the definition of the fragmentation correlator is for a given hadron sector

SO 1P X) (P X =[PP +/df(1 Py, K (Pa, K|
X

1 -
+ a/cumdz@ (P, Ky, Ko (Poy Ko K|+
= a;rbfah = a;rlah. (1.13)

After integrating over P}, one obtains
/dﬁh S IPu, X)(Po, X| =Y nly =Ny, (1.14)
X n=0

which is the number operator for hadrons h. This will become relevant when one integrates over the
phase-space of particles in the final state to go from 1-particle inclusive to inclusive scattering processes.
Other useful operators are the momentum operator

~ 1 ~ ~
o /dK1 |K1>K{‘<K1|+§/dK1dK2 Ky, o) (K + KB (K, Kol + ...
= Z/d}?hmh,xm;;mh,m, (1.15)
h,X

or the operator

PrPY = Z/df(l K, X)KI'KY (K, X|
h1,X
+ > /df(ldf(g |K1, Ko, X)KV'KY (K, Ky, X|. (1.16)
hi,h2,X

Inclusion of spin

In principle hadrons could be polarized, having additional degrees of freedom, |P,«a), etc. In order to
treat the spin of initial states, one then can explicitly work with distribution correlators in the hadron
spin-space,

By (i P) = / d'é 7€ (P, BIT,(0) ()P, ). (1.17)

(2m)
It is convenient to include the off-diagonal elements in the definition. Having a non-pure initial state
described by a spin density matrix p(P,S) = > |P, a)Prob, (P, a| one then finds the spin-dependent
correlator

(bij(p;P“S)Epaﬁ(va)(bij,,Ba(p§P)- (1.18)

A single spin vector S is sufficient to parameterize the density matrix for a spin 1/2 hadron. For hadrons
with higher spins one needs additional parameters (e.g. a spin vector and a symmetric traceless tensor to
describe spin 1).

For fragmentation correlators, the role of spin is different. In that case not only the specific kind of
hadron in the final state, but also its spin state is fixed. This means that besides having Dirac structure,
we also include spin states (off-diagonal to remain as general as possible)

1
Nijpalk; Pa) = (2n)*
X

In many applications we will use a spin-dependent fragmentation correlator A;;(k; Py, Sy,) by defining

/ di€ ™€ (0[443(€)| Pa, 0, X )Py, B, X[T,(0)]0). (1.19)

Aij(k; Ph, Sh) = (28h -+ 1) Aijﬁa(k; Ph) paB(Pha Sh), (120)

where p(Py, Sp) is the usual spin density matrix. The factor (2sp, + 1) assures that for a spin vector S, =0
one ends up with a sum over spins for the produced hadron. Depending on the spin the parametrization of



April 2010 105

density matrix may require beside the spin vector polarization tensors of higher rank. Note that in most
applications Sy, (or other tensors) will be replaced by analyzing power Ay (P, f) of the decay channel
(with f representing the final state variables) of the produced particle, e.g. in the case of production of
N’s or p’s, rather than the tunable polarization for initial states (see section on spin vectors).

1.2 Sudakov decompositions and n-dependence

In a hard process, the parton fields that appear in the different correlators correspond to partons in the
subprocess for which the momenta satisfy p; -p; ~ Q2. In the study of a particular correlator it implies the
presence of a 'hard’ environment. To connect the correlator to the hard part of the process, it is useful to
introduce for each correlator with hadron momentum P, a null-vector n, such that P -n ~ . Using this
relation, n would be dimensionless. It is actually more convenient to replace n/(P - n) by a dimensionful
null-vector n ~ 1/Q), such that P-n = 1. The vectors P and n can be used to keep track of the importance
of various terms in the correlators and in the components of momentum and spin vectors'. The n-vector
will acquire a meaning in the explicit applications or play an intermediary role. At leading order, it will
turn out that the precise form of n doesn’t matter, but at subleading (1/Q) order one needs to be careful.
For parton momenta we write

p=xP+pr+(p-P—xM?)n, (1.21)
—_——

where the term @ P ~ Q, pr ~ M and on ~ M?/Q. We have the exact relations p-p, = p2 = (p—z P)?.
The momentum fraction

rT=p-n (1.22)

is €(1). Note that one can construct two conjugate null-vectors,
ny=P—1M’n and n_=n, (1.23)
satifying ny -n_ = 1 and ni =n? =0, that can be used to define light-cone components? a* = a - Ne.

The symmetric and antisymmetric 'transverse’ projectors are defined as

g#” _ g,ul/ _ n_{i_ﬂn’:} _ g#l’ _ P{Hnl’} + M2 ntn? ~ g"“’ — P{“ny} (124)

MV = e — e~ tuy — Pnuv (1.25)

The decomposition of spin vectors is discussed at the end of this chapter.

Different n-vectors

A choice of a different null-vector n/, in principle leads to different z’, ¢’ and p,s as well as different
transverse projectors. With P-n’ = 1, implying P - An = 0, one easily finds that the differences vanish at
order Q°,

oQ) : Az = Ap2 = An = 0. (1.26)

With An = n’ — n arbitrary (of order 1/Q) one easily finds that the changes Ax and Ap; are related,
o(Q°) : Apr = —Azx P (1.27)

(corresponding to the validity of xP + p; ~ 2’ P + p, up to 0(Q°)). By looking at various contractions
order by order one finds
Ap? Ao,

o(1/Q): Az = —Apr-n=pr-An = — =

T (1.28)
p

(Note that Ap; -n = py - n and pr - An = py - n'). We note also the following relations valid at ¢(Q°)
for the transverse momenta, py = pr — (pr - n)P = prp and similarly pr ~ pr — (pr - n)P = pror.

1If one prefers a dimensionless vector, one must make a choice P-n ~ Q. In that case all further appearances of n in this
section should simply be replaced by n/(P - n).

2There is an arbitrariness in the definition of these vectors, allowing n4 — any and n— — n_/a. In this way one can
make dimensionless vectors. In the explicit appearance of vectors such a rescaling corresponds to a boost.
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Given two (hard) hadronic momenta P and P’ one thus can (disregarding 1/Q? mass corrections) use
P'/(P - P') as the null-vector n for the hadron with momentum P. At €¢(Q") the momentum fractions
x = (p-P'")/(P-P’) are the same for any of the hard (hadronic) momenta P’ involved in the process. We
note that the integration

/d4p: /ddepT do = /d(p.n) d*p, d(p- P), (1.29)

is insensitive to the choice of n-vector.
Another way to study the n-dependence is by applying 0, using 0¥ x = p*,

otp” =pt PV +0kpl +g"(p- P— x M?) — M? ptn”.
Having 0¥ p¥ = 0 implies
b py =—g"(p- P—aM?) —p"(P" — M*n").
Explicit components are

n-Ohpt = —xP’—(p-P—22xM?*)n",
P-0,p, ~(@2p-P—xM?)P"+ M?(p- P)n”,
(P — M?n) -0, p~ —2(p- P —ax M?)(P" — M*n"),
Orty = —gi¥(p- P—aM?) = ph(P" — M*n").

For the vector An (orthogonal to P) we can write An* = An - n(P* — M?nH) + Ank to get

Az =p;-Anp+An-n(p- P —x M?),
ApZ = —2(p-P—xM?*)ps-An,.

Regions of importance in parton kinematics

We want to illustrate the kinematics for partons and translate it to physically intuitive quantities, the
off-shellness p? for partons or the invariant mass squared M2 = (P — p)? of the residual (spectator)
hadronic system and the (spacelike) transverse momentum squared p2 = —p2. We can do this for partons
in hadrons (distributions), but also for the production of hadrons from partons (fragmentation),

+@$

k k-B
p=xzP+pr+o,n k=z"'Py,+ky+onnn
P+:P~n51 P},,~’rlh:Ph_El
x=p-n=p* =k, =k~
op=p-P—zM? op=k-P,—z' M}
ny=P—1M?n n_ =P, — IMiny,
p_:p-n+:p~P—%xM2 k+:k-n,:k~Ph—%z_1M;%
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The kinematic freedom for the partons is illus-
2 a2k z=1/2 trated in a plot of the off-shellness p? versus 2p- P,
p -M =2) .. . . .
x= where it is convenient to slightly shift the zero-
points to get a nice symmetry. The relations

| | p?—M? = Zx(p-P—MQ)—l—pi
2 _1=z» =

DM’ =M | —(—2)? M2, (130)
S : 2 2 _ 2 2

MRV N p'=M? = 2(p-P—M?)+ Mg, (1.31)

: \ ‘ g determine lines of constant My or p2. They are

MR\_,-”‘ Y 2(p.P-M") used to map out the physical region determined

1 by p2 = —p2 < 0 and MI% > (0. We note

=1/ ~(1-x)M that for x = 1 the region disappears shrinking

to the line Mr = 0 or x = 1. We note the

Mg=0
0 K — (opy? symmetry = 1/z in jumping from distributions
\ﬁ =(®-P) of partons into hadrons to fragmentation of par-
kT tons into hadrons. We assume that the domi-

x=1 nant contributions come from the regions where
p? ~p- P~ M~ M? thus ® disappearing as a
function of these variables.

1.3 Distribution correlators in high-energy processes

In a hard process, the different importance of the various components allows up to specific orders in 1/Q, an
integration over some components of the parton momenta. The fact that the main contribution in ®(p; P)
is assumed to come from regions where p- P < M?2, whereas the momenta have characteristic scale @, allows
performing the o-integration up to M?/Q? contributions (and possible contributions from non-integrable
tails). Transverse momentum dependent (TMD) correlators are light-front correlators, integrated over
o=p-P—xM?,

Q,i(x,pr;n) = /dp P) ®;(p; P /dapdrp T, — 2z 0p —p2 —a:2M2)<I>ij(p; P) (1.32)
L PO O (1.33)

where we have suppressed the dependence on hadron momentum P and made the off-shellness 7 = p?
explicit. The argument of the delta function is useful when one wants to study which regions in off-
shellness or in the residual mass spectrum M2 = (P — p)? contribute for given 2 and p2. The subscript
LF refers to light-front, implying £ - n = 0. The light-cone correlators are the correlators containing the
parton distribution functions depending only on the light-cone momentum fraction x,

Q;i(xsn) = /d(p - P) d*p, ®;i(p; P) = /dap drp, 02z 0 — T + x2M2) ;i (p; P) (1.34)

_ / UEP) ive (p 0y u(e)|P)

o , (1.35)

LC

where the subscript LC refers to light-cone, implying € - n = £; = 0. This integration is generally allowed
(again up to M?/Q? contributions and contributions coming from tails, e.g. logarithmic corrections from
1/p2 tails) if we are interested in hard processes, in which only hard scales (large invariants ~ Q* or
ratios thereof, angles, rapidities) are measured. If one considers hadronic scale observables (correlations
or transverse momenta in jets, slightly off-collinear configurations) one will need the TMD correlators.

Twist expansion

The correlators encompass the information on the soft parts. They depend on the hadron and (contained)
quark momenta P and p (and spin vectors). The structure of the correlator is reproduced from these
momenta incorporating the required Dirac and Lorentz structure. Clearly, it is advantageous to maxi-
mize the number of components along the momentum (collinear). For the soft scalar objects this means
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maximizing the number of contractions with n. This leads for nonlocal operators to the dominance of the
twist-2 operators

PO)hp(€)  and  G"(0)G™(€), (1.36)
(the latter with transverse indices @ and ). Twist in this case is just equal to the canonical dimension of
the operator combination (remember that dim(n) = -1).

The fact that the matrix elements involve operators on the light-front, allows for specific operators,
the socalled good operators in front-form quantization, an easy interpretation in terms of partons. These
partons are the quanta created by the good fields. The good fields are

Vo= g Y=g PRY and Ak=givA, (1.37)

In front-form quantization the other components of the fields can be expressed in the good fields using
equations of motion, at least after imposing the gauge AT = A-n = 0 (where G™ = 9" A%). More
important, however, for the description of hard processes is that matrix elements involving these good
fields turn out to be the leading ones in an expansion in the inverse hard scale 1/Q.

As argued above (and made more explicit in applications to hard scattering processes) the correlators
involve collinear momenta (soft with respect to each other), but for use within the hard process an external
direction shows up, represented by a null vector n, which will acquire a meaning in the explicit applications
or play an intermediary role. It can be used in the projection of components or in an expansion of fields
or field combinations, e.g.

Y=y U =3 PR+ 3P, (1.39)

At = (A-n)P* 4+ AL + (A - P)nt. (1.39)

Py = (Piap) P+ i + (pPy)nk. (1.40)

Examples of orders of magnitude of the fields within the matrix elements appearing in hard processes are
(n-A)y~n-P=1, (1.41)

(A7)~ (G ) ~ph ~ M, (1.42)

(¥~ MO, (1.43)

(Ppe ) ~ (D t]e ) ~ (GRrGY ) ~ M2, (1.44)

() ~ (D" ) ~ (i) ~ M, (1.45)

)

(DY)~ (P )~ M, (1.46

These results are obvious because { ¥y* 1 ) in a matrix element of the form ®(p; P) must involve the
(relevant) momenta p* or PH, it must be a vector and it must have dimension 3, leaving M? p* or M? P*
as possibilities. Knowing the order of magnitude of the momenta as appearing in a hard scattering process,
we obtain the above results. The above integrated or the TMD correlators also can depend on n*, e.g.

appearing via the transverse tensors g&-” or €4 (both being of order unity).

Gauge choices and n-dependence

We already remarked that for a given hadron, it is certainly convenient to also use n as a vector that fixes a
light-like gauge AT = A-n = 0. This is essential when one wants to discuss or interpret the correlator and
the fields appearing in it in front form quantization. Such a treatment, however, is considered problematic
in the treatment of the hard process to which the soft parts couple. Here a light-like gauge choice produces
additional poles for which one must introduce prescriptions. Moreover if one has several soft parts one can
only make one gauge choice in the calculation.

The freedom in choosing n, even choosing n different for each hadron involved, also allows the treatment
of an arbitrary axial gauge A - v = 0 with v? # 0, applied in the treatment of the full process. We simply

could take n as3
02 v2

72(v-n+)n+z(P'v)n+72(P~v)P

3Note that the length of v is irrelevant; making it dimensionless one has P - v/+/[v2] ~ Q or we could give it dimension
energy ~ !, allowing setting P-v = 1. Tt is possible to include a small transverse piece vy on the righthandside of the expression
for v, which implies (taking v - n4 = 1) writing n — n + vy — %v% n4. If one assumes vy ~ M/Q? (thus smaller than
v ~ 1/Q) it might serve as a regulator.

v=(-ng)n+ (1.47)
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Consider a gluon with polarization x4 and momentum p = z P + p; + (p - P — x M?) n connecting a soft
part and the truncated hard part H,(p,...;v), which we assume to be O(Q?). For an on-shell gluon
with momentum py = x P + p; — (p2/2x)n (differing from p by a vector proportional to M?n) one has
po - H(po,...;v) = 0. This implies for a gluon attached to the correlator

p-H(p,...;v) o M*n-H(p,...;v),
o(Q4-1)

showing that for Ward identities the gluons in the soft part can, up to €(1/Q?) corrections (compared to
the expectation Q4*1), be considered to behave as on-shell partons. With the above n-choice one sees,
moreover, that

2
|
o
=
=
=

Q
_|_

v)ng'H(pa"';/U)a

o(1/Q4=2)

which means that for the soft part omitting the n - A gluons (putting n - H = 0) implies® at leading order
also the omission of the v - A gluons (v- H = 0).

Color gauge invariance

The field combinations considered sofar in the correlators are not color gauge-invariant since they involve
the A-fields and, more important, because they involve nonlocal field combinations. At each specific order
in @ one of course expects gauge-invariant combinations. Along the light-cone, the leading combinations
involve the 'parton fields’

ny(&) =y (§) and G"(E),
while AT = A™ = n - A operators appear in gauge links along the light-cone (£t =n-£ =&, =0),

) ¢
Upg = & exp <z/0 d(n~P)n~A(n)) , (1.48)

which are needed to connect colored parton fields. Which n appears in a correlator is fixed by the hard
process, although some freedom in n may remain. We note that the exponent in the gauge link is in
essence built from ’operators’ (n-9)~!n - A, which are &(1). Actually, the gauge-invariant correlators will
in some cases appear multiplied with the parton momentum, p* ®(p; P), etc., which implies a derivative
85 in the matrix element, which is e.g. standard in the matrix elements involving gluon fields G*”. The
color gauge-invariant light-cone correlators for quarks and gluons are

%mmzfﬁ;?éﬂwm@q%m@mM; (1.49)
r (i) = [ d(é;? s (e (@O U, G OU) 1) (1.50)
while for the TMD light-front correlators
By(emrin ©) = [LEDEE w000 welp)| (1.51)
0% (2, prin, C,C") = / d(gé 2]; ))32& e PIT (GO U G u ) 1) | s2)

where we in passing mention that path dependence (indicated by the arguments C' and C’) will arise
because of the (necessary) transverse piece(s) in the gauge link.

d(&-P)d?¢, .
(I)quark(xapT;nvc) = /(5(27()_>3é- ezp{

d(&-P)d%¢, " O] e s o 7[miC
Pyiuon (@ P25, C,C') = /W Pt (P|Tr (G YOG 6O UL ]) 1P)

4Here the condition on the smallness of a possible v in defining n becomes important.

(P[;(0) Uy a(©)| P)

;
&-n=0

)

&-n=0
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Sum rules

Completing the integration over the correlators, one ends up with a local matrix element
Tr(Te) = /dﬂf d*pr Tji(z,pr) ij(z, pr)
- n,C
= (P[g;(0)T5:(i0) U S en(©P)| (1.53)

£=0

In particular when the operator )I'Uz) is an operator with simple or known expectation values between
plane wave states (including possibly spin dependence) this provides interesting sum rules for the functions
appearing in the correlator.

1.4 Fragmentation correlators in high-energy processes

In high-energy processes, it is useful to employ the Sudakov decomposition of the momenta. We write for
the parton momentum

1 M?
kPh+kT+(k-P,h> L (1.54)
z z P,-n

where z = P, - n/k - n. The above equation defines the coordinates of k for fixed P},. One can consider
variations of P, for fixed k, in which case we write

M2
Py=zk+ Py — (k:-Ph— ’u) i (1.55)
z k-n

with M?, = M? — P?,. For a fixed set of light-like vectors n identifying the lightlike vector in both
above equations as n = ny (and thus n_ = P, /(P - n) or k/(k - n), respectively), we write the momenta
in either one of the following forms

M2 M2
P, = {P—,E,O} p, = [P,PM}
"rops T LN hap, (1.55)
P- kP, — M2/2 .
ko= {h”l_h/z’kT} - {k7k Py — Mj, /22 O]
z P, 2k~

These two representations are connected by a Lorentz transformation® that leaves the minus component
unchanged (with b~ = k= = P, /z and b, = —k; = P, /2) switching between either & or P, having no
transverse component. We note that we have used the invariant k - P, in the above, but it is also possible
to use k? related through 2%(k? — k2) = 2z k- P, — M}.

For integrations this implies

/ddede(k-Ph) - /Md(k-n)koTd(k P, = /z d*k...|p, =
(k- n)?
1 4
We consider the TMD correlator integrated only over k - Py,
1 d(k - Py) 1 dk? dk™
Aij(kein,©) = — [ B Ay P C) = — [ 55 Ayl P ©) = [ S Ay(k, P
slekrin€) = & [T AL R 0) = [ 55 Ay P0) = [ G5 Ay RC)
det Py n n,
- ¥ [y e Ol )1 X) P, X7, 010 C]o>\ (157)
LF

5A transformation leaving the minus component unchanged, parametrized by b~ and by is

2 —
— + -+ aT'bT bTa a
{a ,a ,aT}ﬁ\ [a ,a +b7_72(b_)2,aT7b—_bT}
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where LF refers to the light-front, £~ = £ - n = 0. The integration in coordinate space can be written in
a coordinate independent way,

/df+d25T gik-t :/ (k-n) d(&- Py)d*;
4z (27‘(’)3 o 4 (Ph . ’I’L)2 (271')3

exp <2Ph~§+ikT .§T> o
Integrating over the transverse momenta, we define
Ajj(zin) = /d2PhL Aij(z,krin, C) = Z/d/fr Pk Aij(k, Py; C)

zd _
- X [ oo e XU s

where LC refers to the light-cone, £~ = £ -n = £ = 0. Instead of £* one can use

/zéﬁ; etk = / 4(kl. - d((§2~ﬂl)3h) exp (iph .5) o

We note that issues on dependence on n can be taken over from the distribution functions, including
issues on gauge choices and the possibility to get for time-like axial gauges a natural regulator from the
transverse momenta.

Sum rules for fragmentation functions

Since for fragmentation correlators, the hadrons are produced, one can construct observables by summing
and integrating over them including particular (in principle spin dependent) weights. To construct the
observable, we assume the parton momentum k to be fixed, varying P, and P,. The sum rule then is

Z/dz d*Pyy Olg(2, Pur) Dijpa (2, 221)

‘Z/ h Mh)G(Ph.n)/SW?:.n)

/d%eM O S1464(6) [ Pay v, X) Ol 5(Pa) (P, B, X[, (0)U o)

- [ s [t e oS 07, 00 o
= [9 [ate e oS e 07, 0uf 0
= 5 [ et e < Ul 07,0 o) (1.59)
LF

where the operator O is

dzd?*P,
Z/ 2z 27rhl |Ph, @, X)) OZB(Ph) (Pn, B, X|. (1.60)

If the operator O is also known at the parton level,
dp~ d p
-3 [ o b s)otp. s)biv. o), (1.61)

we obtain (again at fixed k)

1 _
zh:/dzcﬂpu Ol 4 (2, Pri) Aij pa k =3 ;ui(k,s)o(k,s)uj(k,s)

_ {2(16}6. . (o(k, 5) +20(k7 =5) 4 ey 2E28) —20(k, _8))Lj | (L.62
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The simplest application of this is considering the fragmentation of unpolarized quarks into hadrons
with O" ap = Prn-ndap corresponding to the the operator O=Pn. Using the leading order parametrization

Aij,aa(za kr; Py, Sh%”) = m Dl(za ki) (,ph)ija (1~63)

for the correlator (summed over spins), the sumrule becomes

Z/dz 2D77M(2) =1, (1.64)
h

which is precisely the momentum sumrule for fragmentation functions.

1.5 Color treatment

Let’s take as an example the Drell-Yan process for which the basic process involves two correlators. Making
color explicit, we have in the amplitude the contribution (X" (£2)¥"(&1)|P1P2) and in the cross section

o Z Piy"(£)9°(01)|Pr) (P2l (02)97 (€2)| Pa).- (1.65)

Realizing that the matrix elements have a color triplet projector as intermediate state we have ®™°
(|7°]) o 67 and one in fact only can use the trace ® = 3" ®". Because Tr.(I I) = (1/N¢)Tre(I) Tre (1),
one then finds o o (1/N,)®;®,. Including gauge links coming from collinear gluons attached to the
correlators, we get (note the color embedding!)

g X <P1W}T1 (51) 1/}51 (01)‘P1> —00,00] U[%Sf <P2|¢52 (02) ,l/)"‘2 (52)|P2> U[ 00,61] U[gl, ool (166)

Identifying 0; = 02 = 0 and performing a gauge transformation V' (§) = Vjp ¢, we get

o o Tre[(PV(€)¥(&)¥(01) VI(01)[P1) V(—00) Ul— oo, V(02) VI(01) Uo,,—oe) VI (—00)
X (Po|V(02) 1(02) $(E2) VT (62)| P2) V(=00) Um0y VI (61) V(2) Ulgy o) VT (=00)].
= Tre [(PuVio,e,9(€1) %(0)P1) Vio,—oc] U—o0,0] Vio,~oc] Uj—o0,0]
X (Pa1h5(0) ¥(€2) Viey.01| Po) Vio,—oo] U—oo.611Vier,0 Vio.ga) Ultn,—oo] Vieoo0)] - (1.67)

If the path in V' is choosen to run via —oo, Vjg ¢ = U[g ¢ (thus a ’staple’ via minus infinity), we get

g x Trc[<P1|Uog]w(€1) (0)[Pr) (P2|1(0) 1h(&2) Uy, | P2)]-

Pry(0) U ¢, (&) |1P1) (P2[(&2) Upg, ) ¥(0) | P2), (1.68)

= ﬁc<
where the splitting is allowed because the matrix elements are proportional to unit matrices in color space
(there are no A-fields in the ’second’ part that belong to correlator 1 or the other way around).

1.6 Large transverse momenta

We started out with the assumption that the support of the correlators ® and A is restricted to regions
where the scalar products of the momenta involved are of hadronic size, or stated differently the fall-off
as a function of these invariants should be sufficiently fast. To check consistency requires consideration
of large transverse momenta generated after emission of hard partons. These will produce ’'their own’
hadrons and can at that stage be treated as on-shell partons. As our first case we look at parton(pg) —
parton(p)+parton(l) (with p = pp—I), the emission of an on-shell parton with momentum [ by a parton with
momentum po (of which we will first neglect por). The momentum fraction is reduced from py.n = z/x,
(x < zp < 1) to the lower value p.n = x and producing at the same time a (moderately large) transverse
momentum pr. We neglect the O(M) contributions.
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X

Po ~ 7P
[P "
2 2
Pr (1 —mp) Lp DPr
I ~ (1—-z — Dy — n /s TP —
— B L L R M G
T . s s
~ z n~zxP Pz
Ro P Y R y ) AR
————
Op
For the invariant momenta we have
2
PRl x~0 and p? e T
11—z,

The figure to the left shows the support region as
also discussed previously, but now neglecting all
2 A O(M) contributions. Thus p- P ~ 0, ~ p~ and

P’ = 2x0p+pi.

) Mg=0 Although we assumed @ to vanish for large val-

p Pr P% y ues of the variables p - P and p?, these can take
p X 1—x g larger values, e.g. after parton braching, as dis-
K 2pP cussed above. In that case the additional variables
3 ! g entering are the fraction pg - n = z/x, of the orig-

) 2 VA | Pr inal parton and (considered below) its transverse
momentum py, with z < z, < 1. By varying z,
) from 1 (minimal loss of longitudinal momentum
along P) to z, = = (maximal loss) we scan the
P full physical region of ®(z,p;). For given z and
pr, the values of the invariants are fixed for a given

| \ Tp,

The situation for fragmentation is analogous.

ke ~ 2p,
Tko § 2 2
(1—2) 21 k7 (1—z) z k2
I ~ —ky—ky— ~ Py —kr— ———
e a0 ko) 2 T T ) "
1 2 2
_ Zkk _ zk
T k=~ Yko + K r ~ P k2T
k R Y e Yy R Ty S
———
ok
For the invariant momenta, we have
2k
Ex~?~0 and k2m1_2kk§.

We will now give the explicit integrations including also small transverse momenta po, for distributions
(and ko, for fragmentation). We get

O(x,pr) = /dap dr, §(1p, — 2w 0 — p2) /d4l(5(12) ... Do(po) (1.69)

/dap dr, §(1p, — 2w 0y — p2) /d(po -n) d*por d(po - P)5(1%) ... ®o(po),  (1.70)
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The integration over py - n = z/x, is easily turned into an x,-integration, the integration over py - P can
be performed to get ®o(z/z;, por) and in the evaluation of 2 we have (note I = por — pr). Using

1-2z,

2= (po = p)* = (pr = por)* = —" 20y, (1.71)
P
we find
x
O(z,pr) = /dap dr, dx, d*por 2 1) (Tp —2zop — pi)

p

17
X 5(1)? — 2por - Pr + Doy —

= /dap drp dzy d*por 1% 1) (Tp —2zx0p — pi)
P

2
p 1—=x T
X (5(T — 2por -pT—l—p(Q)T - pr> ... D (,pOT)
T z T

P P P
1 2
dz, dpor T
= — .9y — 1.72
| s o () (172
where in the integrand invariants like 7, and o, are fixed,
1 2x T
. 2 P . _7P 2 1.73
Tp p 1—xppT 1_1.pp0T pT+1_xppOT7 ( )
2z T
9 2.2 __ % 2 id . . 1.74
l‘O'p p Pr 1_$ppT 1 — ppOT pT+1_$pp0T ( 7)
We note that
1 (1 - xp) ( Por * Pr 2 (pOT 'PT)2 p(2)T 3 )
—=——2(14+2x +4zi——"——x,—= +O(p 1.75
P’ 3 "o P (p2)? Py T O (175)
1 (1 - xp)2 < Por " Pr 2 (pOT 'pT)2 p%T 3 )
= 1+4x + 1227 ——— —21,— + O(p . 1.76
TR P v Ep Py TOW)) (L0
For fragmentation functions, we get
1 = (ko — k) = (kr — kor)? — (1 — zx) 22 L o, (1.77)
and we find
1
Az, ky) = /dcr;c dri, dzi ko - 0 (Tk — 227 g — ki)
k
X 0 (k,i — 2/€0T . kT + ]i?gT - (]. - Zk) 22_1 O'k) AO <;,k0T>
1
= /do‘dedekdzk‘oTi(S(Tk—22_10'k—k‘3)
Z 2k
z
X 6(zkk§ - 2kOT . kT +k(2)T - (1 —Zk)Tk) A() <Z]€,/€0T>
1 2
dzp d*kor z
= — .. A | —, K 1.78
where in the integrand invariants like 74, and oy, are fixed,
2 1
— k2= 2k g2 Kor - ki + —— k2 1.
Tk 1— 2, T 1— 2, or T+1_Zk 0T ( 79)
22 Vo = k2 — k2 = 1 k2 — 2 kOT-kT—F;kg . (1.80)
T 1-— Zk T 1-— Zk 1-— Zk T
We note that
1 (1 - Zk) Por * Pr (kOT : kT)2 k[2) 3
—=—>%(14+2 4 - —= O(k 1.81
= (12 g - e o (81
1 (1 — Zk)z kQT . kT (kOT . :ZCT)Q k(%T 3
= 1+4 12 -2 Ok . 1.82
wy = aZur T TR gm0 (52
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Appendix A: The gauge link

As indicated gauge link are essential ingredients to have proper definitions of color gauge-invariant cor-
relators. They arise from insertions of quark-gluon-quark correlators and of these the leading ones are
expected to be correlators containing A - n fields. The general A*(n) field in the correlator in Eq. 1.7 can

be written as (4.m)
-n
AP = PH L AR
P + AL+

(P-n)(A-P)— (A-n)M?

)2 nt.

This expansion can be written down for A*(z) or A*(p) To see, how quark-gluon-quark correlators are
turned into color gauge-invariant objects, it is convenient to look at the momentum space field and rewrite
the momentum in terms of the gluon momentum

A*(p)

[am e

= /d4n etPn Mpu
p-n

In the correlator the momentum p* — 0" (n), so

1 .
d4 ipm
p-n e

A%(p) A™(n) p*

AM(p)pt +iGHH(p) + —5——n

1
p-n

The first term will lead to gauge links along the n-direction. The introduction of the gluon momentum p*,
rather than staying with the hadron momentum is done not only because it renders the subleading parts
gauge invariant but it provides the necessary and convenient starting point for using Ward identities for
the A™ insertions (gluon with polarization along the parton/hadron momentum). It will turn out that the
insertions on the external legs of the hard part give the path dependence.

To see this, consider field combinations denoted as

U = UM ) wiet) = [de e Ul e

1
where £~ = £+ P and p* = p-n, which are the only relevant components that need to be considered here.
Explicitly one has (with AT = A n)
[n] N [T ¢ ¢ ¢ e
U™p(pt) = D () / d¢~ / dily / diy - / diy AT (ny) . AT (E) e e
[l _ B - -
N=0 e e N U

in which the arguments run between —oo < ny <ny_; <...<n; <&, implemented through 6(ny_; —
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ny)---0(ny —ny)8(§" —ny ), which can be rewritten as momentum-space integrations,

urypt) = /df/ an/ diy_; - [dnl

d E / dp e 7,17]\](771\] 1 UN) —Zpl (E B B B o
x A+ AT ipTe
—271 —27 1 pN+ZE pl +Z€ (77]\7) (771 )1/)(5 )6
_ f: /de / df ATR) AR —pk) AT e s s
21 (py +ie)  (ph_, +ie) (pf +ie) L
_ i/de /dPY ATR)  ATR) A+ (p1)
21 (pf +ie) (D +ph_y +ie)  (ph +...+pi +ie)
Ppt —pf —... =)
_ i / Bl [ L6D _AE) A+ ()
2 (pf +ie) (pf +py +ie) (P + ...+ Dy +ie)
Xzﬂ(p*—pl — = DR

Summarizing,

— 00

&P
@{)(p) = /d4£ exp (ip - &) Pexp (ig/ d(n- P) n~A(77)> Y(z)

_ d'pyn / d'pi A™(py) A"(pn-1—pn)  A™(p1—p2) bo—p1)
") @2m)t (zn +ie)  (wn—1+ie) T (z1 +ie)
_ i / d*py / d'py A™p)  A"(p2) A" (py) o[- ip{
= ) @mr ) @n)t (e +ie) (e +astie) (w1 + ..+ oy +ie) )
(1.83)
where z; = p; - n. We thus can expand
iy — N gl
UL (p) = MZ_jOUi (p), (1.84)
where U[in](o) = 1. The gauge link and the terms in its expansion, not only have a particular structure in

coordinate or momentum space, but they also have a charge structure. In particular for applications in
non-abelian gauge theories, it is convenient to expand the gauge link, like the field A* = A**T,, in terms
of color matrices,

v = v, (1.85)

which is possible for each of the terms in the expansion of the gauge link, but also works for the full gauge
link.
It is possible to use a more symmetric expression for the gauge link in momentum space. The momenta

p1,...,PN are integration variables. We can use the relations
1 1 1 1
- { — + - ] = . —, (1.86)
(1 + xo +i€) | (x1 +ie)  (z2 + i€) (z1 + i€)(za + i€)
1 1 L B 1 1 i
(1 + 20 + 23 +1d€) | (x1 + a0 +i€) (2 +d¢) | (x1 +ae+ w3 +ie) | (x1 + i) (wg + de)
6 permutations 3 permutations
1

= (1.87)

(1 + i€)(x2 + i€)(z3 + i€)’

and its generalization to more momenta, to symmetrize the result. This simply works in the abelian case,
when all permutations of A™(pr(1)) ... A™(pr(n)) are identical, but can also be used in the non-abelian
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case. In that case one has for two fields (omitting the prescription)

A'(p1) A™p2) _ 1A"(p1) A"(p2) | 1 A™(p2) A"(p1)
21 (21 + x2) 2 xy(z1 + 22) 2 xo(x1 + x2)
_ 1{A"(m), A" (p2)} L1 (v — x1) [A"(p1), A"(p2)] _ 1 A"(p1) A" (p2)
4 1 T2 4 X1 T2 (1’1 +1’2) 2 1 T2 ’

where the commutator term is not important, being proportional to (xo — x1) 6(x1 — x2). Thus we have

¢-P
U[_ﬂ/)(P) — /d € exp(ip-€) Pexp (—zg/ d(n-P) n.A(T))> ()

oo

d* pl d4pN An (p1) A" (pg) . A”(pN
ZNI/ . / (2m)* (z1 +i€) (@ + i€) ... (xN + i€) ( Zm), (1.88)

which is now by construction symmetrized in color space. For a link along n coming from +o0o one has

&P
UMep) = /d‘*f exp (ip- &) Pexp (—ig/ d(n - P) n-A(n)> V()

oo

B Z/d]ON / d'pi A™(pn) A™(pn-1 —pN) An(pl—pz)w(p_pl)'

(2m)* (—xy +i€) (—axn-_1+ie)  (—m +i€)
- d*p) d'py A" (p) A"(pw) N~
- Z_/(Qn)4"'/(2w)4(—x1+ie)"'(—xl—...—xN+ie)¢<p ;@),
~ dip [y A Ap) . A ) =
- Z Nl/ h / (2m)4 (—xl+ie)(—x2+ie)...(—x1v+ie)¢(p_iz_;pi>(’1'89)

One also sees that a term Uy "IM) s the consecutive action of M simple U[i" I Jinks. The conjugate link

is

£P
B0 U = i€ exp(-ip-€) WO Pexp (ﬂ’g | dn-p) n~A(n))
o= ()Y [ dip d4PN p1) A™(p2) ... A" (pN)
= NZ:O Nl /(27‘1’)4"'/ <p+zpz> pl —|—Z€)(p2 +io) . (p?\_,—i—ie)

_ ZN'/ dpl /dP;\j1 ( sz> A" (=p1) A" (=p2) - .- A™( pN)

=] (pf —ie)(pg —i€) ... (pk —ie)
(1.90)

The links along the n-direction are actually essential to render the insertion of other gluon components
gauge-invariant. To see this, one must realize that including the n-links the relevant pieces in the correlator
contain

0" (). ol A Ul

In order to evaluate the pieces we give a number of useful relations for gauge links

i0¢ U, [0 5] = [0 E] iD"™ (&), (1.91)
ig G"‘*(f) = [iD"(), zD"’(f)] = [iD"(£),g AZ(§)] — [i9¢, g A™(€)], (1.92)
(107, U g A (©) U 1 = UDY (ig G™(€) + [i0g', g A™()]) UL, (1.93)
&P
iDg(n) UMy — Ul D3 (€) = /} N d(¢- P) U, [iD"(C),iD2(Q)] Uy (1.94)
ig G ()

In particular one sees that (with « a transverse component),

ia"(??)U[[f],,] A%(n) U[[nn,]‘,,] = U[[,T.L.]n] [iD™(n), Aa(n)]U[[:,]M] (1.95)
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while
—i0" (U, AU = ol o), AUl | (1.96)
and for the combination
o (U™, AUl —iomul Aty ot = o ey ol (1.97)
Similarly
o mul APmult ot mul armuolt = ol ey ol . (1.98)

It is useful to have the above relations also in momentum space. We have (everywhere absorbing g in A)

[ ereuie = vl (199
[ rsioru =i, (1.100)
[ e arigue = [ S8 v - m) = 490 (1101)
[acersaga@ue = [ EH B Ao e vh-p-p). @102
[atgersangae = [0 ST 44 p) 40 (205 -1 —pa),

- [ G2 A 4 ) (1.103

[ ersicree) = i)

d'pr d*ps [

W (2m)* A" (p1), A% (p2)] (27)4 5t (p—p1 —p2), (1.104)

— 2 A%(p) —p?A”(pH/

For the Fourier transforms of the fields including a gauge link one has besides Eqs 1.83 or 1.88,

. pN A" (p1) A" (ps) .. A" (py -
NZON"/ (x1+ie)(x2+i6) (xN—i-ze ( Z%) (p_;]?z)

= «U"ly(p)

n 1 [ d'p d'pn AM(p) n A" (py
X e g e G g Zpl

[n]:qn
UZ*i0™y(p)

= dpy d'py AP AMpy-1) S
) e e s e (p_;p’) |

Using Eq. 1.83 one can of course also obtain this result. Thus one finds
UZ2iD"™p(p) = i0" UZ"(p) (1.105)

For a transverse derivative one obtains

n] . qo arrln S 1 d4p d4p
vtiotue) = s - 303 / (2@14“'(2751

A™Mp1) ... pf A" (pi) - .- A™(pn
(z1 +i€) ... (z; +i€) .. (OUN—He ( Z]h).
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Using
[A"(p1) ... A"(pn), AZ(po)] = A”(pl) - A" (pn) Az (po) — A7 (po) A" (p1) - .. A" (pn)

= ZA" p1) - AM(pic1) [A"(pi), A%(po)] A" (pis1) - A™ (pwv),

N L [d'p dipy dipo [_AMpY) - AM(N) . -
=) o oy 2o 1 5] ¥ (p_p()_;”)

_ ii L d'pi  d'py d'po A”(pn.:.[A”(z»i),A;(po)]...AngpN)¢(p_po_im).

—= NUJ @2m)f 7 @2m)f 2n)* (zy +ie) ... (x; +i€) ... (zn + i€)
Furthermore,
o 777l o d4p1 d*py o A"(p1)...A"(pN
Pr H(p) N Nz::o N! / T (2m)t Pr (x1 +ie€)...(zN + i€) sz
_ i Z 1 / d'py  d'piy d'pina d'py
- 4 .. ...
== N! (2m)*  (2m)* (2m)4
A" LA™ (pi— o A™"(pi LA”
(19_1) (p 1)' p° (p fl) (pN sz ’
(x1 +i€)...(wi—1 +ie) " " (zig1 +i€) ... (xn + i€)

and

- 1 d4p1 d'py AM(p1) . AMPic1) e AMPir1) - AN
Z Z N! / (2m)t (xy +de) ... (w1 + de) Az (i) (Tig1 +i€)... (N —|— i€) ( Zpl)

N d'pi dpy Ap1)...2; AS(p) ... A (py)
7ZZN'/ 4"'(27r)4(x1+ie)...(xz+ze) (xN—i—ze sz '

Sn L [ dipy AT(p1) .G (pi) . AM(pN
ZZF/(%) 4 2m)E (2 +de) - (wg +de) . (xN—i—ze Zp’

:izjv: 1 /d4p1 _“d4pN A"(pl)---A"(pi—Q A2(py) An(pi—i-.l)“-A"(pN)‘ ¢<p—zN:pi

(2m)* T (2m)* (x1 +d€)... (wi_1 + i€) (Tig1 +t€) ... (xN +i€)

N
n] ja _ paqrn] () o ]
+UZ A7 P(p) — Az UZ79(p) + UZ079(p) — pz UZ"4(p)-

L1 1

e 1 d*py d'py  A™p1).. AM(pic1) o A"(pit1) - .- A" (pw) =
=22 / Gt Bt (o tie) @t 0 P G e w0 Y2 ,Zpi

Appendix B: Calculation of gauge link

We want to consider a hard proces and see which gluon correlators need to be resummed to get a gauge-
invariant correlator including a gauge link. We first look at the insertions onto one fermion line. At this
stage nonabelian effects do not matter. Working with momentum representation of the fields, we consider
of the A*(p) insertion only the collinear term, to be precise A™(p)p*/(p.n). Furthermore, first consider
the situation that the hard process is a simple (constant) vertex (like a v in deep inelastic scattering).
Thus, we are going to resum the diagrams
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k- kP k kP, k
7 V )66@/ Vi )666/5 %/g
|y PP P, PPP, P, P

The first term gives as relevant contribution

Ao = ()T (p),

where the ¢(p) and (k) are fields belonging to the correlators of initial (momentum p) and final state
quark (momentum k) respectively. The first gauge link contribution is

[ d'pr — =i AR(p) (=)
A= / (2m)4 k p -k (—2k - p1 + ie)

L 4p(p —p1).

The numerator becomes p; (f — p1) = p1k = {k,p1} = 2k - p1. The added term is zero since ¥(k)f ~ 0.
Thus one has (note that the sign of k - py is plus),

A =

<

d'p  A*py) _ = b
(k)/(%)l‘* (—k'p11+ie)r¢(p_p1)_w(k) U Ty p) (1.106)

The 2-gluon term becomes

[ &' d'pe AR AF(pe) 1 1 -
= [ G TR P R R )
[ d'py dpy — . AF(pr) AF(pa) (K- B bo (F — p1 — po)
= [ s Bt S TV~ )
_ = d*p1 d'ps A¥(py) Ak (py)
= ¢(k)/ (271.)4 (27.‘.)4 (*k-p1+ie) (*k'p1—k~p2+ie) w(P_Pl—pz)
Gk UM Ty (p), (1.107)

etc. and the total result becoming
> An = (k) UM Ty (p) = B(k) UM (p) T (p). = (k) Tu T US i (). (1.108)
N=0

The next situation to be investigated is the momentum dependence if there is momentum dependence in
the basic diagram,

) —(T)—= _
/Q 7 Ao =itp(k) FQ%Fl P(p)- (1.109)

P

The two one-gluon insertions are

R d'pi A*(py) ! 1 _
Al - Zw(k)/ (27‘_)4 k'pl 751 k—ﬁ1+l€ F2 g—ﬁl F1¢(p pl)
1 k
wiwh) [ G2r T LT )

4 k
_ mk)/ T A1)y L p e o)

en Fom P
— d'pr A*(p1) 1 P 1 -
90 [ G o e ) e

1 k
'H@(k‘)/ éf):l Iy 1(21) [;élzﬁl - ;] Lio(p—pa).
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As before we have
1 - 2k - P1

pr k—pr+ie  —2k-pi +ie’
which actually becomes equal to —1 if it is multiplied by a function that vanishes when p; — 0, so the
second and third line in the above expression cancel and provided® [A*(p;), 2] = 0, we are left with

d* AF 1 —
P1 (p1) Ty =Ty (p—p1) =i (k) U_[f](l)r2

1
(2m) —k-p1+ie q

d

There are three two-gluon insertions, yielding the second order term in the link, etc.
Going back, we consider the insertion on a line coming from a different correlator in the basic diagram

with just one vertex I'. Starting with Ag = [¢(k) T ¢(p)]...¢¥(p'), we find

Ay = (k) / Iy 9(p). (1.110)

4,/ k(o
@@2, A = [w(k)/(d27f)14 i.(ﬁ,i)p; k_;,lﬂerw(p)] b =),

e [ AT A o
V Kb k- = [w(k)/(%)4 _k'p,1+ierill(p)]...z/1(p — ),
’ = PWUPVTe)] . 6 = B UG T em)] . vw).

(1.111)

Next we consider the situation of two insertions onto a final state leg with momentum % coming from
different correlators, for which there are two (or in general for a nonabelian case, three) contributions,

N

}@k;m; K

k-pP,’
74 o !
PP, P, PP pl

(a) (b)

For the third diagram (relevant in the non-abelian case) we use the propagator

gt (k)

Dr7 (k) = k2 +i€’

where g (k) = —g"¥ + k* k¥ /k*. Furthermore, we need the QCD vertex

p’

v b N

Pt p’
9999 p ¢ VEeP (p1, v, p1 + 1)
=1 fabe [(1 — P1)? 9" + (2p1 + D))" 97 — (p1 + 207)" ¢"7].

noa /pl
The contraction with p;,, yields

P1u VIl (p1, 1, o1+ DY) = fave [(p1 +P1)? 927 (01 + pY) — PF 927 (01)]

Contraction with pq, and p}, gives

;
PP Vi (01,2 p1+ 1) = 5 Jave (1 + ph)? (p1 — p})”

and including the color contractions with A”(p;) and A} (p}) as well as the propagator for leg py + p}, we
get the matrix-valued result

pi Pty T AL(p1) AR (D) VA (p1, 07, p1 + 1) DY (p1 +py) = —= [A"(p1), A™(0})] (01 — pY)P

1
2

6If this commutator is not zero, there must be gluon insertions into I'y
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For the three diagrams we then obtain

_ d'py d4p/ Ak(pl) 1 Ak(pll) / 1 . AW
A11 - W(k)/ (271_) ﬁl }é 161 k pl ﬁl }é_}'ﬁl _ﬁ/ F¢(p pl)} w(p pl)
4 4 /c

dipy d*p} [A’“ (p1), A’“(pl)}
- @rF 20k p) (k- £h)

Let us investigate the singularity structure. Using 21 = k- p1, ) = k- p}, and a; = p; - p| one has a part
(coming from diagrams (a) and (c) above) containing

AR (py) AR (ph) [~ 2y — g2 (B — )] 1
x1 (—x1 +ze)( x) + ie) k—p1— ¥
1 AF(p) AR ()

=S Cmria( ot P

@1 —15/1) m F¢(p —p1)] -~-¢(p/ —pﬁ)

_ 1 AMpo)AT ()
F—pr—p1 2 (-an +ie)(—af +ie)’

and similarly a part with the fields in opposite order. Hence the result for A7 can be rewritten as

4,1
A = g0 [ G u SO o) v - )

(2m)t k-py T k-$
Rl e A e e R B
- 3 [ B TR [ ] el
) 7r /dpl ({f]m i’“.(i)ﬁlk1mw(p_p1)]...1f(p’)
- 30 [ R s [ ] el )
- g [ SR TSI [ ] T

1 d*p, d*p!, [AF AF
_ 7@([{:)/ P1 D1 [ (pl)? (pll)]
2 @2m)®  (k-p1)(k-p))
We note that in the lines 2, 3 and 5, 6 of the above equation, the prescription doesn’t matter because the

part multiplying the product of A-fields vanishes for p; — 0 and pj — 0. Thus including line 7 all terms
cancel and we have

/ 1 / /
(]bl —151) mrwp —p1)] -~-¢(p —p1)

A =5k U (o, ) Tw(p) ... 0() = % W(k){({f](l)a T y(p)] .. Tf(p/% (1.112)

i.e. the gaugelinks on (fermion) leg with momentum k is the (color) symmetrized product of gaugelinks.
The abelian case (without third diagram)

_ d*pyd'py AF(pr) AF(ph)
= B [ T R 7

d'py d4p1 A"’(pl) A’“(p’l) I B b
4 1 4 Ak A Ak 1 , , ,
v [ TG [}é—zﬁ—;ﬁa;é—lzﬁa]”(pm]“'“p —n

where the first two lines come from the first contribution. Because [A(p1), A*(p})] = 0 the result is

Iﬁl }é ]6/ (pfpl)} w(plfpll)

= W) T UM Vy@)].. vy (1.113)
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Returning to the As-term of a link for ¢(p) we note that the contribution of the
nonabelian diagram in which two legs are attached to one soft part is actually already
included in the soft part with one collinear gluon. Its contribution

1 [Ak(pl) A*(p2) 1 L [AF(p), A*(p2)] w2 —m

2 kE-p1  k-pa } (]61_162)}67]617;‘)2 D) (=1 +i€)(—x2 + i€) Ty + 22"

is actually just the vanishing antisymmetric term discussed before (see Eq. 1.88).

Without further calculation, the result for the contribution from gluons from 3 different soft parts will be

Ay = E(k) UJ[f](lll)(np/’p//) w(p),(/}(p/) ¢(p//)
= %E(k) {U_[f](l)(p)yUf](l)(p/)7Uﬂf](l)(p//)} o) ... u}(pl) ¢(P”)7 (1.114)

where A, B, C' indicates the symmetric combination. For this we would actually also need the four-point
gluon vertex.

This four-point gluon vertex also is needed in the final case we will explicitly investigate, which is
two gluons collinear with momentum p and one collinear with momentum p’. We now need a number of
diagrams and the four-point vertex, contracted with three momenta. The latter is given by

b,v Ve

\P]’ (Y abed = — 92 [fabc fede (gHP gyg - gua gup)
/pl+ p+p; + face fode (9" 977 — g7 g"7)

/%‘Egpl + fade foce (9" g7 — g"* gyo)]

P Fye = —i9*[fave feae (29" g"7 — "7 g"* — g™ g")
+ face foae (29" g7 — g7 g"P — g"" "7 )]

The contraction with p}” A™(p}), p5 A™(p2) and pJ A" (p;) yields
pIph Pt Ag(p1) Ag (p2) Ay (01) Te Vi =
ig? {[A” (p1), [A™(p2), A" (0] (205 p1 - P} — P P2 - P — DY 2 p1)
+[A"(p2), [A" (p1), A" (p1)]] (207 p2 - P} — Pl 1 Ph — DY D2 1) |-
The contributions to the gauge-link are the following

w
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For the seven diagrams involving three collinear gluons, two collinear to p, one to p’, we obtain the

tributi
contributions . W(k)/ d*py d*py d*p) T(p — )] w(p —pl)
21 = (2m)% (2m)* (2m)% " p—p1)|..- 0P —py

with three basically ’abelian’ contributions,

_ AR(pr) AF(po) AR(ph) 1 1 1

@ = T Fom kg, "E R RV Rk
AR AF(ph) AF(p2) 1, 1 1

© = T A kom M—ﬁ s N —
AR AF(p) A () 1 1

@ = e E E e R R R P

of which the singularity structure is kept in contributions (ag), (bg) and (¢p) and we get of which the
singularity structure is (using D = 1/(F — 1 — p2 — $}))

() = Ak(pl)ékx(fi)’lAk(pll) — +i1)($—2531—)x2 -
_ A’“(pl)ﬁ’“x(fi)/lflk(p’l) (mxj@)ﬂlD
o - S +ze> e
- Sl lis)gAk(pz) A g g P
By AR () AR ,
_ 4 (pl)é:c(f;)gA (p2) — +§’i—a1)’62D
@ = Ak(p,l)ikx(f;)’lAk(pQ) (:c’fl1+ g }é—pi —y 2D
e

We have here introduced ay = p] - p1, @ = p) - p2, and a = a3 + as. A useful relation is Py e = a1 P =
ag P1, also implying o k2 = ag w1 or x1/x9 = a1/as. We note that summing these three diagrams in the
abelian case simply give

A" (p1) A*(p2) A* (p1) /
[(Cl) + (b) + (C)]abelian (_1’1 + ZG) ( 1 — Ty + ZG) ( x/l 4 16) [ ﬁl (.131 + $2)p2]
_ A¥(py) A" (p2) A*(p1) L1 ARG AR (p) AR
(—z1 +i€) (—x1 — @9 +i€) (—x) +1i€) 2 (—x1 + i€) (—wa + i€) (—x) +i€)’

(1.115)

giving Agy = [E(k)I‘UfKQ)@/J(p)] e U_[f](l)@/}(p/). In the nonabelian case, we also have two effectively
‘three-gluon’ contributions,

1A [AR) ARG N
(d) - 2 kpl |:k,p2’ kpa]pl}é ]b (]52 Iﬁl)k_]bl_ﬁz_p&

= +% Ak(])l) [ikx(ii; Ak(p/l)] (152 _]b/l)D

o L[ARp) AR A(pa) , 1 1
I T i e e o

L [AR(p), AR AR (p2) (21 — 2 — an)

N +§ : T1 To T : (:171 +x’1 - ai) P2 D
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The sum of these two gives

k k k()
@)+ = 50 gy
1 A*(py) A*(ph) A*(p2) (s 2
+ § I1 Ty ;/1 <ﬁ1 - (xl +.’£I117 al)ﬁ2> D
1 AR)) AR (py) AR (py) (w1 —af _Oél)ﬁ b
2 Tl T T (x1+ 2] —aq) 2

An alternative in this calculation is to not add (d) and (e), but rather to add (e) to (b) and (¢) to avoid
having to deal with poles in 1/(f — p1 — #}). One gets

A (p1) A*(py) A* (p2) [ 1 ]
b)+(c) +(e) = —p, — = (p1 — P
() + () + (¢) - h— g —1)| g D
Ak(Pﬁ)Ak(pl)Ak(m) [ } 1
+ + D
T1 Ty x/l ]51 (]5 ﬁl) }é_ﬁl —]6’1 pQ
1 Ak Ak (pl) AF 1 A’C Ak AF
_ 1 A%p) (pl)/ (p2) boD o+t (p1) (pl)/ (p2) 4o D.
2 X1 T T 2 122 %
Including the contributions of (a) and (d), we have
1 A*(p1) A*(p2) A*(p1)
@)+ +(e) = 2 T1 T2 T [ﬁzD—’_x —|—x2¢1 }
1 AF AF(p)) AF 1 Ak Ak Ak
v (p1) (pl)l <p2);51 (p1) A%(p1) (p2)152D.
T X2 X7 331$2~T1
Finally, there are two types of 'four-gluon’ contributions,
1 [A*(p1) {Ak(pz) Ak(?ﬁ)” /
(f) = 2 [k}-pl’ k-ps k-ph (p2 = P
x [(p1+p2 + 002 ) (01 +p2 +Py) — (02 +11)? 627 (02 + )]
1
X iDy,(p1 +p2 + )Y ——
Drolbr+p Py = g
A*(p1) [A’“(pz) A’“(p’l)” I\
= - 9 ) o] —« -
|:k'p1 ka kpll (1 2)(p2 pl)
1
X iD:p(p1 +p2 + )V —r——,
iDry(p1 +p2 + i)Y A —
Ak(pl) {Ak p2) Ak (P ”
- , 2a -«
0 = - [ | o - an)
X 1D p(p1 +p2 + PV
R T Jﬁz—ﬁl
A¥(ps) [A’“ P1) Ak(p’l
— , (2« -«
|:k‘p2 Fop o 2p] — a1p3)
X iDzp(p1 +p2 +p
o1t P
Using the contractions
—aph gsrp(Pr+p2+ P = apy— 3oz (b +pa+5)
= aipr—azpr+ 502 (P + P —P1) = 5z (b + P2 — )
—ap] gsrp(Pr + P2+ PV = aepi—aipe+gan (P + P —P1) = s oa (B + P2 — )
—apl Gsrp(pr +p2 + P = 3+ P2~ P),

—a(p2 = p1) " gsrp(pr + P2 +P1)Y" = 1P —oepr— 500 (b + P2 — P1), = —% a1 (b1 + P2 — B),
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realizing that with p; and p, being integration variables,

(A (p1), [A"(p2), A" (D) F(p1,p2) = A¥(p1) A¥(p2) A" (p}) F(p1,p2) + A*(p)
(F(plaPZ) F(p2,p1 )

)A (Pl)Ak( 2) F(p2,p1)
(

[A¥ (), [A%(p1), A" (D)) Fpr,p2) = A"(p1) A" (p2) A" (P)) F(p2, p1) + A" (p)) A* (p1) A" (p2) F(p1, p2)
(

and using

_ o 1 _ (@t 2+ [P A+ [151»152]
C = (p1+p2 Isl)}é—}él—ﬁz_ﬂl_ (—21 — x3 — 2} + )

we can rewrite the last two contributions as

1 [A¥(p1), [A* (p2), AF(PD)]] (o — g) c

(f) = _Z I1 2o I'/l o2
1A )A A il —a)
4 x1 T Ty a2
1 AR (p1) A* (p) A* (p2) (a1 — az)?
+= , 2l e
4 T1 T2 T] «
1 AR AR (p1) A (pa) aa(an — an) o
4 Ty xTo T a?
(9) = 1 [AR(pa), [A¥(pa), A ()] @1 2 o1 [A* (pa), [A*(p1), A% (p))]] a1 o
g 4 1 To T o2 4 1 To T o?
_ 71 Ak(Pl)Ak(Pz)Ak(p/l) [e5es) C
2 X1 T T a?
k AR () AF
LA (pl)/ (p2) @
1 T2 Ty «
L AN p)AR ) A (p2) n s
2 X1 X2 T o?

Adding the contributions and using x1/xs = a1 /as we get

1 AF(p1)A*(p2) AR (p))

(f)+(g) = _Z -7711'255/1 (SE +{E )(]‘61—"_152_}61)
4 T1 T2 T]

1 AR AR (p) AR (pa) o
4 T1 To T (z1 + x2)

(p1 + 92— 1) D
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The full result becomes

So we get

&
|

= [¥

St =

(k)

1

8

yl@

1 AR (p) AR (po) A (p)) o

ro — I

x1 T Ty (z1 + x2)

1 AR (pr) AR (p) A" (pa)

=~

1 Xo T

1 ANE)A () AR (p2) e
4

(ol e e el e e B e

PR UM (o, )T (p)]. ..

1 T2 2 (z1 + z2)
Ak(Pl)Ak(Pz)Ak (Pﬁ)

(—x1 + i€) (—x1 — xo + i€) (—x) + i)

A¥ (p1) Ak(pll)a Ak(P2)

(—x1 + i€) (—xa + i€) (—z) + ie)

AF(ph) AF (p1) A (p2)

(—x1 + i€) (—x1 — xo + i€) (—x) + ie€)

A¥(p1) A" (p2) AR (ph)

(—x1 + i€) (—x2 + i€) (—z) + ie)

A¥(p1) A% (ph), A" (pa)

(—x1 + i€) (—xo + i€) (—x) + i€)

AF (r}) A¥ (p1) Ak(p2)

(—x1 + i€) (—xo + i€) (—a) + i)

V()

1+ 2o

1
UV @) + UV ) U ) U )

+iu@m@vwﬂmwﬂnuw@»~w@0

1
U_[f](l)(p) U_[f](l)(p) U_[f](l)(p/) + i U_[f](l)(p) U_[f](l)(p/) U_[f](l)(p)

+ é MO () g () Uf](l)(p)] T y(p)]... o)
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(1.116)

(1.117)

(1.118)

This reproduces the correct (expected) results in the abelian case, and in the limit that UF® (p') is
replaced by a F*(p)), or that U¥()(p) is replaced by a F*(p).
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1.7 Gauge links in the Drell-Yan process

In this section we discuss the application of the general procedure (outlined in the paper of Bomhof,
Mulders and Pijlman, EPJ C47 (2006), 417) to the Drell-Yan process. Figure 4 in that paper then reduces
to the study of gluon insertions from one of the hadrons (momentum P) into a hard process, illustrated
in Fig. 1.2

Figure 1.2: The quark-gluon correlator ® 4(P;p1,p) that needs to be combined with the hard part of
the Drell-Yan process. We will consider DY-like processes, allowing the hard part I" to contain any hard
process (not only lepton pair production).

For the gauge link, one needs in particular the quark gluon propagator containing an A% gluon, which
gives a leading contribution in the expansion in inverse hard scale. The leading contribution is proportional
to P*. In particular we thus look at the part ®"(P;p;,p) PT. We need to calculate the contributions in
Fig. 1.3.

P
o) W@% P;p,

() s
P o

(a) (b)

Figure 1.3: The two leading quark-gluon contributions. The first one (a) is the one that gives the familiar
piece along the n_ direction, in this case running from minus infinity to the position of the quark field. If
color plays a role in the hard part T the part (b) needs to be included. It contains all insertions into the
truncated vertex I, starting with for one gluon I'*?(p; — p, p2, p).

The contribution in Fig. 1.3(a) gives

. oy b + a
Fig. L3) — (SiPT") T —ppat9) = S 1Dy o+ )
TCL
= T'(p; — 1.11
e L1 = pip2 1), (1.119)

where © = p-pa/P -py (thus p =P +...). Note that a vanishing contribution proportional to p P needs
to be added. The prescription +ie originates from the hard propagator with momentum ps 4+ p. The result
can be rewritten as the well-known eikonal contribution and a second term,

a a

L'(p1,p2) + - (T'(p1 — pyp2 +p) — L(p1,p2)) - (1.120)

Fig. 1.3(a) =

& (2) T + i€
In the second term the prescription no longer matters, since the numerator goes to zero for x — 0 In the
situation that there is no color involved in T and the vertex does not depend on p (like for a gqg — v* vertex),
we are ready with the first gluon. Let us allow complications, because those will start playing a role with
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intertwined gluons from both hadrons or in situations of more complex vertices, such as quark-antiquark
or gluon-gluon production.

To calculate the internal insertions we use Ward identities. A simple one, which we will actually need
is the insertion into the propagator,

p_ P
p* - Tpl_p - Tpl
PP
It reads . . .
yﬁ ( zgﬁT“)}bl y = T"i61 —7 - ET (1.121)

Including the vertex and external propagators, the Ward identity that we need for the internal insertions
is the following one,

&l
Py o) W%P“ P - .
D+ (0 . . _
plepH P b P o "
p—#! P
It reads
;2.r(p1,p2)}6‘( wﬁTa)]b ' 5 (- zﬁTa)ﬁr(pl7p,p2+p)ﬁ+£(fpurw)ﬁli_ﬁ

Using . _ _
AP m T M R

we get for the truncated amplitude I'** the Ward identity

v v
Pot+p  pPatp P2
pu I = =TT(p1 — p,p2 + p) + L(p1,p2) T°. (1.122)

Collecting now the pieces for Fig. 1.3 we get for the combined result (using P = p/z),

T(l T(l p FIU‘(L
Fig. 1.3 — T T(p, — -7 Ep”
ig e (p1,p2) + ijZ.e( (p1 —p.p2+p) —T(p1,p2)) +
T T T Tae
= r T (T(py — T T T(py — r bl
P (p1.p2) + . (C(pr — p,p2 +p) —L(p1,p2)) . (p1 — p.p2 +p) +T(p1,p2) .
Te 1
= r T T% — 7T
P (pl,p2)+x( (p1,p2) (p1,p2))
L ) (1.123)
= T+ ic P1,p2)- .

The vanishing of the second term in the one but last line is in essence the Ward identity in Eq. 1.122 for
p = 0 (equivalent to color charge conservation). Note, however, that we could as well have simply written

Te p,ITra
Fig. 1.3 — T(p, — p
ig e (p1—pp2+p) + ot ic
Te Te Te
— T(p, — - T(p, — r
P (p1 — p.p2 + D) P (p1 —p,p2+p) + (pl,pg)mﬂ.6

Ta
x + i€’

= F(Phpz) (1-124)
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Conclusion of this exercise is that the color charge can either remain on the incoming antiquark side of the
vertex I' or it can be moved to the incoming quark side of the vertex, which looks most attractive since it
then can be absorbed into ® as the first order contribution to the gauge link.

Note, however, that in the case of transverse momentum dependence one also needs the transverse
pieces in the gauge link. They originate when higher twist contributions involving A% (p) fields in the
correlator are included. First the 1(0) A% (1) (€) operators need to be combined with gauge links along
the n-direction, then they need to be rewritten into a G™® and 1(0) A%(+00)1(£) matrix elements. The
latter give the transverse gauge pieces of the gauge link. These higher twist contributions have their own
color factors, which are evaluated by considering the color structure of the diagram with the color charges
at the places where the transverse gluons couple. In order to properly recover all factors when one has
different type of color flows in a particular process, one should therefore keep for staple-shaped gauge links
all the color charges on the appropriate legs, i.e. for the gauge link in correlator 1 on the antiquark leg
from correlator 2 and for the gauge link of correlator 2 on the quark leg of correlator 1.
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Appendix B: Spin vectors

For the hadron spin vector satisfying S? = —1 and P - S = 0, we can write
P P
SzSLM—&—ST—SLMn%SLM—i—ST, (1.125)

satisfying S? + S i = 1. The quantity S, is the light-cone helicity, S; the transverse spin vector. One has
S.=MS-n and Sk = gk¥Ss,. (1.126)

The spin vector is used in the parametrization of the density matrix. Often, therefore, the transverse spin
will be defined with respect to a hadron momentum P’ using

Pl{p,Pl/}
7T pp

w_

g" (1.127)

If the hadron momentum P’ is hard with respect to the original hadron, i.e. P - P’ large, one still has a
useful expansion in which P’ has the role as an (approximate) null-vector. One has (first expression exact)

P P’ P
v B I E=r A7 (1.128)
with & = M?M"/(P - P')?, which satisfies S + S3 =1 and where
1 MS-F MS.-P y
Si= =P P ~ PP and  Si =g}"S,. (1.129)
Comparing both expansions order by order in (1/Q), we find
MS-P MSy- P
and one finds using that S ~ S, ﬁ + Sr =9 % + S that
MS.-P
STR"SL*(SL'TL)P%SLT, (1131)
Sy - P’
S, o~ S, — PT_P, P =~ S . (1.132)
Using
P —xM? -P—2'M?
p.s:pT.sTerTsL:pT, .ST,+1’TSL,, (1.133)

and the fact that the differences © — 2’ and S, — S;» are O(1/Q) we have
pr - S = pr - S, (1.134)

which also holds if we use an approximate n’ ~ P’/P - P’.

Appendix C: polarization sums for gluons

A useful feature is the fact that the polarization sum for on-shell gluons satisfying v- A = 0 is approximately
equal to the sum for gluons satisfying n - A = 0, at least if n is constructed from v and P as in Eq. 1.47.
This is important because at some point on-shell (cut) gluons in the hard part need to be considered to
study the large transverse momentum dependence of correlators. In the section on 'Moderate transverse
momenta’ we have shown the kinematics for the branching parton(pg) — parton(p) + parton(l) (with
p =po — 1) in case of the emission of an on-shell parton with momentum {.
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Looking at the polarization sum for the cases that either [ or p are gluons, we need the products of
these vectors with the gauge vector (assume P -v = 1),

T i
lv = —|1—-2 2 ,
Tp p 1-=,
p-v = x[l—n Tp }za:
1-=z,
with ) )
n=—v? P 2 @’
422 42
serving as a small regulator. We note that in p - v the n-term is not harmful (no extra poles),
gt T vier o, vp-P)  v*(p-P)(P-n) (M
1—x, 1—x, 422 2x 2(p-n)(P-v)? Q?

(in last step we wrote the expression for the cases that the lengths of n and v are not fixed).
We can write for the polarization sum

Fo¥ 4 Vol 2R

A" (lv) = —g" + ———— - o = > (i) (1.135)
%
with
1—
i) (o) = W d(lin), (1.136)
(1 Tp+107 ’;p)
2
T —ghv
diy(lv) = ny= : (1.137)
Tp (1—.Z‘p+771 zp>
v 4z I
dﬁg)(l;v) = -7 \p21|) 2 (1.138)
T (1 — Tp + n ﬁ)
2 I PY 4+ [V PH
diy (Lhv) = ZZp * (1.139)

n=— —-
|pT| (l—xp—|—1’, 1f;p)

We note that for a time-like gauge choice (v? > 0) one has 1 > 0 and one avoids hitting the poles. Similarly
we find for the polarization sum when the parton with momentum p is a gluon the sum

d*(piv) _ 1 { pro” +p” ot vzp“p”] 1 v
=— |—g™+ _ = d“i D; v 1.140
p? p2 p-v (p-v)? p2; ()( ) ( )
with
dyy(pyv) 1 1-
M = @ (prm) ~ I g ) (1.141)
D p2 (l_nlfip |pT|
dwj (p’l)) 1 v
2 ) X g T v
@2 S Nl g (1.142)
p l—=z,p (1 " ) P3|
—
dis) (p;v) 4 1 "p¥ 41—
3 4 pp x v
()2 = g ™ U%Pu? (1.143)
p |pT‘ p (1 _ Iip) ‘pT|
n l—z,
iy (p;v) 2z 1 ptPY+p¥ PH 22(1 —
(4) M5 €z p +p I( ‘TP) " pv v
L = g LT~ T TP (gt PY 4 p¥ PR (1.144)
»? PRl (1) 32



Chapter 2

Specific processes

2.1 General structure

Starting with the annihilation process ¢1 + ¢ — X, we have for the contribution of the process ¢1 + ¢35 —
k1 + ko + ..., the inclusive cross section

do = F(Ell’KQ)/l;[diCiH(fhfl;ki)é‘l(fl +€2—;ki) (2.1)
=y M0 ® [Tk a3k (22)

Here dk; = d3k; /(27)3 2E; is the one-particle phase space and it is customary to split of the leptonic part
in which ¢ = ¢; + ¢2. For the one-hadron inclusive process ¢1 + ¢o — H(K) + X the contribution from the
subprocess 1 + 0o — k+ ki + ko + ... s

1 ~ ~ -
do = ——dK [ dK dk; S0, 0o K, Kx ki) 640y + by — K — Kx — Y ky). 2.3
v = oK [ X/H (b1, 63; K, Ko ) 84(61 + £ D OL Y
= Ld}?/d‘*k/df(x &4k - K — Kx)
F(l1,05)

X /Hdi@ H(ly by ke, ki) @ A(K b, Kx) 0% (g — k= > ki). (2.4)

Making the Sudakov expansion for k using a light-like vector n (outlined elsewhere) we have d*k =
dz"Vd®’krd(k - K) = dz~ ' dk,d(k - K) with 27! = k- n/K - n and defining

Az k) = /d(kj-K)/df(X 4k - K — Kx)A(K,k,Kx), (2.5)
1 - -
d6 = —— dk dk; H(01, b3k, ki) 6% (g —k =) k). 2.6
"= o /H (1.8 kok) 30— k= 3k (26)
we find
do = ;L(El q)®df(/dz—1d2kT
F(l1,65) ’

X /Hdl%iH(q;k;,ki) DA (27 k) Mg — k=) k). (2.7)

2.2 Introduction to electroweak processes

We will consider the following three types of processes,

e The lepton-hadron scattering process {H — ' X

133
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e The annihilation process 00 — X
e The lepton-pair production process AB — £/X (Drell-Yan process).

All these processes involve electroweak currents, coupling to the leptons in a known way. The basic
advantage of electroweak processes lies in the fact that the process is accurately described in terms of the
exchange of one photon (for electromagnetic processes), since the coupling, a = e?/4r ~ 1/137, is weak.
The same is true for the weak vector bosons. On the hadronic side, the coupling to the quarks is known,
but the structure of hadrons in terms of quarks and gluons is the unknown part. The fact that the coupling
to the quarks is known, however, enables the study of hadron structure.

For lepton-hadron scattering we consider the inclusive measurement /H — ¢'X and the I-particle
inclusive or semi-inclusive measurement H — ¢’'hX. The invariants are defined,

C=k-K)P=-Q*<0 (28)

Q2
2P - g=2Mv == (2.9)
B
2P, - q=—z, Q? (2.10)
P-P,=zP-q (2.11)

The variable x; is the Bjorken scaling variable. Since the invariant mass squared of the hadronic final
state satisfies L
W§<=(P+q)2=;7%Q2+M22M2, (2.12)
B

one has 0 <z <1, with x5 = 1 corresponding to elastic scattering, i.e. W)Q( = M?. In this case a hadron
is probed with a spacelike (virtual) photon, for which one can consider a frame in which the momentum
only has a spatial component, from which it is clear that the resolving power of the probing photon is of
the order A =~ 1/Q. Roughly spoken one probes a nucleus (1 - 10 fm) with @ ~ 10 — 100 MeV, baryon
or meson structure (with sizes in the order of 1 fm) with @ ~ 0.1 — 1 GeV and one probes deep into the
nucleon (< 0.1 fm) with Q > 2 GeV. As we will see, the invariants z &~ zp, for the case of one leading jet
(to which h belongs) in the limit that Q% — oc.

For the annihilation process we distinguish the inclusive measurement ¢/ — X, the 1-particle inclusive
measurements ¢/ — hX and the 2-particle inclusive measurements ¢ — hiho X (hadrons belonging to
back-to-back jets). The invariants are defined

F=k+E)P=Q*>0 (2.13)
2P - q=2Q* (2.14)
2Py - q =2 Q? (2.15)

In the case of production of hadrons with a timelike (virtual) photon one can consider the rest-frame of
the virtual photon, in which case it is clear that @ is a measure of the excitation energy.

For the Drell-Yan process we only consider the inclusive case, which already involves two hadrons. We
restrict ourselves to lepton pairs with small transverse momentum (compared to @), for which we have
the invariants

A W
F=k+E)P?=Q*>0  (2.16)

2
2Py -q = Q— (2.17)
T4
_Q?
B M+ 2Pg-q = g (2.18)
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2.3 The hadronic tensor

2.3.1 Lepton-hadron scattering

Consider the process £ + H — ¢’ + h + X, in which a lepton with momentum k scatters off a hadron H
with momentum P and one hadron h with momentum P, is measured in coincidence with the scattered
lepton with momentum k’. The lepton emits a highly virtual photon with momentum

g =k =k, (2.19)

with @? = —¢? > 0. The unobserved outstate will be denoted by | Px ), having a total momentum P. We
will consider the most general case of a pure incoming spin state, characterized by the spin vectors S, an
observed hadronic spin state characterized by the spin vector S; and lepton helicities A and \'.

We have the following relations

P?=M? P?=M?, (2.20)
E=m?~0, E*=m?=0, (2.21)
(k+ P)? = s, (2.22)
S§% =872 =1, (2.23)
P.-S=P,-S, = (2.24)

We will work in the limit where Q?, P -q and Pj, - ¢ are large keeping the ratios Q?/2P - ¢ and 2Py - ¢/Q?
finite. The invariant ampitude for the process is given by

2

M= a(k, X )y ulk, A)&(PX; PSu| ., (0)| PS). (2.25)

The square of this amplitude can be split into a purely leptonic and a purely hadronic part, according to
ol

|2 = @L%F)HW(ZH), (2.26)

with the lepton tensor (neglecting the lepton masses) being
LD (RN KN = 0an (2kuK), + 2k k], — Q% gun + 20X €upo k7)) - (2.27)
The product of hadronic current matrix elements is written as
H{ (Px; PS; PoSy) = (PS|J,.(0)| Py ; PuSk)(Px; PuSu|J,(0)|PS), (2.28)

where a summation over spins of the unobserved out state is understood. The total cross section is given
by

do = %|///|2d%, (2.29)

with the flux factor

F=4/(P-k)2—-M?m2 =~ 2s (2.30)
and the Lorentz invariant phase space

d®Px 3K d3Py,
(2m)32P% (27)32K0 (27)32P)"

d# = 2n)*6*(k+ P — k' — Px — P) (2.31)

Integrating H,,,, over Py, gives the usual hadron tensor

1 d3P
2MH ) (g; PS; P, S)) = o / (QW)S;PO (2m)*6* (g + P — Px — P,)H{\) (Px; PS; PySy).  (2.32)
X

The phase space for the scattered lepton can be rewritten as

3K E'dE'dQ
= 2-
(2m)32k"0 1673 (2:33)




April 2010 136

where Q is the lepton scattering angle and E’ the energy of the scattered lepton. Thus one gets

2B, do*®) 2ME' o? L

v(LH)
3P, dQdE’ s Q4TH 7 ’ (2.34)

where the lepton tensor is given by the expression between brackets in Eq. (2.27) and the hadron tensor
by Eq. (2.32).
Note that for inclusive scattering one obtains the familiar result

deH) 2ME" &% _ iy imien
ode = s grlw W, (2.35)

with the hadron tensor given by

MW GPS) = o [ SRR 0nsa+ P - Px)(PSIT, 0P (Pl 01PS)
1 4 iq-x
- / o 0 (PS|[T, (), ], (0)]| PS). (2.36)

2.3.2 Electron-positron annihilation

Consider the process e~ 4+ e™ — hy + hy + X, where two hadrons belonging to opposite jets emerge with
momenta P! and P). The annihilating incoming leptons with momenta k* and &’* produce a high mass

photon with momentum
q" =k R, (2.37)

with Q? = ¢®> > 0. The unobserved outstate will be denoted by |Px). We will consider the general
case of polarized leptons with helicities A and A and production of hadrons of which the spin states are
characterized by spin vectors S{* and S, respectively. We have the following relations

P} =M}, P} = M3 (2.38)
E=k?*=m?=~0, (2.39)
S =83=-1, (2.40)
P, -S;=P-S,=0. (2.41)

We will work in the limit where Q2, P; -q and P; - q are large, keeping the ratios 2P; - ¢/Q?% and 2P, - ¢/Q?
finite. The invariant ampitude for the process is given by

2

M =Bk N )y ulk, )\)%(PX; P1Sy; PySa|J,(0)]0). (2.42)

The square of this amplitude can be split into a purely leptonic and a purely hadronic part, according to
4

|'//|2 — &L,(Lejef)]_];w(e*e*)7 (243>

with the lepton tensor (neglecting the lepton masses) being
LE D (RN EN) = 6an (2k,k, + 2k, K, — Qg + 20X € kK7 . (2.44)
The product of hadronic current matrix elements is written as
H( ) (Px; PiS1; PaSs) = (0]7,,(0)|Px; P1Sy; PaSa) (Px; PuS1; P2Sa| J,(0)[0), (2.45)

where a summation over spins of the unobserved out state is understood. The total cross section is given
by
1
do = F|///|%L%’, (2.46)

with the flux factor
F=4y/(k-K) - kK2 ~ 2Q° (2.47)
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and the Lorentz invariant phase space

d® Py 3P d® Py

_ 454
A% = Gm) 0 k4 = Px = Py = Do) (5 s b (5529 ()2 B

(2.48)

Integrating H,, over Py, gives the usual hadron tensor

- 1 3P -
WM(SJ% )(q; P1S1; P2Sa) = @) / (27T)32)<P0 (2m)*6* (¢ — Px — P — P2)H,(ﬁ,+e )(Px; P1S1; P2Ss). (2.49)
X

One obtains the cross section (including a factor 1/2 from averaging over incoming polarizations)

PYPY dole e a® - .
— (e e ) yuv(eter) 9.
d3P1 d3P2 4@6 nv 3 ( 50)

where the lepton tensor is given by the expression between brackets in Eq. (2.44) and the hadron tensor
by Eq. (2.49).
Note that for a single produced hadron one finds

2
do__ O pereppmmete), (2.51)

hd3Ph - 2Q6 M

where the hadron tensor is given by

- 1 d® Py

W) (g P,Sy) = / 21)46%(q— Px — P3,){0]J,.(0)| Px; PySp) (Px: PnSp|J,(0)]0). (2.52
pv (q7 h h) (2’]T) (27_[_)321:)‘9(( 7T) (q X h)< | H( )| Xs1Lh h>< Xs1Lh h| ( )| > ( )
For the annihilation cross section one finds

472 o2

o(ete™ — hadrons) = o0 Ll(f;e_)R””(eJre_), (2.53)
where the tensor R, is given by
ete™ d3PX 4 ¢4
R ) = [ Gy maa - POOLLOIP) (Pl 0))
_ / d'a 77 (0|[1, (), J, (0)]]0). (2.54)

2.3.3 The Drell-Yan process

Consider the process A + B — ¢ + { + X, where two spin—% hadrons with momenta P and PJ interact
and two outgoing leptons (considered massless) are measured with momenta k* and k'*. The leptons are
assumed to originate from a high mass photon with momentum

q" =kt 4R, (2.55)

with Q2 = ¢* > 0. The unobserved outstate will be denoted by |Px), having a total momentum P¥.
We will consider the case of pure incoming spin states, characterized by the spin vectors S and S,
respectively, and observed lepton helicities A and \'. We have the following relations

Pi=M3, Pg=M;, (2.56)
(Pa+ Pp)* =s, (2.57)
B =k?=m?~0, (2.58)
S%2 =5% =1, (2.59)
Py-Sa=Pp-Sp=0. (2.60)

In the deep inelastic limit Q%,s — oo, with the ratio 7 = Q?/s fixed. The invariant amplitude for the
process is given by
2

M = u(k, )y o (k' N o

(Px|Ju(0)|PaSa; PpSg)- (2.61)
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The square of this amplitude can be split into a purely leptonic and a purely hadronic part, according to

4
|2 = &LL?Y)H’W(DY), (2.62)

with the lepton tensor (neglecting the lepton masses) being
L RN KN = 0an (2kuK), + 2k k], — Q*gun + 20X €upo k7)) - (2.63)
The product of hadronic current matrix elements is written as
H{DY)(Px; PaSa; PsSp) = (PaSa; PsSp|J.(0)|Px)(Px|J,(0)|[PaSa; PsSs), (2.64)

where a summation over spins of the unobserved out state is understood. The total cross section is given
by

do = %|//|2d%, (2.65)

with the flux factor

F=4/(Pa- Pp)? — MIM} ~ 2s (2.66)
and the Lorentz invariant phase space

d®Px d*k 3K

= (2m)*6*(Pa+ Pg — Px — k — I’ . 2.67
A% = ()"0 (Pa+ Py = Px =k = K) 5 550 B0 (2280 (252070 (2:67)
Integrating H,, over Py, gives the usual hadron tensor
1 d3P
(PY)(q; PaSa; P = X (27)*6*(Pa + P — Px —
W, " ) (q; PaSa; PeSp) (27r)4/(27r)32P9(< 7)*0%(Pa+ Pp — Px —q)
x H{DY) (Px; PaSa; PeSp)
1 .
= W/C#.% e’q“(PASA;PBSB|[JH(O)7Jl,(x)]|PASA;PBSB>. (2.68)

For the last equality completeness of the out states and causality has been used. The remaining phase
space is conveniently written as
d3k A3k d*q dQ

= 2.69
(2m)32k0 (2m)32k0  (2m)* 3272’ (2:69)

where the angles are those of the lepton axis in the rest frame of the two leptons. In terms of the fine-
structure constant a = e2 /47, we then obtain the Drell-Yan cross section (including a factor 2 from the
summation over the lepton polarizations)

doPY) o’ py
dtqdQ  2sQ* M

)y (DY) (2.70)

where the lepton tensor is given by the symmetric part in Eq. (2.63) and the hadron tensor by Eq. (2.68).

2.4 Deep inelastic kinematics

In order to deal with the hard processes, it is convenient to consider a Cartesian set of vectors constructed
from the momenta. These start with defining ¢* as a spacelike or timelike direction depending on the
process. Then one proceeds using vectors that are orthogonal to q. Such vectors a are obtained subtracting
from a the projection along g,

i =§"a, = a* — g, (2.71)

where oy
uyo q"q

o (2.72)

9 =g
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Another set of vectors that is useful, in particular for the theoretical description of the structure of
hadrons, are a set of light-like vectors, n" and n’_f_ (nﬁ_ =n? =0,n,-n_ = 1) that are in essence hadronic
momenta divided by the large scale Q. If P/Q = an, +bn_ and a ~ 1 then b ~ M?/Q? < a. Hadronic
momenta divided by @ are thus in essence proportional to one light-like vector, the hard momentum ¢/@,
however, involves two light-like vectors. We will use for four vectors the notations p = (p°, p!, p?,p?®) or p =
[p~,pt,p', p?] where p* = (p” +p®)/v/2, depending on the fact if we use a Cartesian set of basisvectors or
a set with two light-like vectors. In the latter case one must be aware of the metric, having e.g. p* = D N.

We will consider two different sets of frames, the first set (type I) has ¢, = (¢%,¢%) = 0, i.e. the
virtual photon has no transverse components. We note that there is still freedom to parametrize ¢, e.g. in

lepton-hadron scattering,
I { 1 Q Q }
q = A .

A \/i’ \/57 0L
The quantity A specifies a particular frame. Frames with different A are connected via a simple boost
along the z-axis. The second set of frames (type II) are those where the hadrons have no perpendicular
momentum, relevant in cases where two hadrons play a role. In these frames the transverse momenta are
indicated with p, and thus P, = P, = 0,. Note that ¢ in such a frame in general does have transverse
components,

11
q =

14,0,
A \/i’ \/i’ T )
with ¢2 = Q% and Q? = Q? + Q2. The connection between frames of type I and II can be made by a

Lorentz transformation, e.g. one that leaves the minus component unchanged ! and involves a parameter
b~ and a two-component vector b

2 _ _
. a-b b'a a
——+ ——,a— —b|. 2.73

- T2t T } (2.73)
In most of the following we will assume that all hadrons and the virtual photon are in essence parallel,
ie. Qr < Q and up to 0(1/Q?) corrections Q ~ (. This implies for semi-inclusive lepton-hadron
just one leading jet containing the produced hadron, for 2-particle inclusive lepton annihilation just two
back-to-back jets and for Drell-Yan only lepton-pairs with transverse momentum < Q.

2.4.1 Lepton-hadron scattering

For lepton-hadron scattering the starting point of defining a Cartesian set is a spacelike direction defined
by the momentum transfer ¢. Using the target hadron momentum P* one can construct an orthogonal
four vector P* = P* — (P - q/q?) ¢*, which is timelike and satisfies P? = k P - ¢ with

M2 Q2 4 M2.'II2
k=1+ =1 5 2.74
(P-q)? Q? (274)
taking into account mass corrections oc M?/Q? which will vanish for large @* (k — 1). Defining
Zh = —g*, (2.75)
2 pw Wy 9y PH
T = Q" Pt - %7 (2.76)
P-q+k VE
we have Z? = —Q? and T? = Q? and will mostly consider normalized vectors 2* = Z*/Q and t* = T"/Q.

Note that P-T = \/k P-q and P2 = (P-1)? = k(P - 2)2. In the space orthogonal to 2 and # one has the
tensors

g = g+ g — i, (2.77)

V= et ,q, = e"P? Pygy. (2.78)

1
(P-q)Vk
A relevant vector in the perpendical space appears if we have more than one hadron, e.g. in 1-particle
inclusive leptoproduction. For instance Py = g/” Py, , defining the orientation of the production plane
in semi-inclusive leptoproduction, h* = P}, /| Py | (see figure 2.1).

1To do this one needs in the two parametrizations boost factors A differing by a factor Q/Q.
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Figure 2.1: Kinematics of lepton hadron scattering in a frame where target hadron and virtual photon

momentum are parallel (including target rest frame).

We can also construct a timelike direction using the vector vector Pj,. The vector P, = Pl'—(Py-q/ ) "

satifies P? = ky, (P, - ¢)% with

MRQ* | AMp

:1 .
Kh + Py - q)? 2121 Q?

One has P- P, = (P-£)(P,-t) and P? = M} + (P, - 2)? = (P, - 1)> — P3| = kp (P - 2)%

One can extend the Cartesian set with

(Py-T)P* —(P-T) P}

XH o = = A
(P-t)(Py-2)— (P-2)(P,-1)
v = eltl/pO'PyPhpqo_ - —LEMUX
T PP (PP VEETT
Explicitly one has
2 by 2
" _ M H _— 77}7‘ (P P.T)
X= e P e nm | T S, | [ oD
(P-a) (P T) (P T)(Ph-0)
p
~ ¢'+ax,PF— I,
Zh

the last expression being without the mass corrections, valid up to 1/Q? corrections.

Introducing
4 ME,
22Q?’

Mj, Q*
-1 -1
Kh1 + Py - ) +

where M?, = M? + P2% |, one can write

2 ] 5 [ \2/ :|
K z K, ’
1+ Fhi "+ %

X“—q“—kmBP“[

from which one e.g. immediately sees that

2
2 _ PiL 2
X_Zi ]
RV

or using z instead of zp,

(2.83)

(2.84)

(2.85)

(2.86)

(2.79)

(2.80)

(2.81)

(2.82)
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Next we introduce two simple light-like vectors (ny - n— =1, n3 = n? = 0), such that we have
- M2
pr=9 i (2.87)
£v2 Q\f
¢Q i
Pt =2Zpt 4 L_ph 2.88
TG (288)
Q Q
b= Tt - T pk 4 gk, 2.89
where ¢2 = —Q2 and Qr=Q2— Q2. Note that the variables ¢ and ¢ are equal to the invariants 2, and 2y,

or z up to corrections of order M?/Q?, M?/Q?* and Q2/Q?. Furthermore one has that X? = —Q% = —¢2.

It is possible to take several kinematic corrections into account by starting with the above parametriza-
tion in terms of £ and ¢ and calculate the invariants. Inversion gives

f L L7 2
2 9
@ (1 /14 & P )
Q2 aM}
B Q? (1 Tyt Q? 2 @2 )
< = Zh @ 2 )

or instead of the last one in terms of z instead of zj,

22 M2 M2
(HVH%)

=z .
<1+ 1+Q2 4z2M2>

Qr is determined from Pj, or implicitly from z, z, and x5 (e.g. equating the two expressions for

¢). For inclusive lepton-hadron scattering one has Qr = 0 and £ = 2z5/(1 + +/k). This quantity is
referred to as the Nachtmann scaling variable.

We give the hadronic momenta in the frames I and II, including the vector ¢, up to (1/Q?%). We do this
omitting the "boost’ factors 1/4 and A multiplying — and + components respectively.

lepton-hadron:

momentum frame 1 frame II relations
q=k—F {%,—%,OLJ {%7—%## 4, =7 Pn1
P [ s [fs%imw ST R R
e Lborthnl  foal  e-o

The important thing to notice is that the momentum ¢, introduced as the transverse part of ¢ in frame II,
produces in frame I a term in the -+-direction, which will produce effects only suppressed by 1/Q), rather
than mass effects which always will appear suppressed by 1/Q?.

The forms of the vectors in the Cartesian set and the vectors n+ and ¢, including transverse momentum
corrections, but neglecting mass corrections (order 1/Q?) are explicitly given below.



April 2010 142

/H and e"e
vector frame I frame II
Q Q° Q @’+203
T {ﬁ’W’OLJ {ﬁ,TJ’qTJ
Q Q* Q Q
7 |:*\/§,Q\/§;OL:| |:7\/§aﬁv QT]
2
X (0,0, q,] (0,285, q,]
2
n_ [1 L q%ﬁ} 1,0, 0,]
n. 0,1, 0] 0,1, 0]
o | 0,285 a.] (0,0, q,]

Later on we will need to transform from the theoretically useful vectors ny and ¢, to the quantities
appearing in the expansion of the hadronic tensor, ¢, Z and z,

2 2 T — ZF =2 XH
nt = ((1 + Q> " — <1 Q2> ZH — X“) X —— (2.90)
Q\f Q QV?2
Q2 T + Z+ TH 4+ ZF
nly = = — R (2.91)
T Qv2 QV2
Q7 s
gh =X+ — Q2 (T* + ZH) (2.92)
Again inclusion of mass corrections can be done by using the exact inverse of the expressions for
P, P, and g,

eva (P55 1)
ny = Q~ ma

¢zt

_va(n-GEr)
CQ (1 _ 52M2M§) ’

¢zt

and rewriting g, P, and P in terms of Z, T', and X.

Neglecting the mass and transverse momentum corrections of order 1/Q? (but keeping those of order 1/Q)
we obtain

gy = g" —niin” —ntnl
Qr - Qr
— gt _ XT Apsvr | XT Husv}
= g gzt + (A A 2.93
{uq;}
gro= g — 5 _ (2.94)

Using normalized vectors is important to see which are the terms containing transverse vectors that should
be kept at order 1/@Q. Note that for any vector that in frame II is of the form [0,0, a;] with |ar| ~ 1, i.e.
~ QO one has up to 0(1/Q?) the relation

v Gr - qr Qr - qr
a ~ ¢ar, — 0 gt + o2 TH. (2.95)
Note that the first term on the righthand side has in frame I the form [0, 0, ar]. We will sometimes simply
use the notation a/ = ¢//“ap, for it, but one must be careful not to confuse this with the vector ¢/” a,.
An example of such a vector is Sz, part of the spin vector characterizing the spin of a spin 1/2 hadron,
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for which one has

M?
pPH = 2P n" + Ptk (2.96)
M Pt
SH = _ShL 9P+ n +ShL MTL+ S“ (297)

such that P-S = 0 and —S? = 1 = S?, + S2. Also for the quark transverse momentum vectors k. this
relation will become important.

Also the lepton momenta k and k' = k — ¢ can be expanded in ¢, 2 and a perpendicular component
using the scaling variable y = P - ¢/P - k (in the target restframe reducing to y = v/E). The result is

\/1—y+ (1-kr)y? Q

2 — Q (2-y) @
k“:—fT“ Z“—i—k” = i+ ey
y + 2 2y Vk y il
2 500 1 —y oA
R %cj 4 2y)Q Ay (2.98)
y y

where /# = k'l /|k 1], is a spacelike unit-vector in the perpendicular direction lying in the (lepton) scattering
plane. The kinematics in the frame where virtual photon and target are collinear (including target rest
frame) is illustrated in Fig. 1. With the definition of ?, we have for the leptonic tensor? neglecting mass
corrections (k = 1)

L _ Q2

(¢H) 2 2

+4(1 —y) <MV+1g >+22 y)/1 -yt

1 .
-2 (1 —y+= y2> MY 41 — )t

—idey(2—y) e — 2i .y /1 —y L0 1 (2.99)
For completeness, we also give the full tensor including mass corrections

v 1Q2 1 2 iz 1 2 T2
Lim = o721yt 0+my’ o +a(1-y+ 70 -r)y" ) &

+4 (1 —y+ i(l —K) y2) (M” + %gil’) +2(2 - y)\/l —y+ %(1 — k) y? Fg

. S 1 e s
—ide VE Y(2 —y) € 22)\6\/Ey\/1y+4(1n)yzt[“eﬂpép].

The lepton-momenta also can be written down in the frames discussed above using that up to ¢(1/Q?)
corrections

¢~ _P-q @
= — = s 2.100
y k— P-k zzs ( )
which in the target rest frame (A = 2, M/Q) equals y = v/E.
lepton-hadron:
momentum frame I frame II relations
1.Q 1-y)Q 1 yQ k3 _ q
K {Zy\%’A e kL } [ZLﬁ’AyQ\T/ﬁ’kT} ke =kt 57
’ 1 (1-yQ 1 (1-yQ y(kr—2kr-q,) . w 2 _ 1-yn2
k {A yv2 ’Ay\f’ 1 [A yV?2 A (1T*y)QﬂT ke qr ki = y? Q

2A useful relation is
€uvpo Yo = €avpo JuB t €papo Jup + €pvac 9pg + €uvpa 9o 8
or for a vector a | orthogonal to £ and g,

P ia, 0 = f[uej_]p“J_pv

vpo PN v]p
P ha ) & —7z[“ej_ ai,.
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lepton scattering plane (cm)

Figure 2.2: Kinematics of the annihilation process in the lepton center of mass frame

The lepton phase space becomes d°k’/E’ = E'dE'dQ) = nysdz zdy, and one obtains for Eq. 2.34

do ) ™o’ ¢H w(eH
T dz g dy ~ 201 yz L op i (EH) (2.101)

For the inclusive process one finds

d (¢H) 2
dg e %nyﬁ QMW (), (2.102)
B

2.4.2 The annihilation process

For e~e™ annihilation the starting point is the timelike direction defined by ¢g. Then it is often convenient
to use one of the hadron momenta, say P> to construct an orthogonal spacelike vector proportional to
Py =Py — (P2 q/q%)q.

¢ [\%,\%,04, (2.103)

_ ¢ P 1 (2 [ Q Q
G iy (ng;_qu) - [_ﬁ’ﬁ’m}’ (2104

For these vectors we have T2 = Q? and Z2? = —Q? while

™

M2 Q? g 4 M3
(P-g?  ~ 3Q*
The quantity so takes into account mass corrections o« M2/Q? which will vanish for large Q2 (k2 — 1).

Note that Py - Z = - \/ka Ps - . We will mostly consider normalized vectors t# = TH/Q and 2+ = Z+/Q.
In the space orthogonal to Z and ¢ one has the tensors

Ko =1+

(2.105)

g =g —q'qn + 2z, (2.106)

1
el = -,z = ————= """ Py g0, (2.107)

(P2 - q)\/K2

Vectors in the orthogonal space are for instance obtained using the other hadronic momentum P; (see
figure 2.2). The following Cartesian vectors can be defined,

i o= PP+ (P 2) P 2105
(P £)(Py-2)— (Py-2)(Py- 1)

€"P? Poy, Py 4o o1 v
(P )Py 2)— (P 2)(P2 1) R ~ 0 (2.109)

YH
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We define in frame I X =

chosen such that X# =qg* + ...

P#

[0,0,q,], with length X2 =
..P;%qﬂfp'u/zl

145

—Q?2. The proportionality constant for X is
P” /22. This choice implies that in frame II,
in which P; and P, do not have transverse momentum, one has the transverse component of ¢ precisely

equal to q,. In frame IT we, moreover, choose two simple light-like vectors (ny - n_ = 1), such that we
have
GQ M3
Pl=>=pt+ ——nl, (2.110)
V2 Gov2 T
- A2
P;z%ni+ 2 _nt, (2.111)
V2 V2
ne Qo o (2.112)

where Q2

electron-positron:
momentum frame I frame II relations
_ Q Q Q Q _ 1
Q—k+k/ \‘\/5 f70LJ \‘E7ﬁ7qTJ qTffz-PlL
M2 2,Q M2 2,Q _ P 2Pyq ., PP
P LzQQ\/E’ \/570l ngi/j 0z 72 = (12+ ~or T 1%1"12
Q M Q M? _ P __2Piq . PP
P 2\1/5 ' 2 leL/ﬂplL—‘ [2\15 ’ z1Qi/§’OT-‘ A1 = q% ~ leq ~ 132"11
ar 0,255 q,] 0.,0,q,] - Q2

= Q%+ Q2. Note that up to &(1/Q?) the variables ¢; ~ 21, (3 ~ 25 and Q ~ Q. Explicitly the
hadronic momenta in the frames I and I up to €(1/Q?), including the vector ¢, are given below.

The forms of the vectors T', Z, X, ny and ¢, are identical to the case of lepton-hadron scattering.
Neglecting the mass and transverse momentum corrections of order 1/Q? (but keeping those of order 1/Q)
we obtain

g = g™ —nlin” —ntnl
_ giu + %Q{MAV} + %T A{NAV} (2113)
» U \/En{“qu}
ﬁ_ = g # (2.114)

Using normalized vectors is important to see which are the terms containing transverse vectors that should
be kept at order 1/Q. Note that for any vector that in frame II is of the form [0, 0, a;]| with |as| ~ 1, i.e.
Q°, one has up to ¢(1/Q?) the relation

~ oMV
al; ~ gj_ a’TV+

ar - q ar - q
TQ2T2H+ TQ2TqM

We will sometimes simply use the notation a/| = ¢"ar,, but one must be careful not to confuse it with
the vector ¢/ a,.

Also the leptonic momenta can be expanded in the Cartesian directions.
y= Py k/P,-q, we obtain up to (1/Q?) corrections

(2.115)

Using the scaling variable

1 1-2 1-2y)
kli:,qﬂ+7yzﬂ+k“ — Q(jﬂ+(

P V(L —y) 0#,
2 2 L 2 2 +Q

(2.116)
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where ¢# = k% /|k_|. This leads to the leptonic tensor
LY oy = @ l (1 -2y +2¢%) g1 + 4y(1 — y)2+2”

—dy(1 —y) (lW” + ;ﬂ”) —2(1 = 2y)\/y(1 —y) 2

+iX (1 —2y) €” — 2iA/y(1 — y) Epe’i[%”] : (2.117)
The lepton-momenta also can be written down in the frames I and II using
k= Pk
=~ , 2.118
YT TR ( )

which in the lepton rest frame equal y = (1 4 cos62)/2 with 05 the angle of hadron (or jet) with respect
to the momentum of the incoming leptons.

Electron-positron:
momentum frame I frame II relations
yQ (1-y)Q vQ K _
k {Lﬁv V2 7k7L:| {E’ yQT/?’ kT:| kT = kl + Yyqr
- _ k2 ok,
k/ "(1\/%)Q7%7_kl_-‘ ’7(1\/’%)627 ( (’l;liy)QT\/qiT)vqT _kT“ ki :y(l _y)Q2

In the e~e™ rest frame d3Pid®Py/ PP PY = (dz1/21)(22Q% dz2/4)d P11 dQs = 7Q? 2129 dzy dzo dy d?q,., s0
Eq. 2.50 becomes
do(e’e) T a2

ete™ viete~
T o P dy ~ 207 1 Lig e ypmvieter) (2.119)
For the production of a single hadron
doe’ e ra? etem lete-

2.4.3 Drell-Yan scattering

For Drell-Yan scattering, for which ¢* is timelike, one can define the following four orthogonal vectors that
can be used to expand any vector. Starting with ¢* defining the timelike vector T+,

™ = ¢¢ L [\%,\%,047 (2.121)
Pp-q 5 Pa-q 3 Pp-q Py-q I {Q Q }

Zh = pr— pr = pr— prLl o= X o], (2122
Pg-Py 4 Py-Pgp B Pg-Py 4 Py-Pg B V2 V2 + ( )

XH = (PB'Z)JBZL*(PA'Z)PE (2.123)
(Pa-t)(Pp-2)— (Pa-t)(Pp-2)

107 Pa, Prs s
yr = ¢ Av-Bpd (2.124)

(Pa-1)(Pp-2)—(Pa-t)(Pg-2)

These vectors satisfy T2 = Q2 and up to mass corrections Z? ~ —Q?. We will use normalized versions
th =TH/Q and 2M = Z"/\/—Z?. We note that in this case both hadrons are used to define the spacelike
direction, in contrast to e.g. eTe™ annihilation (compare figs 2.2 and 2.3). In the space transverse to
T = q and Z we can use the perpendicular tensors

g = gM -t 4 s (2.125)

. 1
= Pz, = — 5P, 7, (2.126)
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lepton plane (cm)

Figure 2.3: Kinematics of the Drell-Yan process in the lepton center of mass frame

We define in frame I X = [0,0, g, ], with length X? = —g2 = —Q2. The proportionality constant for X is
chosen such that X# = ¢* + ... Py + ... Py ~ ¢* — 2, P} — x5 Pj;. This choice implies that in frame II,
in which P4 and Pp do not have transverse momentum one has the transverse component of g precisely

equal to q,. In frame II we, moreover, choose two simple light-like vectors (n4 - n_ = 1), such that
Q £aM3
Pt = nt 4 22—A ph. (2.127)
AT eV T Qve
- A2
Pl = Q_p oy t8Ms o, (2.128)

V2 vz

nt 4 gk, (2.129)

where Q% = Q2 + Q2. Note that up to €(1/Q?) the variables é4 ~ ,, g ~ z, and Q ~ Q. Next, we
explicitly give the hadronic momenta and g, in the frames I and II, up to €(1/Q?).

Drell-Yan:
momentum frame I frame II relations
_ / Q Q QL Q@
Q—k+k \‘\/5;\/570LJ \‘\/5’ 27qTJ
p caM3, Q@  4p zaMi Q r.= 9~ Q@ - Pog
A QV2 zaV2’ 2za QV2 dzav2’ T AT pf T 2Paq " PpPa
P Q  =xpMi, _ 4p Q> =zpMj 0 re =9 @ o Pag
B zpv2 QV2 ' 2zp zpQV2’ Qv2 T 5™ pg T 2Pgq " PaPp
Q3 Q3
qr ’V_Q%v_Q\;ivqT-‘ [OaOaQT] qg": 3“

The precise forms of the vectors in the Cartesian set and the vectors n4 and g, are explicitly given
below (omitting ’boost’ factors 1/A and A multiplying — and + components respectively).
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DY
vector frame I frame II
Q Q Q Q
T \‘E7ﬁ70LJ lﬂ’ﬁ’qTJ
_Q Q _e Q@ _
Z [ V2 V2 OJ_} [ V2 V2 0Ti|
2 2 ~
X (0,0, q] | &, & $q.]
Q+Q 0-@ _ 9g
n— [QQa 2Q 7_Q7§§] [170707‘]
ny |:Q2_QQ7 QQ—Z?Qv_%} [0 ) 1 ) OT]
2 2 ~
dr ’7_5557_5557%[17:‘ [07 07 qT]

Later on we will need to transform from the theoretically useful vectors ny and ¢, to the quantities
appearing in the expansion of the hadronic tensor, ¢, Z and z,

g (o) S TEZEN 2130

1 Q TH L ZF — XH
no_ e g xp | o 2 2.131
T ova <Q ) QV2 (2151
Q 2 2
qg:axu_agw ~ )(M—QngH (2.132)

The last relation is important to keep track of transverse momentum effects at order 1/Q. Neglecting the
mass and transverse momentum corrections of order 1/Q? (but keeping those of order 1/Q) we obtain

g = g" —nfin” —nfnl
= g+ % gtrart, (2.133)

. ni“q;} n{_uq;}

g1 = 9r — - :
QvV2  QV2
Using normalized vectors is important to see which are the terms containing transverse vectors that should

be kept at order 1/Q. Note that for any vector that in frame II is of the form [0,0, ar] with |a,| ~ 1, i.e.
~ QY one has up to @(1/Q?) the relation

(2.134)

ar - q
ah ~ ¢"ar, + TQ2 = q". (2.135)
We will sometimes simply use the notation a/| = ¢”ar,, but one must be careful not to confuse it with

the vector ¢/"” a,.
Also the lepton momenta can be expressed in the cartesian vectors. For DY we have

1 1-2 1-2 X
kH = §T”+TyZ“+ki = %tjlbﬁ-%éu-‘rQ\/ﬁy(l—y)f”, (2.136)

where ¢# = k/ /|k_|. This leads to the leptonic tensor
Lipy, = @ [— (1—2y+2¢%) g1 +4y(1 — y)2+2"
| R
—dy(1 —y) (W” +3 gi”) —2(1 - 2y)/y(1 —y) £

—iA (1 —2y) " 4 2ix /y(1 — y) épe’f“z"]] . (2.137)
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The lepton momenta can also be written down in frames I and II using

[
y=-—=— (2.138)
q q
which in the lepton rest frame equal y = (1 £ cosf)/2 with 6 the angle of the leptons with respect to an
axis that is approximately parallel to the momentum of hadrons A and B (the z-direction).

Drell-Yan:
momentum frame I frame II relations
yQ (1-y)Q vQ K _ 1
k {ﬁa V2 7kJ_j| {ﬁvy?%7kTi| kT_kJ_+§qT
- - k2 2k

Eq. 2.70 becomes
doPY) a2
= LY (DY) 2.139
dz o dzp d*q. dy Qr M ( )

2.5 Spin vectors, ...

In the next section it will turn out that the most convenient way to describe the spin vector of the target
is via an expansion of the form

My Q
St = —Sh, —E2n_ + Sy, ——
o2 T Mag e

One has up to 0(1/Q?) corrections S, ~ M (S - q)/(P - q) and S; ~ S,. For a pure state one has
S? + Si =1, in general this quantity being less or equal than one.

The final state spin vector Sy, in the case of detection of a spin 1/2 hadron (e.g. a A-baryon) will be
expanded in the same way. This vector can e.g. be determined from the decay products (e.g. the N7
system in case of a A). It satisfies Py, - S;, = 0 and is written

2, Q A My,
= N— T Ohr =
M2 2n QV2

Up to 0(1/Q?) corrections one has Sy, ~ My, (Sy, - q)/(Py - q), but note that one has S, ~ Sp,. —
Shi Pni/Mp. In general one has S7, + S?LT <1.

ny + Sy. (2.140)

S;f = Sh, Ny + Shr- (2.141)



Chapter 3

Quark correlation functions

3.1 Distributions: from hadron to quarks

We consider now the most general form of the two-quark correlation function

1 i k- —

Gt | €SP ST 0P 5), (3.1)
where a summation over color indices is implicit, diagrammatically represented in Fig. 3.1. In order to
render the definition color gauge-invariant each quark field needs to be accompanied by a path ordered
exponential (link operator) of the form

(I)ij(k,P, S) -

3
U (a,€) = P exp <—ig/ dzt Au(z)> . (3.2)

For the relevant correlation functions ® in a hard scattering process, we will encounter only those cases in
which the link involves gluons of the type A - n, where n is a lightlike vector (see Fig. 3.2).

Constraints on the correlation function ® come from hermiticity, parity and time reversal invariance.
We know how the states behave under such transformations and we know how the fields transform. This
gives consistency conditions. One finds

@Y (k, P,S) = v ®(k, P,S) v [Hermiticity] (3.3)
q)(kapa S) :70®(]27P777) 0 [ParltY]
®*(k, P,S) = (—ivsC) ®(k, P, S) (—i75C) [Time reversal] (3.5)

where C' = iv%yg, —ivsC= iy'y? and k = (K%, —k).
We will give the explicit proof of these properties. Starting with hermiticity,

@)y =0, = (271T)4 /d“g e PP, S|t (0) (0) kit (€)| P, S
= ﬁ / d' e FE(P, S|u](€) (v0) ik (0)| P, S)
1

= Gyt [ €SP SEO) G00)ud(@IP.5)

= (Y0)ik Pt (70)15,

T
?( @ (k;P,S) ]T

P 3 P

Figure 3.1: The diagrammatic representation of the quark-quark correlation function ®(k, P, S).

201
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Figure 3.2: The link as can be obtained from AT gluon blobs (see sections 3 and 7) in the case of
T =&, =0 (left) and the case £ = 0,&, # 0 (right).

where from second to third line translation invariance has been used. Next considering parity

®i(k,P,S) = @ /d4£ e““'{(P,5|@T9Ej(0)<@T@¢i(§),@TW|P, s)
= ﬁ /d4€ "M (P, = 8[1h,(0)(70)1; (Y0)iror (§)| P, —S)
1 4 k€D ar T = =
= (2m) /d € e F (P, —8[1,(0)(70)1; (70) ikt (€)| P, —S)

= ()it Pri(p, P, —5) (v0)15,

where 2 (&) 21 = 4o9(€) and from second to third line k - £ = k - € and d*¢ = d*€ has been used.
Finally time reversal invariance (with 7 anti-unitary),

o(k, P,S) = ﬁ/d‘*& P S| TN T9,(0) 7 T i) T T|P,S)
1 4 —ik- a7 i N . NS &
- @ 7 [ P SO, OO (OIS

= 27r /df ES(P, §|(—insC); (0)(—insC)i(€)| P, 5)

= (=v5C)ik Pri(k, P, S) (—ivsC)uj,
where 91/)(5)«7T = —iysCp(—E).

Including the link-operator these properties will be different. For the gauge link one has

Ua, &) = U (&, ), (3.6)
‘@%(avg) Pt = %(a7 7)’ (37)
TU(a,6) T = U(—a, ), (3.9)

for which we used AL = A, AP = A, and T A,(6) 7T = A,(=E). This means that the
space-reversed (time-reversed) correlation function has a different link structure running from a (—a)
respectively. However, if the common point is defined with respect to the two fields in the matrix element,
no problem arises. For example the straight line link with path z#(s) = (1 — s) 0¥ + s&H gives a path
zH after applying parity, but after the change of variables one ends up with the same path; similarly for
time-reversal.

The most general structure implementing the constraints from hermiticity and parity is

(I)(k,P,S) = MA1+A2P+A3}é+iA4 [Pj\f]+iA5(k'S)75+MA6$’y5
+A7(kS)P +A(ks)k +A[’P$}%+A [kﬁ]
+mﬁﬂ4”PM7+A @mﬁ%ﬁﬂi, (3.9)

where the first four terms do not involve the hadron polarization vector. Hermiticity requires all the
amplitudes A; = A;(k - P,k?) to be real. The amplitudes A4, A5 and A5 vanish when also time reversal
invariance applies.
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One might wonder if the lightlike direction n should not appear in the expansion of the matrix element
®. We note, however that the matrix element with link, ®(™ in the gauge n- A = 0 becomes equal to the
matrix element ®(©) without link. In the expansion of the latter n obviously does not appear. For the fully
integrated matrix element, which involves a d*¢ integration, however, one can consider a different gauge
n' - A = 0 and perform a change of integration variables such that £ -n’ = £’ -n. One then finds that ()
= @) ie. the link direction will never appear. Essential in this is the fact that n is not fixed by the
momenta k, P or S.

For the applications, it is useful to introduce besides the lightlike vector n = n_ a lightlike vector n.,

such that one has ni =n? =0and ny -n_ = 1. The vector n is fixed by the hadronic momentum such
that
’ +
P= 5PT n_+ P ng, (3.10)
M Pt
k=k n_+xP ng +k. (3.12)

The parametrization satisfies P2 = M? and P - S = 0. One immediately deduces k~ = (k* + k2)/2z P,
while 2z k- P = k2 + k:i + 22M?. Depending on the use of the soft parts one may need integrations over
one or more components of k. At that point the lightlike vector n_ will become relevant.

The fully integrated result leads to a local matrix element, omitting the dependence on hadron mo-
mentum and spin vectors (P, S),

By = [ a0y P.5) = (PS[,(0) 6.0)P.S), (3,13

It is parametrized as

@:é{Mgs+gvP+MgA75$+gTW}- (3.14)

Because the matrix element is local the gauge link will vanish and there will be no dependence on the
lightlike vectors. Projecting using a basis of 4 x 4 Dirac matrices (I')and defining

ol = %Tr(@I‘), (3.15)

one finds

200" = (P, S[4(0)y* ¥(0)|P, S) = g, 2P, (3.16)
200"5) = (P, S[1p(0) 475 ¥(0)| P, S) = g 2M S*, (3.17)
23l sl = (P S[4(0) ic" 5 1 (0)| P, S) = g 2 S, P! (3.18)
28 = (P, S[4(0)1(0)|P,S) = gs 2M, (3.19)
28171 = (P, §[4(0) iys ¥ (0)| P, S) = 0. (3.20)

Note that g, = n (number of quarks minus antiquarks), g, is the axial charge for quarks and antiquarks
of a particular flavor, g, is the tensor charge. Multiplying gs with the quark mass one finds precisely
the contribution of the quark mass term to the nucleon mass. The first two matrix elements are special
because the operators correspond to conserved currents (for the axial current up to mass terms). The
anomalous dimensions of these operators vanish.

In inclusive deep inelastic scattering one needs to consider the correlation functions

By) = [ dhodi Bk PS)

kt=xzPt

= / B (P S0,0) 7 (0,6 ()P, S) 7 (3.21)

Er=Er=0

This correlation function is in general the result of a large number of diagrams, as it not only includes
matrix elements that contain only quark fields, 1), but also matrix elements of the type AT ... At4.
All of these will contribute in leading order in 1/Q. It will turn out that in a full calculation gluonic
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matrix elements containing AT fields precisely form the for color gauge invariance necessary link, which
runs along the minus direction (see Fig. 3.2). Working in the gauge AT = 0 none of the gluonic matrix
elements will appear and the link in Eq. 3.21 becomes unity.

The quantity ®(z) can be parametrized as

1

o) = 2{fl(”m“gmmm+h1<w>W}

+{e<x> T gr(e) s e + Ahi(a) ”’”“}

2

M

+5ip {fa(x) o+ Ay () st + i) ”’2’”} (3:22)

The factors of (M/P7) are the ones required from Lorentz invariance. As we will see, each factor 1/P™ gives
rise to a suppression factor of 1/@Q in cross sections. From the structure of the above matrix element, being
of the form A%2/(P+)*=2 one defines the quantity ¢, the (operational) twist of the profile or distribution
functions appearing in the parametrization.

To be slightly more specific, using the amplitude expansion for the quark-quark correlation function
one can easily analyze the effect of the integration over k=~ and k, for the different Dirac projections of
the quark correlation functions (twist analysis). For instance

oll(z) = %/dk‘ d?k, Tr(1®(k, P,S))

kt=xP+

M
- ﬁ/d(%-P) A2 7 A (K k- P) 02k - P — oM — 1)

% e(x), (3.23)

where © = k*/P* and the integration over k., is rewritten as an integration over k2 using k:i =2zxk-P—
22 M? — k2. In rewriting the matrix element in this way one has separated it in a function e(z) which we
refer to as a distribution or profile function. This function, containing only hadron and quark momenta
and scalar products of them which are of hadronic size (Ag), is of €/(1). It is multiplied with some factor
that contains some powers of PT and momenta of hadronic size of which the consequence has already
been mentioned. The functions ey, fr and h are expected to vanish because of time-reversal symmetry.
They involve the amplitudes A4, A5 and A;5. We have kept them here, because they will have potential
relevance later and furthermore are useful for comparison with fragmentation functions. The functions are
referred to as T-odd.

Projecting with the various Dirac matrices one finds the ’leading’ (twist two) distribution functions
27 (@) = fi(a), (3.24)
q)['ﬁw,](x) = Agi(z), (3.25)
@l %) (@) = S} b (a), (3.26)
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the twist three distribution functions

ol (z) = Bt e@), (3.27)
plirsl — % er(x), (3.28)
() = ML p ) (3:29)
"5l (z) = ]‘/}[jz gr(z), (3.30)
Bl () = —+ Ahp(z), (3.31)
@il () = 2L Ah(a), (3.32)
and the twist four functions
e () = (f) f3(x), (3.33)
B9 (4 (%) N gs(a (3.34)
olir 8 () = (#) Si hy(2). (3.35)
By rewriting ® in Eq. 3.14 as
d = P; {gv for +AGa Vs ot + gr [STJ;] L }
+ % {gs+gA"ys$T +/\9TW}
—1—2ij{1gvﬁ + = )\gA%fl +5 [ﬁT’Z 15 } (3.36)

it follows from ® = [ dk™ ®(z) = P* [ dx ®(x) (assuming convergence and integrating over all z-values,
which will be discussed later) that

[z fitw) =2 [ do fa(@) = g1, (3.37)

/dac g1(x /dx gr(z) = —Z/dac 93(Z) = ga, (3.38)
/da: hi(x /dx hp(x) = Q/dm hs(z) = gr, (3.39)

/dz e(r) = gs, (3.40)
/dm er(zr) = /dm fr(z) = /dm h(z) = 0. (3.41)
Making use of support properties of the distribution functions (—1 < 2 < 1) and symmetry relations be-
tween quark and antiquark distributions (the latter to be discussed in the next section), fi(z) = —f1(—x),

and finally the fact that the vector charge gy is in fact the definition of the flavor quantum number, i.e.
gv = ng, the first line turns into the number sum rule

/0 dz (fi(z) — fi(z)) =n. (3.42)

In semi-inclusive deep inelastic scattering or Drell-Yan processes, the matrix elements that are needed
for the hadron — quark pieces in the hard scattering processes are the ones in which the integration over
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k. is not yet performed, namely

@ij(x,kT) = /dki q)ij(k,P, S)

k}+::17P+, k‘T

- 72
[ B RSO % 0,00 2 (e BOIPS)| (343
@) o
In this case one is sensitive to transverse separation .. We consider, however, only gauge links attached
to each quark along the minus direction, i.e. built from matrix elements with additional AT fields, which
contribute at the same order in an 1/Q expansion (see Fig. 3.2). That this is the result in an actual dia-
grammatic expansion needs to be proven. It will turn out that the bilocal quark-quark matrix element will
be supplemented with links running from 0 to [0, 00, 0] and one running from [0, 00, &,.] to [0,£7,&,] re-
spectively, With the physical condition that any matrix element involving ¥(0) A-(n~ = 00,77, 7)) ¥(€)
vanishes, the links can be connected and one has a color gauge invariant quantity, for which after gauge
fixing the link becomes unity. At this point it is useful to mention that quark-quark-gluon matrix elements
with gluon fields other than A* need to be considered separately (see chapter 4).

We write down the expression for ®(z, k) in terms of ny, n_ and transverse vectors up to &(M/P%),
including T-odd parts, but restricting ourselves to twist-two (oc 1) and twist-three (< M/P1) parts. Simple
kinematic arguments already show that factorization of k,-dependent functions cannot hold beyond twist-
three.

1 €uvpo VY kLSS
(I)(l'va) = 2{f1(x7kT) ?/7/+ + fﬁ’(fakT) % + gls(xakT)’yE) ?/LJr
Vs [Brofhe] |0 Vs [frs i) | o0 i [for, 1]
+th(Iva) 9 +hls(‘r‘cakT) IM +h1 (I7kT) oM
—|—£ e(z,kr) + fHz k )k—T—f (z,kr)€~,S
2P+ y v y v M T\&y v ) Cp 7/? To
fle'kaTa

_)\fi_(xakT) - es(xakT) Y5

M
+9§“(x7 kr)vs Br + gj(% kr) 25 b + h%(% k) M

M 2M
Vs [y, 0] ifphy ]
2

+ (z, kr) } (3.44)

+hs(z, kr) 5

We have here use the shorthand notation

(k- Sy)
M )

and similarly for other functions, e.g. hi;, g+ and h. Included are also T-odd functions fi7, hi, fr, fi,

es and h.

Again we can analyze the Dirac content of the correlation function (twist analysis). For instance for
the unit matrix the effect of the integration over k~ is

oM (z k) = %/dk* Tr(1®(k, P,S))

gls(kaT) = /\glL(xakT) +91T(-T,kT) (3.45)

kt=aPt, kr

M
= ﬁ/d(Qk-P)de Ay (K% k- P)o(K2 + k> — 22k - P+ 2° M?)

= % e(z,kr), (3.46)
where z = kT /PT and k., is the transverse component of the quark momentum k in the frame where P
has no transverse components, i.e. frame II discussed in the previous section. The profile function e only
depends on x and ki It is expressed as an integral in which all momenta and products thereof are of
hadronic size (Ag), and is multiplied with a factor of the form A% */(P*)!~2, defining the operational
twist. It is this factor that will lead in the cross section to a suppression factor 1/Q*=2.
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The various (T-even) Dirac projections ®'1 = (1/2)Tr(®T') appearing in here are explicitly

+ 2 kriSt;
" (@ kr) = fi(w ke) = T S (o k), (3.47)
+ e kr-S
o (@, kr) = Agip(z, kr) + gi7(z, kr) tkr - Sz) TM T)7 (3.48)
lict 5] i k;* 1 EiTjij 1
[ 5 (Z',kT) :ST th(ZE,kT)Jrihls(l',kT)* h1 (x,kT),
M M
i PV
= Sr hi(z, kr) + WT hiz(z, kr)
krkr + 5k797) St e kr,
ARk 2RO 50 ey — R ), (3.49)
and the profile functions that appear multiplied by a factor M/P* (twist three) are
M
ol (z,kr) = 5 el kr) (3.50)
O (k) = 57 (2, Ker), (3.51)
i M S K
q)h ’YS](kaT) = P+T g/T(w7 kT) + P’i g;(kaT)
M S; K kik) + 3kigy) S
= ~pr- vl kr) + 5 oz (@ k) - G, R ) Sr; 97 (z, kr),  (3.52)
. i i gl
plic 7’75](33’ k) = w hT (z, kr) (3.53)
ict— M
ol (g ky) = B s, ker). (3.54)
Note that sometimes it may be useful to work with the functions projected using o, instead of io,.,7vs.
These are
[+ eikrj ;1
[} (m, kT) = Ej—? STJ h]T(CU, kT) + Vi hls(m, kT), (3.55)
&id M e
3" Nz, ky) = B ha(w k), (3.56)
_ LY N <
" (2 ky) = % b (z, kr). (3.57)

The integrated results fi(z) etc. discussed before are obtained from f)(z,k2) etc., where one must be
aware that g1 = g17, b1 = har + (k2 /2M?)hiz = hir + th(l) and gr = g + (k2/2M?) g+ = gk +g;2(1).
Besides the k;-integrated functions shown before, it is useful to consider k$-weighted functions,

1 kS

i % (2) = /koT MT O(z, k), (3.58)
U (hekD SR 627

W (baa (CC) = d kT M2 @(I,kT) (359)

Note that the operator structure involved is

O (x, k) = kXO(x,ky)
_ /df(;i)ff ¢ (P, 51i0% ((0) % (0, 00) U (00, €) B(€)) | P, S) o
-/ dﬁ@jf P ST 10,0007 % (00,6 WOIP.S)| (3.60)
+=0

Note that in this case choosing the gauge AT = 0, one cannot just neglect the link operator, because it
contains &7 dependence. We will return to this in the chapter 4. Note, however, that in the way defined
here, the correlation function ®y is color gauge invariant.
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We can use the properties in Appendix A for integrating k2 dependent functions over k. to obtain
the nonvanishing projections for twist two

1 N k3 N
17 2 s ):ST/koTﬁng(x,kT) S% 917 (), (3.61)
1 afioitas) i 2 k7 ¢(1)
M P, () =—gr' A [ &k Ve hlL(fE kr)=—gr )\h (2), (3.62)
[e% zo‘ 1 at 7 k2 2
W @y B ](97) ) (QT SB +9T St — gTBST) /koT <2]&2> hi‘T(xakT)
1 at [¥ale]
= — 5 (9850 + 957 — 95°81) hif (@), (3.63)
and for twist three,
1 aly? at M
37 ¥ @) =~ 5 V@), (3.64)
| i M
17 @7 @) = —gt 5 gV (@) (3.65)
1 a i M at i Qo a i
15 2537 @) = — o (97787 + 9785 — 9278t ) 97 P (a) (3.66)
1 alic®d M at of aj Qi
0587 @) = 22 (g5 — 68751 ) A (@), (3.67)
1 alict™ M o
i ool sl () = St 57 AP (). (3.68)

We obtain now besides the integrated results, the k, -weighted results

a 1 o L [ a’ﬁ ]75
5lz) = 2{ 91T( ) SF v — )‘hufl)( )%
M
*w{—flm(xw+Agf‘”<x>wa%
+hL(l)( ) [v afTh/S Jrhgvl)(f) S [}/LJra;/L]'VE)} (3.69)
o - SE ™, s = 927 [Brs ey
M i S8y — 628 B
sprIr @ ( 5 (3.70)
For the matrix elements @g(m) no new functions come in. Working in AT = 0 gauge (or using

Ot U (0,€) =% (0,£)DT, see chapter 4) one sees that

B (o) = oP* 0(a) = [ o MRS, 0) 0.6 D U(E)P.S) SNELY
Er=£7=0
and hence using the parametrization of <I>[7+],
20,1 = P+/dx Tr (0 (2) 1) = (P+)2/dx rTr (04%)
= AP [ dr afile) = (PS|TO) DT UO)|PS). (3.72)
—_——
—_— o+

€q

Realizing that 0;* is only part of the energy-momentum tensor, it leads to the momentum sumrule
Jdx xfi(z) = €, < 1. Using the support properties of the distribution functions (-1 < # < 1) and the
symmetry relation fi(z) = —f1(—x), the sum rule reads

/0 dz z (fi(z) + fi(z)) = ¢ < 1. (3.73)



March 2007 209

3.2 Antiquark distribution functions

The profile functions for antiquarks in a hadron are obtained from the matrix elements

aij(k,P, S) = (2711')4 /d4§ e—z’kf(P,S|%(07§)¢i(§)@j(0)|]37 S)
N _(271r)4/d45 e PSP, S| (0)% (0,€)0:i(§)|P, S). (3.74)

For a definition of the profile functions that is consistent with the definition of free particle and antiparticle
states, one needs the correlation function ®¢ that is defined analogous to ® but using the conjugate spinors

Pe = C@T, where C’VE Cct = Y
c _ 1 4 ik-& —-c c
¥4 P.5) = gy [ €SP ST O 0.0 IP.S). (3.75)

The relation between these quantities is ¢ = —C 3 . Using @' to define the antiquark profile
(T]

functions, f(z,kz), etc., one must be aware of the relative sign (&) between ®" ' and @'l depending on

I' = FCTTCT. Explicitly,

3 _ L gell] for I' = ~y,, 0 or G075,

3l = _gelr) forT'=1, 7,75 and ivs,

We note also that (at the twist two and twist three level) the anticommutation relations for fermions
can be used to obtain the symmetry relation

For the profile functions this gives the symmetry relations

Fila, ky) = —fi(—x, k3) (3.77)
and identically for gi7, hir, hip, g¢ and hy (C-even functions), while
91 (x, k2) = i (—x,k7) (3.78)

and identically for hij, e, f*, g4, g7, h# and hy (C-odd functions).
Explicitly we get (fixing ¥~ and integrating over k™)

% / dk* ®(k, P, S)

k—=xP-, kr

L= - ) —1 10 Yskhn?.
i {f R ) b+ a0 Fer) s — P, o) 05 SEnY. — ot (i, Ky }Z}

= {‘%«: k) + T (k) K2 4 G0, k) s + 5 (0, o) B2

4pP- M M
— 10,5 SRRY.  —
—h;(x, kr) W# — hs(z, kr) iowfyg)n“n’jr}. (3.79)
and the projections for twist two are

" (@ k) = Fla, ko), (3.80)

87 k) = g, ko), (3.81)

Flie ! i ki -1
(x,kr) = St hir(z, k) + Vi his(z, k), (3.82)
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while those of twist three are
(e kr) = — o el k), (3.83)
— [y | S
3" @ k) = 5 (ak), (3.84)
—[7's MSZ _ g
o (1, k) = 2 G (@ k) — 5 (@ ), (3.85)
—[ig® T k] _ kl J
" (1 key) = SpishT(x ko), (3.86)
— [~ T M —
3 k) = o By(a k). (3.87)
Using o, instead of i0,,,v5 one has
—lo*] Ve T e krj L
37 a,ky) = —€7 Sy hyr(a, ky) — iz, k), (3.88)
(5 M i _
37 (k) = — T (K, (3.89)
ot ij p. iSpi —
7 k) = —ETP%S“ Ry (z, k). (3.90)
The integrated results for antiquarks are
1 _ 1 (= _ ,
5 [kt #h Bh PS) = MR @) e+ Ay (@) s + T () Btz
2 k-—ap- 4 2
M T —s
+w{—e(:r) +Gr(x) $r75 + A (2) W} (3.91)
1 4o, kY= 1 o o L), [ =]
[t e AP = e st - M @) T
M ) 21, \ o (-L( o
+4P{f (z)~ *)\gL( )(x)'y Y5
0 DB | ) 6 [ﬁ—,726+h5} (3.92)
Lo (kR R
5/dk A2k, e 3(k, P, S) -
k—=zP—
L@ o (S0 s — g2 [ i
T (2) 4
M _i@ S8 s — g8 B
I (@) ( . (3.93)
3.3 Result for an ensemble of free quarks (parton model)
It is instructive to calculate the correlation function for a free quark. This is given by
i (D, 53 k) = wik, s)u;(k, )8 (k — p) = 3 ((k +m)(1 +75¢)) ;0" (k — p), (3.94)
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where the momentum and spin of the quark are parametrized as

k2 2
kE = |: T2_]|g—+m ) k+7 kT y (395)
N, k- AoKk2 A kT A
s = [_T;kf N kaqT B (3.96)

in terms of a quark lightcone helicity A, and a quark lightcone transverse polarization sgr, such that & - s
= 0 and )\3 + 33T = —s2 = 1. Note that this helicity only is a true helicity for a quark with infinite
momentum. It is then straightforward to calculate the projections for a free quark target. For twist two

o7 (k) = 6(€ = 1) 8% (ke — y) = Fatan + Fatsans (3.97)
(thr%] (k) =Aq0(6-1) 52(kT —Pr) = far/ax = fav/ans (3.98)
¢)[w’l+%](k) = Szi;T 5(6—1)8(kr —py) = fa—/a80 = fae/ases (3.99)

where ¢ = kT /pT, and we have indicated the intuitive interpretation in terms of probabilities of finding
quarks in a quark with spin given by A and s, (see below). For twist three we get

oU(k) = 75 3 (6 = 1) (ks — py), (3.100)
o1 (k) = ’]:{ 6(6—1)68%(ky —p,), (3.101)
o' () = W §(€—1)6%(kr — py), (3.102)
$lio s (k) = S“JTkJTk;k’TSJqT 5 (6 —1)8%(kr — py), (3.103)
Slie ) (1) = W 5(€—1)8%(ky — p,). (3.104)

In a parton model description of the target, one uses the expansion for the free quark field to get

y;(k) = 26(k? — m?) |0(x)ul” (k) Ppa(R)aS (k) — 0(=0)vi” (—k) Psa(—k)5s™ (=k) |, (3.105)

J J

where x = kT /PT. The use of lightcone coordinates is convenient because of the integration over k~ that
is needed in deep inelastic processes. The functions & and &2 are given by

Pall) = Polw ) = g5 [ s (PSWLEBIPS), (3.106)
Poall) = Pn ) = 5555 [ Toia s (PSIAK)u (0] PS). (3.107)

Note that P, (k) is a production matrix in the quark spin-space of which the trace is the quark density
operator evaluated in the target. The Dirac structure can be parametrized as

uP (k,8) Ppo (k)0 (k,s) = P (k) (F +m) (HWQM) (3.108)
v (k,8) P g0 (k)0 D (k,s) = P(k)(} — m) (W) (3.109)

in terms of a positive definite quark and antiquark densities Z?(k) and Z2(k) and spin densities s(k) and
5(k) which satisfy 0 < —s*(k) < Lor 0 < A2(k)+s?,.(k) < 1. Inserting the free field expansion in the current
expectation value (PS[1(0)y*1(0)|PS) = 2P*(N — N), where N and N are total number of quarks and
antiquarks respectively one obtains from the +-component the normalizations fol dz | A’k P (x, ki) =N

and fol dr [ Ak, P(z,k2) = N.
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Integrating over £k~ one obtains the result

1 / deok) = 0@ 2 ERD) g (Hw«k))

2 2k+ 2
?(_Z‘v k?‘) 1+ 753‘(_3:’ _kT)
—9(—x)%+(k+m)( 5 : (3.110)
This gives (for z > 0)
o (k) = P(2,k2) = Prr+ Pr1 = Poa + Pp, (3.111)
OOl (k) = Ag(w, k) P(,k2) = Prr— Pr, (3.112)
Ol 0l (k) = st (2, k) P(,k2) = Poe — P, (3.113)

where the indices R/L and «/f are particular (chiral and transverse spin) projections for the fermion
fields or spinors, obtained using the projection operators Pr,r, = (1£75)/2 and Qg/ﬂ = (1£~%y5)/2. The
interpretation of the first equation is that of the probability for finding quarks in a target. The second
equation is interpreted as the probability for righthanded quarks minus that for lefthanded quarks. The
third equation is interpreted as the probability for quarks with spin parallel to the transverse direction %
minus that for quarks with spin opposite. The chiral structure of these functions is RL + LR and they
are referred to as chirally odd distribution functions. Equating these unpolarized and polarized densities
to the distribution functions defined in the previous section,

P(x,k7) = fi(z, kr), (3.114)
kT : ST
N(w,kr) P(x,k2) = Agrp(z, kor) + gir(@, kr) = g15(2, k), (3.115)
i 2 i K. [ 1 ki S
syr(x, k) P(x,k7) = S5 harp(z, kr) + i hip (z, ko)X + hip(x, kr) i
i ki o
= ST th(l‘,kT)—F MhlS(Z"kT)’ (3116)

shows how the functions g11,, gi7, h1, hiy and hi; are to be interpreted as longitudinal and transverse spin
distributions given the spin of the hadron (A and S;). For the antiquarks the same relations hold between
the antiquark helicity Xq and transverse polarization s; on the one hand and the antiquark distributions
on the other hand. Extending to all x, results are obtained in accordance with the symmetry relations in
the previous section, e.g. fi(z, ky) = 0(z) P (x, k2) — 0(—x) P (z, k2).

We note that at the twist two level this parton interpretation can be made rigorous as the distribution
functions can be expressed as densities involving the socalled good components of ¥, ¥, = Py obtained
with the projection operator P, = %'y*'yf In lightfront quantization a Fourier expansion for the good
components (at 7 = 0) can be written down in which the Fourier coefficients can be interpreted as particle
and antiparticle creation and annihilation operators The different spin-distributions involve projection
operators (Pg/r and QL / ﬁ) that commute with P;. At twist three the analysis of the quark - quark
correlation functions lead to a number of new distribution functions. For an ensemble of free quarks they
can also be expressed in the quark densities and in this way related to the (six) twist two distribution
functions. Explicitly one has for the ensemble of free quarks,

m
e(z kr) = 30 filw kr), (3.117)
1
F (@ k) = — fi(@ k), (3.118)
m
gr(@, kr) = 7 har (@, k), (3.119)
1 m
9 (w,kr) = — gra(@,ker) + 5 = ha (2, k), (3.120)
1
hi (@, k) = — hnr (2, Kz), (3.121)
m kr-S k2
hs(w kr) = 3= g1s(@, kr) + 3\4; hur (@, ke) + 55— his. (3.122)
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As we will show in one of the next sections, the above results are not generally true; the presence of
nonvanishing quark - quark - gluon correlation functions causes deviations from these naive parton model

results.

Summarizing we get for ®(z, k;.) and ®'l(z), ordered according to twist, chirality and time-reversal
behavior for unpolarized (U), longitudinally polarized (L) and transversely polarized (T) (spin 1/2)

hadrons:
DISTRIBUTIONS DISTRIBUTIONS
x-even x-odd x-even | y-odd
&M (z,k;) | T-even | T-odd | T-even | T-odd ol (2) T-even | T-even
U fi hi U fi
twist 2 | L giL hfL twist 2 | L g1
T | agir fir hir hiz T h1
U ft gt e h U e
twist 3 | L gt i hr er twist 3 | L hr
T\|gr 97 | fr f+ | hr ht |er er T| gr

3.4 Fragmentation: from quarks to hadron

For the fragmentation of quarks into hadrons we need the correlation function

Ayl PrS) = 30 gy [t e O 0.0 P X) (P XIT,0)10)
X

= Gyt [ €O 0.90 e, 0)0),

(3.123)

where an averaging over color indices is implicit. We note, however that fragmentation is into a hadron in

a specified spin state.

The use of intermediate states X and in addition one specified state with momentum P, needs some

explanation. First note that the unit operator can be written as

fEZ|X><X|:§:fp (3.124)
X p=0
with . ] ]
Ty = H/dkl..,dk:p a'(k1)...a" (kp)[0)(0la(ks) . .. a(k,) (3.125)

containing the p-particle states (with dk being the invariant one-particle phase-space). Thus

SR XPLX] = PP+ [ dy 1P (Pl
X

1 .
+§/dk1dk2 |Ph,k1,k2><Ph7k1,k‘2|—|—...

After integrating over P}, one obtains

azfah = a:Lah. (3.126)

/dPh S NP XN P, X[ =) poSp, (3.127)
X p=0

which is the number operator Nj,. This will become relevant when one integrates over the phase-space

of particles in the final state to go from 1-particle inclusive to inclusive scattering processes.

For the Dirac structure the same expansion as before can be written down,

A(k,Ph, Sh) = M, B+ By 7Ph =+ Bg}é + (B4/Mh) O'lWPthJ,,

+(B12/Mp) €y poy" Py K SY,

+i Bs(k - Sn)vs + My BeSnys + (Br/Mp)(k - Sp) Prys 4 (Bs /M) (k - Sh)kvs
+i By 0""~5 Spy Py + i Bio 0 s Shuky + i (B11 /M7 (k - Sp) ™ vs ku Pry

(3.128)
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where the amplitudes B; depend on Py, - k and k2. As the states | P, X) in the above expression for A;;
are not plane waves, one cannot apply time-reversal invariance. So the amplitudes By, Bs and Bjs do not

vanish.

The fact that the time-reversal-odd amplitudes do not vanish is a consequence of the final state
interactions of the produced hadron h. To see this, it is instructive (even necessary) to treat |Pj, X)
as physical states. In that case they should be labeled as outstates. Consider the multi-channel matrix

AU =30 / di € (01 (€)]f; out) (f; out[, (0)[0) (3.129)
X

(Note that AU = A(ff/>T). The behavior of AU/ under time reversal involves

(f';outfp;(€)|0) = (f;in|(=i75C%);(—€)|0)"
= (f;out|S" (=iysC);(—€)[0)" (3.130)

from which one finds that the combination

Aff _ (\/g)fflAflfé(q/ST)féf (3'131)
behaves as ~ .o
A*(k, Pn, Sp) = (—=ivsC) A(k, Pn, Si) (—iysC). (3.132)

If the final state would be one unique channel obtains zero because S = €2**. For two channels the

S-matrix can e.g. be parametrized as

cose —sine e2h 0 CcoS € sin e
S = ( sine  cose ) ( 0 2102 ) ( Csine cose ) (3.133)

Working in channel space with the diagonal S-matrix one has

N AGD (i(01-02) A(12)
b -
A = ( e—i(61-82) A (21) A(22) > . (3.134)

From the hermiticity condition one knows that for A the amplitude analysis requires real amplitudes

B(f ) for i = = 1,12. The time-reversal invariance condition applied to A requires Bf = B; for i =
1,2,3,6,...,11 and B = —B, for i = 4,5,12. Thus one finds

B =B =0 (i=1,23,6,...,11) (3.135)
sin(6; —8) B =0 (i=1,23,6,..,11) (3.136)
cos(d1 —6) BN =0 (=4, 5,12), (3.137)

In general one can make a partial wave expansion of the final state in states |J, M) and one finds

> sin (8, — o ) BV = (i=1,23,6,...,11) (3.138)
J,J’!
S cos (6, —6,) BT =0 (i=14,5,12), (3.139)
J,J’!

The first equation is a constraint between partial waves which is trivially satisfied in the absence of
final state interactions. The second equation implies in the absence of final state interactions that the
amplitudes B4, Bs and Bj2 vanish.

For the fragmentation a twist analysis of A considering the projections

Wz k) = iz/dk+ man|
d§+d2€T ik-& + —
/ Tiany ¢ Tr0Z(0,€)¢(anan(0)T10) . (3.140)

leads to the following set of twist two profile functions, which depend on z = P,” /k~ and ki = —k?,
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ij
€7 ki Sth

A['Yi](z7 kT) = Dl(Z, —ZkT) + Mh

Df‘T(z, —zkr),

AD s (z,kr) = Gis(z, —zkr)
Egjij
Mh

P - ) ki
A[lo’ "/5](2:, kT) = S]%LT HIT(27 —ZkT) + T

A Hf;(z7 —zkr) +

Hf‘(z,

—zk,), (3.143)

(3.141)

(3.142)

and those of twist three are

M,
A (2, k) = P% E(z, —zky),

h

i ki N Yk M ) .
A[’Y ](z’kT> - % DJ—(Za 7Zk:T) + L_T] Di_(za 7ZkT) + hETi_ShTJ DT(
By P, P,
i M,
A[Ws](z,kT) = 71‘ E,(z,—zkz),
Ph
Al ’Ys](zJ(iT) = % G/T(Z, —ZkT) 4 T GSL(Z, —ZkT),
h Py,
L i pd i gl M,
A0 ) = et o o)+ P B, o)
by, P,
i~ M,
Alio +fys](z,k:T) - %Hs(z, — k).
b,

(3.144)
2, —zk|3.145)
(3.146)
(3.147)

(3.148)

(3.149)

Again it may sometimes be useful to work with the functions projected using o, instead of io,,v5. These

are
A[”i_](z ki) = —€ Spr; Hip(z, —zks) — e k) Hi(z,—zks) + ki
yhvp ) — T PhTj 1T\<; T Mh 1s\%» T Mh
My e
Az k) = — th H(z,—zks),
b,
- 9 keriShrs M,
A (o ko) = — RN ey M G gy,
b, P,
The shorthand notations G, etc. stands for
kr-S
G1s(z,—zkr) = A\p Gip(z, —zks) + Gir(2, —2k7) %
The integrated profile functions are defined as
Az = ZQ/koTA[F](Z,kT) - E/dk* d*k, Tr(AT)
4 k==P, /z
z o _
= & [aer eremom 0.9 dadorn|
0 £~ =£r=0

Hi(z,—zkr), (3.150)

(3.151)

(3.152)

(3.153)

(3.154)

Besides these we have nonvanishing k,-weighted functions in analogy to the distribution functions.
The Dirac structure of the fragmentation correlation function integrated over kT then becomes up to
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twist three

1 +
g/dk A(k, Py, Sp)

k_:P};/Z, kT

P
€uvpoYnY KL Sy .
M;,

1
4{D1(27_ZkT)'/L +D%T(Z,_ZkT) _Gls(zv_ZkT)ﬁf')%

10,75 khinY oukhn?
—Hir(z,—2zks)i0,7s S,’:Tn’i — Hf;(z, —zkr) L9pw 5 et + Hf‘(z, —zks) et
M;, M,

M h
4P,

+ {E(z7 —zk;) + Dt (2, —zky) % + Dy (z, —zkr) €upontin’ 4° Sy,

" v A pl.o
€pvpanyn” 7y kS

+An D7 (2, —2ky) — Es(z,—zkz)ivs

M,
10 Y5 S kY
Gz 2her) Shers — G (k) B2 gk o, oty 0 Sl
My, My,
—Hy(z,—zky)ioys ntn!l + H(z, —zk;) awn”nﬁr}. (3.155)

The integrated results are

Z/dk* d*kr A(k, Pr, Sh)

3 {Dl(z)ﬁ = A0 Ga(2) s + Ha(2) W}

k—=P, /z
My,

+F {DT(Z) EgU’YpShTU + E(Z) - )\h EL(Z) i’y5

— Gr() S+ i (2) P W} (3.156)

/dk+ d’kr L A(k Py, Sh)

= e st -t e

k==P, /z

1
+1 {Diljz( ) #Vpa,y n_ Sth-i-AhHJ_(l ( ) [ﬁ 27 }}

M
+4;{—Di<1><z>va+xhef< ()% + HE O (z) (LBl
h

$hT]

+HY (2) SE, W} (3.157)

Kok + 32 g7

z ( T'vT 2T IT

2 dkt Pk A(k, Pp, Sp =
k==P, /z

1 HEO(2) <S;§3[vﬁ},ﬁ—]% 49?”3 [ﬁmﬁ—hs)

+ 1 gl .

3.158
AP; ( )

My, 2(,) (Sﬁivﬁ}%—g?ﬁ ﬂhT%)

The appropriate normalization of the fragmentation functions can be obtained via a momentum sum
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rule. For this consider the following integral for the fragmentation function D,

/dz zDi(z) = /dZd2PhJ_ z2D1(z,Pp))

/ dz Py, / df(%f; “f'fTr<0|w(£>a2ah¢(0)v—|0>’£_0 (3.159)

(we have omitted the links along the n-direction, but including them all subsequent arguments remain
valid). Considering the integrand for fixed quark momentum & and choosing this to have no perpendicular
component, the P, dependence is only contained in aLah and summing over all produced hadrons (for a

given quark) one obtains

2
Z/dz zD1(z) = /df @&r e ETr (0] (& Z/dph d;;hf TP an(0)y~|0)
h

£-=0

= [ s Tr<ow<5>Pw<0>w|0>\ (3.160)
2k £-=0

Inserting a complete set of quark states one obtains

detd? X dk'~ d2k/ _
Z/dz 2D1(z) = /% e’k'gTr<O|w(£)/ DT Z|k' YE' (K, s"|9(0)y]0)
h

£—=0
dk'= d?kl, [ d¢tde, 1
_ RICSOF: _1
/ @y / e Z Ny~ u(k,s') 5 (3.161)
£-=0
and hence
ZZ/dz 2Dy (z (3.162)
h Sh
3.5 Antiquark fragmentation functions
For the fragmentation of antiquarks the profile functions are obtained from
N 1 de —ik-& /0|7
Aij(k, Pn, Sn) = ZW d°g e 0]4;(0)| P, X) (Pr, X[% (0,8)1:(£)]0), (3.163)
X
considering the projections
Ak = L [ g Tr@aD
4z kt=P;/z, ko
. d¢—d?€, —ik-€ IO\ f
=+ T OGO 0000w @6y
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and they are denoted D(z, —zkr), etc. The functions E and G acquire a sign compared with the quark
profile functions. For the antiquark fragmentation functions we have

1 -
@/dk A(k, Py, Sp)

k+=P; )z, kr

euupa’yunli kTpShTD'
My,

1|— — 1 _
4{D1(z,—sz) hy + Dip(2, —2ks) + Gis(z, —2ks) g5

— — 05 kinY JkhnY
Hor (2, k) iomys SEnY — Hiy(z, —2kr) SR Y~ ol GO Ml Lol
My, Mj,

+— {E(z7 —zky) + 5L(z, —zkr) ]ﬁi + D1 (z, —zkr) €uupen’n vP Sy,
h

po
€1 ’kaTa

—L1

+ Ey(z, —zks) ivs
Z'Jl“,’}/5 S}L:Tk;
Mj,

kTVS

— 1 1
—i—G,T(z, —zkr) Prrys + G, (2, —zky) N Hy(z,—zkr)

—H,(z,—zky)iouwys nhin? + H(z, —zky) ontin?. } (3.165)

The symmetry relations in z are D, (z,kf) = Dl(—z,k'Tz) and identically for Dr, Gir, Hir, Hiy, Er,
Gt, H and Hp, while Gy (2, k) = —G11(—2, k%) and identically for D35, Hjy, Hi-, E, D*, D, Ep,
G, G#, H: and Hr. The integrated results are

J— 1 o o o .
Z/dk7 d2kT A(k,P;“Sh) =7 Dl(Z) }/l_t,_ + An Gl(Z) }/L+’Y5 +H1(Z)M
k+=P, /2 4 2
Mh ) s al o .
+— {—DT(z) €27 YpShre — E(2) + A EL(2) 175
4P,
$Tr() $nrs + 2 Hy (o) L0 gy W ) } (3.166)
z - k? A L )= e} 71 a7
4 /dk @k 31 Ak, Prs Sn) =12 Gng) (2) Spz 10475 — An H1L(1)(Z) m
4 M, kt=P;/z 4 2
M 7t o w71 oz’ T
+7fj_ -D (1)(2) ¥ = Ap GL(l)(z) v s + HT(l)(z) b, Burls
4P 9
+Hy (2) 55 W} (3.167)
cr (e meg)
A dk~d kT 2 A(k7ph7 Sh) =
4 M7
' kt=P; /2
,EFL@)( S}ECTY[VB},ﬁﬂ’Ys - g?ﬂ [Brr, ha]vs
4 1T Z) 4

2

M, SianPys — gp’
M, G;“")(z)( w2175 — 977 Brens | (3.168)
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3.6 The parton picture for fragmentation functions

Similar as in the case of distribution functions, it is instructive to consider the correlation function for the
case of a free quark, given by

85 (p. 53 k) = wilk, s)u;(k, 5)6 (k — p) = 5 ((k +m)(1 +75¢)) ;0" (k — p), (3.169)
where the momentum and spin of the quark are parametrized as
_ ki +m?
k= {k T k|, (3.170)
Nk~ mN, kr-sgr . AED Ay
= — —k A7l
° { m 2 omE ST (8:171)

in terms of a quark lightcone helicity A, and a quark lightcone transverse polarization sq7. The projections
become for twist two

s (k) = 36(C—1) 3 (kr —pr) = 3Dax/ar + 3Dar/ab (3.172)
S0 (k) = 326 (¢ = 1) 6% (ke — 1) = $Dgr /gt — $Dar/aus (3.173)
5[10%%](19’) = %S;T o(¢— 1) 62(k —Ppg) = 1Dq8T/qﬁ o %Dqu/qe7 (3'174)

where ( = p~/k~ and we have given the intuitive interpretation in terms of probabilities for quarks to
fragment into quarks with spin characterized by A and s,. For twist three we get

U (k) = 520 (¢ = 1) 8%k — ), (3.175)
by K 2

07 (k) = 5, =0 (€= 1) 8 (kr —pr), (3.176)

; Lt Akl

") (k) = % 5(C—1)0% ks — p), (3.177)
. Kkl — ki

gt () = Sk Resin 5 ) g, ), (3.178)
- — ks Syr

gl el () = MRS () (ke ). (3.179)

Inserting the expansion for the free quark field gives
Aij(k) = 42 5(k* — m?) |0(2)ul” (k) Dpa (k)@ (k) — 0(—2)0)” (k) Do (—k)0\™ (~k)| | (3.180)

where z = P, /k™. The use of lightcone coordinates is convenient because of the integration over k* that
is needed in deep inelastic processes. The functions 2 and & are given by

2 d2k!

D (k) = Dpalz, 2°k2) = = (;w)s / éw)‘g ;"Z (0lbs (K" anal bl (k)[0), (3.181)
2 d2k!

Dpa(k) = Dgalz, 2°k2) = 4Z(;W)3 / éﬂ)d?) ;“ZT (0lda (K" analdf (k)[0). (3.182)

Note that P34 (k) is a decay matrix in the quark spin-space. Most easily to deal with is the 'momentum
sum rule’

dz d’k!. 1 dp, APy,
> ‘P o(2, Ppy) = / E / ~ ap Py al bl
- /ZdZd hr '@B (Z’ h,T) 2 (2’/7')3 94! k ‘bﬂ 271_ 32P7 h ahba(k)‘0>
d' K, 1 y
_ — ot _ !
2 / (271_)3 24/ k_ <0‘b5( )‘@Opba(k)|0> 2 5501' (3183)
Integrating over k£~ one obtains the twist two results (for z > 0)
APTI(k) = 59rr+ 3911 = 5%a0 + 5%88, (3.184)
Al =19 — 391, (3.185)

A[i017’y5](k) — %@aa _ %‘@,35’ (3186)
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using the same projection operators as for the distribution functions. In this way an interpretation in terms
of quark decay functions is obtained, again rigorous for the twist two functions. In this parton picture’
the twist three results can also for the fragmentation functions be expressed in the twist two functions.
Summarizing we get for All(z, —zk,;) and Al'l(z), ordered according to twist, chirality and time-
reversal behavior for production of unpolarized (U), longitudinally polarized (L) and transversely polarized

(T) (spin 1/2) hadrons:

FRAGMENTATION
x-even x-odd
Al (z, —zk;) | T-even | T-odd T-even T-odd
U D, Hi
twist 2 L G, HlLL
T GlT DILT HIT HILT
U| D+ GT E H
twist 3 L Gi Di Hy, E;
T |Gy GF | Dy D | Hr Hf | Er Ef
FRAGMENTATION
x-even x-odd
Alll(z) T-even | T-odd | T-even | T-odd
0) Dy
twist 2 L G1
T H,y
0) E H
twist 3 L HL EL
T Grp Dy
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3.7 Structure of H — ¢q profile functions

In order to study the structure of the profile functions, we will first give the expressions in terms of the
amplitudes A;(c,7), where 0 =2k - P and 7 = k2,

fi(z, k2) =/ [A2 + 2 As], (3.187)
g1z (e, k7) = / [_AG - (W) (A7+xA8)} , (3.188)
gur (2, k2) = / oo [Ar 4 2Aq), (3.189)
hip(z, k2) :/ [—(Ag + xA19)], (3.190)
hip (z,k2) = / [Alo - (W) AH] : (3.191)
e k) = [ (An), (3.192)
e(x, k7) :/ [Ad], (3.193)

(2, K2) = / 4], (3.194)
gr(z, k3) = / .. [—Ag], (3.195)
n 2 g — 2$M2
gL (l',kT) = /. .. |:_ <2W) A8:| 5 (3.196)
otk = [ A, (3197)
hi (0, k3) = / - [=Aw], (3.198)
o —2xM? o —20M?\°
hL(Z‘, ki) = / .. 7(149 + IAlO) - < 2M2 > A10 < 2M2 ) A11 5 (3199)
o — 2xM?
where
/ = /dadTé(k:i‘; + 22 M? + 7 — x0)
= /dadT S(xnM? 4+ 7 — z0), (3.201)
with
2
n=x+ ViR (3.202)
The integrated functions also can be expressed as an integral over amplitudes, e.g.
filz)=m / dodr §(z*M? + 1 — x0) [Ay + xA3), (3.203)

now involving a f-function to ensure contributions from the physical region p2 > 0, indicated in the figure.
Implicitly, there are several relations which can be traced back to the fact that there are less amplitudes
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x=1/2
(‘) /
fixed k7
x=1

222

Figure 3.3: The region ki > 0 which contributes in the integration over ¢ and 7 in the expressions for the

distribution functions and fragmentation functions

than profile functions. Useful are the following relations for ki—weighted functions: If we have

2 n
) (2, k2) :/deT5(ki+l‘2M2+T—£UJ) ( Ky ) F(z,0,7),

2M?
k2 \" OF
n 2 2 252
£ (2, k2) :/dadT{S(sz—l—x M*+ 71 —x0) <2]\;2> a—x(x,a,T),
k2 \" o — 2z M?
n 2 2 2772
g™ (z, k%) = 7/d0d75(k:T+x M*+71—x0) (2]\;2> e F(z,o,7),

one easily proves the relations

d d
% f(l)(x7 ki) = —g(x, ki) + f/(l)(w7 ki) + 2M2 W g(l)(xa k3">7

T

10 @) = —gla) + 'O () + 202 Dz, 0),

d d
o 1O @ k) = =290 @ k) + £ (k) + 2M7 — 5 g (2, k7).

T

d
= 1O(@) = —2gD(@) + O a) + 212 ¢ (,0)

For the five g-functions this leads to the two relations (assuming ¢("=Y(z,0) to vanish)

d

gr(z) = g1(2) + - 97
d

g1 (@) = —7-o7"

1a d 1@
9r ()(a?)——f (2)

and 297 = gr

while for the six h-functions three relations are found, where the one for h7 is trivial,

d

hi(@) = hn(e) = = hig",

he(@) = =L 0 and 280 (z) = —-L RO
dx 1T T dx 1T >

h ™ (@) = b (@) — by (@),

(3.204)

(3.205)

(3.206)

(3.207)

(3.208)

(3.209)

(3.210)

(3.211)
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Similarly we have for the fragmentation functions expressions of the profile functions in terms of the
amplitudes B; to Bis. This gives relations analogous to the distribution functions,

272 2 M}% g 1
2ZD1(Z,Z kT): dO’dT5 kT-FT-FT—* B2+*B3 s (3212)
z z z
etc. with now in addition some time reversal odd functions,
22 Dip(z, —zky) = / [B12], (3.213)
22 Hit (2, —2ky) = / .. [=B4], (3.214)
22 Di (2, —zky) = / . [~ Bia), (3.215)
o—2M32/z
22 Dy (2, —2ky) = / { <21\4,2;h/> Bm] . (3.216)
o—2M?/z
22 By (2, —zky) = / {— (2M§h/> 35} . (3.217)
2z Er(z,—zks) = [ ... [Bs], (3.218)
o—2M?2/z
22 H(z, —zkr) = / KW) 34} . (3.219)
The integrated functions are given by
2 M? 1
—Di(2) = ﬂ'/dcrdT 0 (g —T— 2h> |:B2 + - Bg] , (3.220)
z z z z

with an integration region also indicated in the figure. The following relations can be derived in the case
of fragmentation functions: If we have

M? 2\
22 DM (2, 2%k2) = /d0d76 <ki+ Tgh +7- Z) ( s ) F(z,0,7),

2Mj;
M? o k2 \" OF
1(n) 21,2\ _ 2 h _g T
22 D"z, 2°k3.) /dadTé(kT+ 2 +7 z) (2 5) o (z,0,7),

M? o) k2 \" o—2M?/z
(n) 27,2\ _ 2 h v T h
222G\ (z,2°k3) = /dad75<kT-l— 22 +7 z) (27‘,]3) 2“2 F(z,0,7),(3.221)

one easily proves the relations

22% - DW (2, ZQki)} = 2G(z,22k2) + 22 D'W (2, 22k2) + 2M? — {z GW(z, zzki)} ,
T
rp (1)
24 1D (2)] _ GG Ly pope EE0) (3.222)
dz z z z
z2di 2 D@ (z,22k2)| = 22 GV (2, 22k2) + 25 D' D (2, 22k2) + 2M} —s [z G (z, z2ki)} ,
z T
rpe 1) 1)
22% D Z(Z)] _o¢ Z(Z) + 2 D'V (2) 4+ 2M? w (3.223)

For the five G-functions this leads to two relations (assuming G(*=1)(z,0) to vanish,

(1)
GTZ(Z) _ Glz(z) _ Zz(% [G1Z(2)] 7 (3.224)
n 1(1) 1(1) 1(2)
Gp(z) _ 2 d lGT(Z)] and 291 () _ 24 lG (z)] (3.225)
z dz z z dz z
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For the eight H-functions this leads to 4 relations,

L(1)
HLZ(Z) _ Hi(2) —1—,22% leZ (2)1 ’ (3.226)
(1) (1) ()
Hr(z) _ »d [Hle (Z)] and 9 Hy'(z) _ 24 [Hlsz(z)] 7 (3.227)
z dz z z dz z
L(1)
HiZ) _ad lHl : (2)1 (3.229)

The last equation relates time reversal odd functions. Other relations between time reversal odd functions
are,

(1)
EL(z) _ »d ET(Z)] , (3.230)
z dz z
and
(1)
Dr(z) _ »d [DlT(z)] ’ (3.231)
z dz z
DX (2) = D). (3.232)

Using the splitting of the twist three profile functions in a piece that is expressed in terms of partonic
(twist two) functions and a remainder (’true’ twist three piece) that as we will see in the next chapter can
be expressed in terms of 'good’ quark and gluon fields. This is achieved by using the ’free’ quark results or
equivalently the results for quark-quark-gluon correlation functions using the QCD equations of motion,

m -
e(x, kr) = Vo fi(z, kr) + é(x, kr), (3.233)
1 1 FL

fo (@ ke) = — filz, k) + [ (2, Ka), (3.234)
m -

g%(x7kT) = mth(kaT) +g§"(kaT)7 (3235)
1 m -

gi_ (z,kr) = = g1z, kr) + Mz hf‘L(x, kr)+ gi‘(:l:, kr), (3.236)
1 m -

g% (l‘, kT) - E ng(l’, kT) + m th(xv kT) + g% (’I, kT)7 (3237)

_1 o m i

gr(w. k) = — g (k) + 2 B (o) + (oK), (3.238)
1 -

hi (@, ke) = — hir(o,ke) + by (2, kr), (3.239)
m k7 L 47

hL(ﬂf,kT) = mglL(x7kT)_mh1L+hL(x7kT)v (3240)
m hir(z, ky) k2 -

hr (. ke) = 3 vr (@, ker) ! " A T hiz + hp(z, kr). (3.241)

The functions €, etc. can be immediately seen as the functions appearing in the twist three projections of
the quark-quark-gluon correlation functions.
Comparing the above expression with the second relations found for the g-functions one has
1)

_ iz MM d @

— +qgr = — 3.242
gr e +gr gl+dxng’ ( )

from which one obtains the relation

d (1) m )
x? e (gle =—xzqg + i hi1 + zgr, (3.243)
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that can be used to eliminate g%),

d d 1 d m 1 d 1d

*(nggl):*92:***($91)+M5% Lt

dz dz x dx (2gr),

or (provided sufficient convergent behavior at the endpoints)
1 1 1 ~
a1, m [l / ha(y) - / gr(y)
=— - dy —== — | — = dy —=— — dy =—==1|.
92() [gl(x) /m Yy }JFM { T . T (= .Uy
Similarly we obtain from the expression for hy above and the second of the h-relations
1 d

g1 1L 7 L(1)
B_ole gLy
x x thL T R

which can be used to eliminate hf}fl),

d hL—hl o d h2 o 1 d m 1 d 1 d =
dx( p )‘dz(%)_ 22 dp W) 3 E g 9t g ),

or (provided sufficient convergent behavior at the endpoints)

Sn(a) = [hl(:c)Qx/:dyh;gy)}JrE[glix)Zx/:dygly(g)]
+ |hr(z) —230/361 dy ﬁz(;/)] .

Continuing with the twist-three functions we have

ho b mogir - d 1)
hp = ——2 2 o I = T p
r x x + M =z thr de T

from which one obtains the relation

d (ht® m .
$2<1T :hl—Mng+th’

dx x
. - 1(1)
which can be used to eliminate hi; "/,
d 1 d m 1 d 1 d, -
—hp=———h1+—— — — — (zh
dz 't x dx 1+demng+xdx( 7);

or (provided sufficient convergent behavior at the endpoints)

For the second k2-moment one obtains

1 1(2 1
WY mg ) 1d e
T T T M =x T 2 dr e

from which one obtains the relation

1(2 1 1
o (M) ot ld i

dx 22 T M =z

225

(3.244)

(3.245)

(3.246)

(3.247)

(3.248)

(3.249)

(3.250)

(3.251)

(3.252)

(3.253)

(3.254)

(3.255)
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which can be used to eliminate hfq(?),
d (h)_ 1d pypm Ld ) 1dpo, (3.256)
dx )T Rd T T M2 T2 r '

or (provided sufficient convergent behavior at the endpoints)

(1) 1 (1) (1) 1 1)
hy”(x) hi’ ()| m | gr(@) 917 ()
h(Tl)(x) = llan:n/I dle +M %72:0 xdleT
IACY)
- h
+ | (@) 7295/ dy ~L 2(y)] . (3.257)
v y

It is sometimes useful to realize that the moments of combinations appearing above are

1 1 1 1
/0 dx " [f(a:) — kxkfl/‘r dy f;g)] = nik 1/ dr z" ' f(x) (form>1, k>1). (3.258)

Therefore all first moments (n = 1) of the expressions between brackets above vanish, at least if the first
moments of the function f is finite.



Chapter 4

Deep inelastic processes

4.1 The point cross sections

In section 1 we have discussed the formalism for three types of hard processes, the Drell-Yan process, ete™
annihilation and lepton-hadron scattering,

A+B — (+{+ X, (DY)
e +et — hy+hy+ X, (e7e™)
(+H — '+h+X. (¢H)

The underlying processes are:

DY : g+q — (47, (4.1)
eet: e +e" = q+7, (4.2)
(H : l+q = l'+q. (4.3)

The cross sections for these processes would be quite similar to the (observable) lepton cross sections. The
annihilation cross section e”e™ — u~u™, neglecting lepton masses is given by

2 (42 4 2
o, _ 4 _ o4y 2maf (P +u?)
9 e gy = ZEET), (4.4)
or the equivalent expressions in terms of y = —t/s = (1 + cos0.,,)/2,
do , _ _ a? 9
a0 (e7et = ppuh) = ™ (1 + cos®bem) , (4.5)
d 4 a? (1
dc?; (et =»puuh) = T (2 —y+ y2> . (4.6)
The total cross section becomes
- 4+ -+ 47Ta2
olee™ > u u") = 35 (4.7)

The cross section for e~ u™ — e~ u™, neglecting lepton masses is given by

do, _ _ o4 2ma? (s +u?)
e e )=, (4.8)
or using y = —t/s,
do dra?s (1>
—(e put —eput) = = +1-y]. 4.9
dy(eﬂ cr)=—ar \g iy (4.9)
Also useful is the cross section for a virtual (transverse) photon, given by
. 4% s
o(yppt = pt) = 02 ) (QQ - 1) . (4.10)

301
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4.2 The Drell-Yan process

The hadronic tensor in this case is rewritten as

1

WHV(q;PASA;PBSB) = (27T)4/(

d3Px
2m)32PY,
X(PASA; PBSB‘JH<O)‘P)(><PX|JV(0)|PASA; PBSB>,

(2m)*6*(Ps + Pp — Px — q)

1 )
= W/d4x e T (PaSa; PeSp|Ju(x) J,(0)|PaSa; PeSE),

which in tree approximation (Born terms) becomes

W = L/6143«“ e " (PyS4; PSp| 0 (@) (v) ke () -

7 X T (0) (0 )i (0) : |PaSai PuSi)
= iy [ RASA ) O PAS ) o)
(Pl (),(0) | PaSa) (3
i [ e T (PASAl B O PAS) 00 )
(PuSIT, (@)44(0)| PaSi) ()i

- %/d“pd‘*k S (p+k—q) Tr(2(p)1u®k)w) + { qf;—yfl }

+

where we have used

Bis0) = fgrya [ ' € (PASAD (@) 0) P
B (k) = ﬁ / 2t ¢~ (P S| (2)T,(0)| PpSi),

302

(4.11)

and its symmetry properties (see section 2). Note that since in both @ (quark production) and ® (antiquark

production) summations over colors are assumed, a factor 1/3 appears in the result in Eq. 4.11

Using the lightcone representation of the momenta in frame II (see section 1) it is easy to see that if
the quark momenta in the matrix elements ® are limited, i.e. p?, p- P4 are of hadronic scale and similarly

in the matrix elements ® for k2 and k - Pg, one can write the delta function up to €(1/Q?) as
'tk —q) =0 —q") (k™ —q7) 8*(py + ks — q,),

The result in leading order is then

1 B _
W = g/d2pTd2kT52(pT+kT*qT)Tr (I/ dp™ @l dkT@R )| v o pr
k™ = .TBPB_
(L w22\,
= (ot 2+ 20 ST
P, Py P B

|
|
|
|

J g Jf "
a_ a_
VAVAW UV VAVAW U
pT‘ | vlp pT [ | Aip
X 1 Py P, 1 X

Figure 4.1: Born diagrams for Drell-Yan scattering

(4.12)

(4.13)
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where
I[fl ?1] = /d2pT d2kT 62(pT + kT - qT) fl (an p'r)?l (l’B, kT) (414)
Using the contraction with the leptonic tensor,
v q,.9v ZNZV _ 2 1 2
L (—glw+ 2 +ZQ> = 4Q (2 —y+ty
= Q*(1+cos®0p,), (4.15)

the cross section becomes
do(AB = ptp~X)  o?
dx adrp d?q, dQHN 12 Q>
Integrated over the transverse momenta of the produced mu pair,

do(AB — ptp~X)  o?

(14 cos®8,.,.) I[f1 f1)- (4.16)

di A dz g dS) ~ 19 Q2 (1 + cos? 0##) fi (xA)?l('TB)a (4'17)
by
and integrated over the muon angular distribution,
do 4w a?
T = gor e Titen) (418)

or including the summation over quarks and antiquarks,

do(AB TumX 41 o? _
7t dxjd/;BM : - 972;2 Zeifla/A(ffA)fm/B(xB)
= fola/A :EA)fla/B(asB) G(aa — ppt), (4.19)

where the quark-antiquark annihilation cross section is given by

4ra?
30 e.
and the factor 1/3 multiplying the summation is the color factor that can be naturally understood because
only quarks of the same color can annihilate and we have seen that the definitions of the quark distribution
functions included a summation over colors.

Introducing the virtuality of the photon (i.e. the invariant mass § of the produced mu pair) as a variable
one can consider the Drell-Yan cross section as a function of s. Writing

G(aa — ppt) = (4.20)

do A o2
dT;z (a@ = p~p'") = %ei 5(5 - Q%), (4.21)
one has
do(AB -utXx 1 B
U(szchng ) _ §Zf1a/A(xA)f1a/B(xB) dQ2(aa—>M uh)
4
- 97;;4 Ze Jra/a CUA)fla/B(ﬂ?B) <Q2 TATE — 1), (4.22)

which exhibits explicitly the scaling in 7 = s/Q? for the cross section Q* do/dQ?.

4.3 Electron-positron annihilation
The hadronic tensor in this case is rewritten as
. . 1 d®Px 454
W,uu(‘]vplslap2s2) = (27T)32P9( (27T) 0 (q7PX7P1*P2)

(2m)*
X<O|JM(0)|Px; P]Sl; P252><Px; P151; P252|JU(O)‘0>,

xr eiqir <O‘Ju(l‘) Z |X; PlSl; P252><X; PlSl; P252‘Jy(0)|0>7
X
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which in tree approximation (Born terms) becomes

W = gyt [ @€ 01T, @0 ) S A P
X(X; P1S1; P2Ss| iwl( ) (7)1 (0) : 0)
= (2711_)4 /d4$ el <0|Jj(if) Z | Xa; PySo)(Xo; P252|1/Ji(0)|PS>(A/u)jk
Xo
Ok () > 1X15 PuS1)(X1; PrSu[d,(0)|0) (7. )i
X
gy 3 [t €1 O10u0) 3 X PaSe) (X PaSal G (OI0) ()
X2
(O[5 (@) Y 1 X15 PuSu) (X1; PuS|i(0)[0) (7,.)
X1
= 3/d4pd4k ' (¢ =k —p) Tr (A(p)1uA(k) 1) +{ q’u<—<>_>—yq } (4.23)
where we have used
Agi(k) = ﬁ/d% et <0|1/1k(33); | X1; P1S1)(X1; P1S1[44(0)]0),
Aij(p) = ﬁ/d% e <PS|@J($)Z | X2; P2S2)(X2; P2S2|1i(0)| PS),
X»

and its symmetry properties (see section 2). Note that since both in A (quark decay) and A (antiquark
decay) an averaging over colors is assumed, we get a color factor of 3 in Eq. 4.23. We have only con-
sidered two hadrons in different jets, i.e. no fragmentation parts involving matrix elements of the form
(0fthj(x) D x | X5 P1S1; PaS2) (X5 P1S1; P2S2|1i(0)]0) are considered.

Using the lightcone representation of the momenta in frame IT (see section 1) it is easy to see that if
the quark momenta in the matrix elements A are limited, i.e. p?, p- P, are of hadronic scale and similarly
in the matrix elements A for k% and k - P;, one can write the delta function up to &(1/Q?) as

Mg—k—p)~dlg —k7)d(¢g" —p*)8*(qy — kr — Py, (4.24)

The result in leading order is then

W#V = 3/d2kT d2pT52(qT - kT _pT)Tr ([f dp_Z( )]’Vu[f dk A '7V)| k— = P /2’1
pt = P+/Z2
ey me
( 22 Juw + —73 ) 12 2120 I[Dy D1], (4.25)
where
I[D1 /d2]€T dsz 52( — k pT) Dl(zl, —Zlk ) (22, —ngT). (426)
Using the contraction with the leptonic tensor,
v q qI/ Z Zl/
L* <_9;w+ ;2 + 22 ) = 4Q2< y"‘?/)
= Q? (1+ cos? 9), (4.27)

where 6 is the angle of the produced hadrons h, in the e“e™ rest frame. The cross section becomes

do(e”et — hihyX)  3a?
A0 do don dPq, 407

(14 cos® ) 2725 I[Dy Dy]. (4.28)
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Integrated over transverse momenta of hadron h; one finds,

do(e et = hihyX) 3a?

- L+ cos™0) Di(z1) D 4.29
A dz, dzs 10? (1+ cos®0) Di(z1) Di(z2), (4.29)
Including the summation over quarks and antiquarks one obtains
do(e” et — h1hoX) 3a? 9 ) -
dQ) le d2,’2 = 4@2 (1 + cos 0) za:eaDl hl/a(zl)Dl hz/a(zg)
dé _
= 3 ; %(e_e‘*‘ — aa) Dy hl/a(Zl) D hg/E(ZQ), (4.30)

where the annihilation cross section into a quark-antiquark pair is given by

dé 2
—U(e*e+ — aag) = 40[@

70 (14 cos?0). (4.31)

The factor 3 multiplying the cross section can be naturally understood as the definitions of each fragmen-
tation function includes an averaging over color and the annihilation can be into a quark-antiquark pair of
any of the three colors. The result for the production of a single hadron is obtained by considering hadron
2 as the jet with D; = 6(1 — 23), thus

do(eet — hX) 3a?
PR = 1 (14 cos®0) za:ei Dihya(2)
= 49 (o=t a) D 4.32
= 3%:d—g(e e” = aa) Dy pya(2). (4.32)
Integrating over the jet direction gives
do(e”et — hX) 47 o 5
7 = o2 ;ea Dihya(2)
= 3> G(e"e" = ad) Dypyal2). (4.33)

Finally the jet cross section is found by taking Dy (z) = 6(1 — 2),

do(e’e:lrQ—> jets) Z?; (1 + cos? 0) za:ez
= 3> 4(e"et - aa), (4.34)
and the total cross section
o(e” e’ — hadrons) = 4722(;2 Zeg
= 32&(5& — aa)
= cr((j*e+ —uut) 3265. (4.35)

Note that integrating over z the multiplicities of produced particles enter,

do(e”et — hX -
/dz ole ed = hX) = (nj, e Yo(e~ e — hadrons) (4.36)
2
given by
2
(ng ey = 2aCa"n/a (4.37)

where 1y, = [ dz Dyp/a(2).
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4.4 lepton-hadron scattering

The hadronic tensor in this case is rewritten as

1 d3P
2M W, (q; PS; PhSp) = 2 / (27r)32XP§( (2m)*6*(¢+ P — Px — P,)
><<PS|JIL(0)|P)(;PhSh><Px;PhSh|Jl,(0)|PS>,
1

- ﬁ/d‘lx el <PS‘JH(SL‘)Z|X;Ph7Sh><X;PhSh|JV(O)|PS>7
(27) <

which in tree approximation (Born terms) becomes

2M W, (q; PS; PySy) = (2717)4/d4x U (PS| () () jribn (@ Z|X P;,Sy)
X (X5 PnSh| = 1 (0)( ’Yu)m/h‘( ) |[PS)
1

S / dhx ¢ (P[5, (2)6:(0)|PS) (7)1

(2m)*
(Oltpi(@) Y 15 PuSu) (X PoSul$(0)[0) (7 )i
X

Gyt [ ' €T PSR OIPS) . )

0y (x Z|X PrSp) (X5 PrSp[i(0)10) (9. s

= [awatkstor -8 T @At + { 0700 @

where we have used

®0) = Gz [ @' €77 (PSIT,O0@)IPS),
A (k) = (2%4 / d'z e Ofn(w) D X5 PuSn) (X5 PuSul,(0)[0),
X

and its symmetry properties (see section 2). Note that in ® (quark production) a summation over col-
ors is assumed, while in A (quark decay) an averaging over colors is assumed. We have not consid-
ered possible target fragmentation parts involving matrix elements of the form (PS|y;(x) > | X; PrSh)
(X PpS|1i(0)|PS).

Using the lightcone representation of the momenta in frame II (see section 1) it is easy to see that if
the quark momenta in the matrix elements & are limited, i.e. p%, p- P are of hadronic scale and similarly
in the matrix elements A for k% and k - Pj,, one can write the delta function up to @(1/Q?) as

5 p+a—k) =t +¢") (g — k™) 0% (pr + ar — kx), (4.39)
The result in leading order is then
oM A, — / Py kb (P, + a4, — k)T (1 dp™ ®()lf AR AER)| v _ o por
k= =P, /z
Quv PP,
( ’;2 —9g ;‘32 ) 22 1[f1 D1], (4.40)
where

I[f1 D1] = /d2pT d’kr 6*(p, + q, — kz) fi(2s,p,)D1(2, —2ks). (4.41)

Using the contraction with the leptonic tensor,

v qﬂQu P 1 p 4Q2 y2
L+ v = =— [ =4+1- , 4.42
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the cross section becomes
do((H — ('hX)  4ma?s
dr,dydzd?Pp,,  Q*

[y; +1-— y] z,I[f1 D1, (4.43)

or integrated over Py, |,

do((H — ('hX)  4ra’s [y2

drsdydz Q4 2+1—y] s f1(x5) D1(2). (4.44)

The case of inclusive electroproduction is easily obtained using the result Dy(z) = 6(1 — z) for quark
production off a quark, giving
do({H - 0'X) 4ma?s (y?
= —+4+1- . 4.45
dzp dy ot + y| zsfi(zs) ( )

2
This leads to the well-known result for electroproduction of hadrons h (now also including the summation
over quarks and antiquarks, where the latter come from the second contribution in Eq. 4.38)

do(LH—0'hX)

Gwaydz — __ Np(@2)  Yacafia/n(@) Dinja(?) (4.46)
CZUIETE S SN e >0 €2 Fra/n(@)
Upon integration over z one obtains
do((H — {'hX) CH do((H — 0'X)
_— = _ 4.47
/ : drdydz (i (@)) dx dy ( )
where (nj(z)) represents the average number of produced particles as a function of z,
2
(H Zaeanh/afla/H(x)
ny (x)) = 4.48
@) > €atia/n(T) (4.48)

where 1y, = [ dz Dyp/0(2).
Finally we note that we can write the inclusive cross section for different values of s = Q%/zpy in
terms of the virtual photon-quark cross section o (v*(Q%)a — a) as

do(lH — 0'X 1 al (y?
W - Ty [yz+1—y]me/mwsw(v*(@?)wa)
2 2
= el (S 10) fugmtens (1), (449

which is quite analogous to the situation in the Drell-Yan process.

4.5 Inclusion of longitudinal gluon contributions

We will consider in this section the inclusion of diagrams with gluons connecting the soft and hard part
(see fig. 4.2).

a d4€ d4 1ky-E+i(k— . A «@
%y (ks b3 P, 8) = / 2m) (2;)74 etk I(P S[(0) g A% (m)¥i(€)| P, S) (4.50)
(satisfying 0 ®% (k, k1)vo = % (k1, k), and
1 L — i k- «@ A
%ij(k, ks Pr, Sp) = W/d‘*f dhy et P E=mEERN 0]y (€) A% (1) afanth;(0)]0), (4.51)

(satisfying WOAiT(k, k1)yo = A% (k1,k)). Performing the integrations dk~ d*k, and dk; d*ki, one finds,
using kt = 2 Pt and kf = y P, the lightcone correlation functions corresponding to multiparton matrix
elements, e.g.

Gij(Ty) = P+/dk7 d’ky dky d*kir %ij(k, ks P,S)
d§™ dn™ ikl (e—m)vik - o
= Pt [ S TL el et p S ) gt u@IRS)| L (152)
T 27 Lo
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Figure 4.2: The quark-quark-gluon correlation functions
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Figure 4.3: Quark-quark-gluon correlation functions in lepton-hadron scattering

where the subscript LC refers to ‘lightcone’, £+ = nt = £, = i, = 0. Whatever way one parametrizes
the above matrix elements, it is clear that in a process the index « being + requires a + component of
one of the vectors of the soft part (P, S), which are of order @ after expanding in ny as discussed in the
previous chapters. These thus give the dominant contribution. We will analyse them first for lepton-hadron
scattering. We obtain four contributions as given in figure 4.3. Two of them have gluons connected to the
lower soft part (the hadron — quark part), the others gluons connected to the upper soft part (the quark
— hadron part). Including the contribution of the handbag one has

QM A — / dpd*k 5 (p+ g — ) Tr [@(p)r, A (k)]

(f —pr +m)

(k—p1)%2 —m? +ie

(F—p1+m)
(k —p1)? —m? —ie

—/d4pd4k d*p1 0t (p+q— k){Tr [% L 2% (p,p — 1)V A

+ Tr [w YaA(K) v, @4 (p — p1,p

—/d4pd4kd4k1 54(p+q—k){Tf [% o (ﬁkl_)fﬁmzll = 1a®P)1 ALk — ki k ]

(P =k +m) o
+Tr[7a(p—k1)2—m2 ” YuAG (k& — 1)y, O(

(4 53)
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[Note that we have for a quark-quark-gluon blob used momentum p; (or k;) for the gluon and p — p; (or
k — k1) for the quark. This is easier to extend when we consider multiple gluon correlation functions.]
In the remainder of this section we will often omit the standard integration [ d*pd*k6*(p+q— k). The
momenta p; and k; connected to the soft hadronic parts are parametrized according to

pP= |: _a%apT] 5 pP1 = l:pl_ax\l/gzaplT:| P p_kl = |:_Zl %7%7] 5 (454)
RN S N P
k= I:\/§7k 7kT ) kl - \/5 kl ale ; k b1 = \/i’ Z1 \/57 3 (455>

The momentum appearing in the extra fermion propagator is p—p; +q = k —p; with (k—p1)? = —z1 Q?,
ork—ki —q=p—k; with (p — k1)? = —2; Q2. Thus one has in leading order in 1/Q,

k_ﬁl—’_m = Py_ + ")/+ _’YT.(kT_plT)_m (456)
(k —p1)? —m?2 +ie QV2  (—z1 +ie)QV?2 (=21 +i6) Q% '
p—ki+m _ v Yz (Pr—kar) —m (4.57)

(p—k1)? —m? +ie QV2  (—z +ie)QV2 (=21 +i€) Q2

This can be used to consider separately the contributions of transverse (4%) and longitudinal (A™) gluons.
For the transverse gluons, the trace of the first gluonic contribution becomes

_ 4 T %‘—]51—"-77’1 l,(ba _ A
/d p1 Tr {% Gp)?—m2ric A, p —p1) VA (k)

d*p: : : — Ya v~
= d4 din et (e—p)-E+ipin (P SIb(0)y A(k) 1< L A PS
[ i [ ate [t (P, STRO)AR) 5 9450) (€ IP, ),
which starts off at order 1/Q) and at this order requires leading parts from ®% (proportional to Py ®%P_)
and leading parts from A (proportional to P_AP,). As {y 7,72} =0 and vy~ Py = P_y~ = 0 only the
v~ = P4y~ P_ part in Eq. 4.56 contributes. This term is independent of any of the components of p;, and
we thus can immediately consider the distributions [ d*py @9 (p, p — p1), or explicitly

/ die ¢ive <P,sm<omA<k>”5\g 70 gA%(€) H(E)|P. ). (4.58)

This contribution will be studied in the next section. Note that it can be written in terms of the covariant
derivative as

/ 2 ¢ (P, S[3(0)7, A k) ”Q}ﬁ i D2(E) B(E)|P.S)

Y 4 eip~§ - Yo
P / 4 7 (P STOUAR) T WU, 5) (4.59)

In this section we consider next the contributions of longitudinal gluons (A™). They lead to traces of
the form

— +m
_ d4 T - k }61 Vq)+ _ Ak
/ 2 r{v Gop)—mziic ! AP, p = p1)vuA (k)

The first term in Eq. 4.56 does not contribute. The second term contributes at ¢(1) as the dominant
contribution in ®¥ is the part projected out by [dp; P®}P— which is of €(Q). Explicitly, we get for
the first correction in Eq. 4.53

_ d*ps 4 / 4 ot (P—p1)-E+ipin b -7
/ : [ [ e (P SBO) AR s E s

d eizipt(n™—£7) — ot
/ 2 / e /dn emr ) (P, SO0 Ak) 5= 7 gAT M GOIPS)| 4 _ o+

T — i€
77T:§T

+

AT () ()P, S)

- / ae / dn~ 007~ — €7) 7€ (P, S[H(0)7,A(K) Py igA™ (1) B(€)|P, S)

. _ £
- / di€ 1€ (P, S[B(0)1, A(k) Py vy ig / dn~ A% () $(€)|P.S). (4.60)
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The second term in Eq. 4.53 gives

- / d'py Tr [w G _(%pl)f 1_+mn;)_ =7 Ak @h(p - pl,p)]

0
- / d'¢ ¢ (P, S[T(0) ig / dn~ A% (7)) 7 P A(k) 7 $(6)| P, S) (4.61)

The last two terms in Eq. 4.53 give

- [ah {Tr [% S A5 k)}

=k +m)
(p—k1)? —m?2 —ie

+Tr ['ﬁ YAy (ky b — kl)%@(p)} }

0
/d4§ ethe {Tr (0l (& )ahah%g/ dn™ A= (1) ¥(0) v Py @(p) 7,10)

§+
=Tr (0[4(§) ig[ dnt A= (") a}arn $(0) v, ®(p) P- w|0>}-

The result of multiple AT- or A~ -gluons together with the tree-level result gives in leading order in 1/Q
(when the projectors P and P_ don’t matter) the exponentiated path-ordered result

2M W}, = / dip k6 (p+ g — k) Tr [@(p)1, A(k)7) (4.62)
with
Dii(p, P,S) = @ /d‘*g e PE(P, S| ;(0)% (0,00;04) % (00,€: &x)hi(€)| P, ), (4.63)
1

Ak, Py, Sp) = / d'€ ™€ (0% (—o00, €75 62 )1i(€) afyan ¥ ;(0)% (0, —00;07)0).  (4.64)

(@m)*

Provided we assume that matrix elements containing bilocal operators ¢(0) A (n* = Foo, nr) ¢(€) vanish
for physical states, the above links can be connected resulting in a color gauge-invariant matrix element
that must be used in the definition of the correlation functions.

Before considering the transverse gluons let us check the case of two AT gluons. For instance considering
a gauge choice A~ = 0, one needs only to consider the absorption of the A* gluons in the ’distribution’
part. Dressing the diagram leading to the first of the four terms above with another 'parallel’ gluon one
obtains a contribution

d4 d4k64( +a—k d4p1 d4p2 a4 d4ny d* i (p—p1—p2)-&+ipi-m+ip2n2
p p q ) (27‘(’)4 (27'[')4 5 m 2 e

+

- - g - gl
P SO AR B Y o i Qﬂ%9A+(nz)gA+(n1)¢(€)\P,5>

dzq de Z'(Il-i-ﬂﬂz)lﬁ(ﬁf—ff) eilzp+(ﬁ;—nf) .
= [ d'pd*ks? - / d* /d d e
/ p (p+q 5 771 772 ($1+$2—i€)(l‘2—i6) €

< (P, S[¢(0)7.A(k) +%9A+(772)9A+(771) IR, S). (4.65)

The integration over x; and z5 gives

i0(ny — &7 )iy —ny ), (4.66)

leading to the path ordering.



Chapter 5

Gluon fields and correlation functions

5.1 Quark-gluon correlation functions

For the analysis beyond the twist two level, it is necessary to include quark-gluon correlation functions.
We define

d* d* : . —
Bk ki P.S) = [ g e @B S 0) g A2 ()€ P 5) (5.1)

(satisfying 'yotIﬁT(k, k1)yo = ®%(k1,k)). Performing the integrations dk~ d°k, and dk; d*ki, one finds,
using kt = 2 Pt and kf = y P, the lightcone correlation functions corresponding to multiparton matrix
elements,

Gij(@y) = P+/dk—d2kT dky d*kyr ®% ;(k, ks P, S)
dfi dn~ ik (E— ik- - @
= Pt [ GL e S 0 gazu©IPS)| L 62)
T 27 LC

where the subscript LC refers to ’lightcone’, éT = nt = £, = 5, = 0. Up to the twist three level it is
often not necessary to consider this general three-field matrix element, but it is sufficient to consider the
bilocal matrix elements obtained after integration over d*k;,

Gukrs) = [ (j;; e FE(P, S[1,(0) g AT (E)wi(€)|P, )

- /d4k1 %ij(k k1 P.S), (5.3)

(’Yo‘I’iT%)ij(k;Pa S)

/ L (P S[T,(0) g A2 (0)(€) . S)
(27r)4 9 ] g T K2 b

_ /d4k1 %k, ki P, S). (5.4)

i g i
— =

P | P

Figure 5.1: The quark-quark-gluon correlation function
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We already mention here a third possible bilocal matrix element,

Wi PS) = [ sy @ EP ST 0):0) 943 1P S)

= /d4k’1 Aij(k+ ki ks PS). (5.5)
One-argument lightcone correlation functions are obtained after integration over dk~d%k.,
Aig(e) = / dk™ d*kr @5, (k; P, S). (5.6)

A factor PT has been included in the definition of ®%(z,y), such that one has for the one-argument
lightcone correlation functions ®%(z) = [ dy ®%(x,y), etc. First, as before the same constraints as before
from parity and time reversal invariance can be used. Including only terms that potentially contribute at
the twist three level one obtains using only parity the general form

Fk, P,S) = CLPET + MOy [y, PI+ (Cs/M) [P fL] KT +iCa €, 00" s PPET

+M Cs PysST + (Cs /M) Pysk§ (k- S) + Cr [P,y*]vs (k- S)
+Cs [f1, Plvs S* + Co [S1, Plvs kT + (Cio/M?) [kL, Plvs kS (k- S)

+iM Ch1 €%,,,7" P?ST +i(C12/M) €upoy" PV K, ST kS
+i(Cha/M) €%,,,7" PPKS (k- S) (5.7)
Pk, P,S) = 50(Cr PR = MC3 1%, P+ )0, (5.8)

All amplitudes only depend on P-k and k2. By choosing our conventions such that the the Dirac structures
multiplying Cy, C3, Cy, and C1y, C1a, C13 are antihermitean (I'f = —4oT'yy) and hermitean (I'f = 4I'y)
otherwise, all amplitudes are real when time reversal invariance applies.

Before starting with the twist-analysis we will discuss the issue of color gauge invariance. First of all, we
of course need to employ correlation functions containing the covariant derivative ¢ D, (§) = 0, + g A, (&)
and field strength tensor G, (&) = (i/9)[D,(§), Dy (£)] instead of the A, fields. These are

d4€ d477 ” ) _
a . — ik1-(§—m)+ikn ) D )
®Dz3<k7k1,Pa S) /(27T)4 (2,”)4 € <P75W7(0> iD (n)wz(gﬂpa S>7 (59>
and s @
o . (k ki3 P, S) :/(%)4 (27:)74 et E=mER (P S[4;(0) gGH ()i (€)| P, S), (5.10)
and as before the lightcone correlation functions
@ dé‘idniiyf k- A B Ye]
bule) = [ G G SHENENP SO D RS . (G
LC
a =[BT AT ke mtikn b1 (0) gGH ()i ()| P. S 5.12
Gy = [ S-S (P, S[5(0) 4G (1) (&) P, S) (5.12)
LC
Bilocal correlation functions are again obtained after integration over one momentum,
%Y, (k; P,S) = a%¢ RSP, S (0)iDS P,S
Dij( y Ly ) - (271_)4 € < ) W]( )Z T(f)wz(fﬂ ’ >
_ /d4k1 o (k. ks P,S). (5.13)

and the function

Wy PS) = [ G ARSI, 006067 IP.S).

= /d4k1 Gzy k-f—k?l,k‘l,P S) —Zk+/d4k‘1 Alj(k‘—i-/fl,kil,P S) (514)
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The above expressions (without link) are only useful in the gauge AT = 0, in which case the relation
between A% and G is simple, GT® = 9t A2 = 9_A%. Possible inversions are (only considering the
dependence on the minus component),

a30r) = A3e0 - [ de e =) 6re)
= Azo0)+ [ de 8 - C)Er)
- AR e e -6 (515)
or using the representation for the #-function,
i 0(+€) = % Ii;, ie(€) = %PP%, (5.16)

one obtains (omitting the hadron momenta and spin vectors)

1

« _ + + @ «
Uk, k1) = 6K = k) PG ooy (K ) + kT —ie DG (K, k1)
_ + _ .+ a i «
= O(kT — k) DYooy (ks k1) + [T ¢ (k, k1)
oG (k‘ kl) + &4 (k k‘1) ;
o + 1+ A(oo)\™ A(—o0)\™ {2 «
= 4(k k) 5 —i—PPkJr_k;r D& (K, k1), (5.17)
where
S(kF — k) % 4oy ij (k1)
=/ AN ke 0k P 5[ (0) g A2 (oo, ) H(IPS), (5.18)
(27T)4 (27T)4 b) J T b) ) b )
and
Ok = k) | @00y (b k) = @5 oy (ks )| = 276G+ — ) 93 (k, k) (5.19)
The constraints following from hermiticity, parity and time-reversal are the following,
% (k, ky; P, S) = o % (k1 k5 P, S)yo, (5.20)
(I)QD(k,kl;P,S):’Yo(pDa(k,kl;p,fg)’yo, (521)
‘I)%*(k, k‘l; P7 S) = (—i’Y5C) (I)DQ(E, ];51; P, S)(—i’%C). (5.22)

Similar properties hold for ® 4 and with a minus sign for the last relation (time reversal) also for ®o. We
note the following for the boundary condition terms defined in Eq. 5.18 under time-reversal:

(2m) O(k™ — k1) ®Gcy (P S5 K br) = (2m) 6(kT — k)7) (—i75C) @Y (o) (P, Sk, kr) (—insC). (5.23)

This is the consequence of the fact that the point n~ = oo is defined by 1 - ny = oo, which after time
reversal transforms into the point 1 - 74 = —oo. Since the component 77~ is not integrated over the minus
sign is not removed by a change of variables as is the case in ®4(k, k1) (analoguously to the case spelled
out for ® in the first paragraph of chapter 2). Thus we see that the left and right sides of Eqs 5.17 are
consistent.

Integrating over dk~ d?k, and dky d?k; . one finds

Ph(zy) = 0z —y) PY () + PP e (z,y)
« Z. (e}
= 6z —y) PY(_o)(@) + T ytic e (z,y)
1 )
Y 6(z —y) (I)fl(oo)(z) + q)i(—oo)(x) +PPx7_y e (2, y), (5.24)

=27 &% (x)
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where

é(z —y) q)%(ioo) ij(x)

= Pt [ S SE e R NP S (0) A3 (500,00, (@IP.S) | (5.25)
27 27 J LC
6@ = ) [ 00) (2) = B4 (o) (@)] = 27 6(2 — y) B (). (5.26)
2w & (z,)

We note that the constraints from hermiticity, parity and time reversal relate functions at different mo-
menta. However, for the lightcone fractions x and y the same fraction appears right and left since they are
expansions of quark momenta in hadron momenta, k = 2 P + ... and k = z P + ..., all of which become
barred. Further, we note that if ®¢(z,x) # 0 a pole appears in ® 4, hence the name ’gluonic pole’.

In order to define color gauge invariant functions it is necessary to include the link operator,

.
U(n, €) = Pexp (—ig / e AM(C))) , (5.27)

where we will implicitly understand that the path runs along the minus direction with £+ = n* = 0 and
&, = mn,. Of course this means that relations hereafter need to be integrated over the minus components
of the momenta. The path-ordered integral is defined as

un) = Poww (g [ a0 ,(c60)

1 H(g
= 1—1'9/0 ds de™( )A/L(C(S))

ds

+igl [ ds L4 co0) [ an B4 g+ 0l 629

where ((s) is a path running from n = ¢(0) to £ = {(1). The path ordered exponential is just the (infinite)
product of infinitesimal link operators of the form

U E+d§) =1 —igdg" Au(9). (5.29)
From this infinitesimal form one checks that a counter-clockwise plaquette of four links, is given by
U €+ dOU(E +dE,E+dE+dnU(E+dE +dn, 4+ dn)U(E+dn, &) =1 —igde’dn” Gpe(£).  (5.30)

From the infinitesimal forms of links and plaquettes the following properties follow

OLUM.E) = Ul iD* (O (5.31)
N
IDEOUE) = UnOIDHO + [ dC U, Q) iDHOIUG €
.
— UBLOIDHE +ig [ UM CTUGE). (5.2)

where a = 1,2 (transverse), and hence along the link (where (z = &) iD(() = i0g + g AZ(C).
Including links we start with the gauge invariant definition of ®;;(x, kr),

B, ker) = / df@j_f P SITOU0. U, (OIS (5.33)

A note can be made at this point about the behavior of the correlation functions with a link (to be
discussed in more detail below). Under time reversal the correlation function ®;;(z, k) will not transform
into itself, but the link will run via §~ = —oo instead of £~ = co. Only when the matrix element in
Eq. 5.18 vanishes or after integration over transverse momenta time reversal can be used to constrain the
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parametrization of ® and similarly other correlation functions. Multiplying the correlation function with
the quark momentum we obtain,

- 52
e k) = [ SISt RS OUG) U0 OREIRS)| G
+=0

where 0" can be read as ¢ 94 or i 0¢'. Depending on the Lorentz index of the derivative, one can use
the link relations given before to rewrite the derivative in terms of correlation functions containing the
covariant derivative,
« dg—d2£T ik-& - Y
(@) (2, k) = @ ¢ (P, S[¢;(0)U(0, 00) U(o0,§) iD7 (§)vi(§)| P, S)

First of all, one of the correlation functions (with covariant derivative) is trivial. Because of the choice of
link, which lies along the minus direction in the point & (except for the points £~ = 00), one has for the
+-component the relation

(5.35)

§t=0

dfi dsz eik'g

K (. kr) = / B €™ PS[I, (OU0.20) U(oe, ) iD i (€)|P.5) (5.36)

£+=0

For the transverse component one finds

ky @ij(x,kr) = (95)i(z, kr)
[ e T el (S5, OU0, ) iDRENP )|~ (@) e)
(27_(_)3 1) 7 ) T %1 ) £+:0 A(oo) 1) s v
_ &
~(PSIEOU0) [ g mumonors| b e
[ee) §+:0
Performing the k, integration this leads to

5 (z) = @p(x) — ‘I’i(oo)(@ - /dil/ ﬁ e (z,y) = 2P () — PG (2). (5.38)

The sensitivity to background gluonic fields appears through the boundary terms, i.e. the
matrix elements @Z[(Fj]too)(x). We have already encountered the antisymmetric combination.

We define also the symmetric combination. Thus

21 DB () = [ o0y (2) + PU (o) (2)]
27 (v, z) = [@j(oo)(x) — @i(,m)(x)]

where the important observation is that these two combinations have opposite behavior
under time-reversal (even and odd, respectively). In later calculations we will typically see
the following combination showing up,

xr — 7
[t eaen) = [yt @c(a)

-y T —y — i€
= &p(z) — P5(z) — m Ppe () — 7 OG(z, x)
Considering the above as one object, @Z(eff)(a:) one needs in the parametrization T-odd
functions if ®&(z,x) # 0. It is consistent with the observation that the presence of links
prohibits the use of T-reversal constraints for ®(z, kr).

The projections obtained for the quark-gluon corrrelation functions with transverse gluon fields are
not independent from the ones defined for the quark-quark correlation functions, either. They can be
connected to quark-quark correlation functions with one good and one bad quark field using the QCD
equation of motion, (¢D —m)y(x) = 0. From this equation it is straightforward to derive the relations

iDM + 0" Dy — myep = 0, (5.39)
iyt DY) — iyY DM 4 im ot ap 4 i€ P oy 1D pap = 0. (5.40)
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or explicitly

406

iD Y —iocT T iD Y + ic®T iDgth — mAy T =0, 5.41)
YD —ieg’y s iDgyp = im ot + 4% iD T — i€t yay5iD T, 42)
where €2? = ¢=+o8 This immediately leads to the (T-even) relations
B (2, r) = €ras D47 @ k) =i (Mze — m 1) + iy KLSLahs  (5.43)
q)[[,igw%](a:, kr)=Mzxhs —mgs, (5.44)
O3 aker) — ies? @ 57 (@ ) = kg g = iePhog (agt - b )
—ie?? S5 (Mz g — mhyr) . (5.45)
or including the T-odd possibilities
@I[)U:ﬂ(x, ki) = €rap ¢%[wﬁ+75] (x,kr)=i(Mxe—mfi —iMxh)
+ergy kST (xh% i % ffT) (5.46)
@D[iga+75](z,kT) =Mzhs —magis +iMuzeg, (5.47)
O3 a,ker) — ies” @ 5 (k) = kg (w4 020 ) — iePheg (29t — 2 by — e f1)
— €285 (Mx glp — mhip —iMax fr). (5.48)

These relations for ®p can actually be considered as defining relations for the twist three correla-
tion functions, again including k,-dependence. Integrating the k,-dependence the most general form for

% (x,y) actually is

M

Pp(z,y) = 2PJF{GD(%Z/) i€’ Srpphy + Gp(x,y) ¢ sy

+ Hp(z,y) A5ty + Ep(z,y) ’Y??ﬂ}

with hermiticity leading to

Gp(z,y) = —Gp(y,2),
Gp(z,y) = Gp(y, ),
Hp(z,y) = Hp(y,z),
Eh(z,y) = —Ep(y,z)

The equations of motion are then giving the relations

/dy Gp(z,y) = Gp(z) = C(x) + iz fr(z),

/dy Gp(z,y) = Gplz) = Clz) + z gr(z) — % hi(z),
2/dy Hp(z,y) =2Hp(z) =xhg(x) — %gl(x) +izer(z),

2/dy Ep(z,y) =2FEp(x) = —ze(z) + % fi(z) + iz h(zx),

where the function C(z) cannot be given in terms of quark-quark correlation functions.
From ®p, we can get ® 4, in essence as 4 = ®p - $y. For the T-even case this leads to

(5.49)

(5.55)
(5.56)

(5.57)
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at]

- B
(2, kr) = erap 9020 ) (2, ky)
=i(Mze—mfi) — erij koSL (hir — xhT) (5.58)

g0\

or

g(bz[igﬁ*u/s] (J,‘, k:T) _ g(bi[i(r”+,y5] (x7 k:T)
=ieX? Mxé — (S2kS — k2S2) xhy,
=ie?f (Mze—m f1) + (S2kS — kSP) (har — zhy), (5.59)

k%1

7 i (5.60)

g@4i2”+75](x, kr)=Mzx hs = Mz hy —mgrs — (kg - Sr) har —
oyt Cw +
g<I>Ah ](x, k) —ief g‘I>Ahﬁ 75](36, kr)
= ke aft —ie2Phos gt — €28 Srs Ma Gy
o m -
= k;’f(fo‘ —fi) - z&TﬁkTﬂ (Igj‘ — 9T ) hﬁ) — ZeTBSTg (Mzx gp —mhyir),
(5.61)

which are useful objects as they appear as soft quark-quark-gluon parts in a diagrammatic expansion of
hard scattering processes. As the operators I' used in @jm are hermitean in the sense that I't = (I,
one has

(1095T50)™ = (@57) . (5.62)
Integrated over k, the above relations become
g2\ (@) = erap 923" @) =i Mae = i (Mze —m 1), (5.63)
or
g@i[iaﬂm (x) — g@i[wah"r’](x) =i’ Mxé=ie?® (Mze—mfy), (5.64)
g® 17" @) = AMwhy, = X (Mahy, —mgy +2M B V) (5.65)

g3 () — i€ 9@ [ () = —i€8 S, M i = —ied® Sy (Mx gr —mhy — M gng)) (5.66)

where the upper index (1) denotes
)N — o, K7
FO (@) = /d Bt T, b, (5.67)
The tilde functions are precisely the parts vanishing for the free quark case. This was the way they have

been introduced in chapter 2.
With the same parametrization for ®9(x, y) as the one for ®%,(x,y) given above one obtains (including

now the T-odd functions)

/dy Galz,y) = Ga(z) = C(z) + iz fr(z) +i fi2" (z), (5.68)
/dy Gala,y) = Ga(z) = C(x) + v gr(z) — % ha(z) — g'%(x), (5.69)
2/dy Ha(e,y) =2 Ha(z) =  hy(z) - % g1(x) + 200 (2) +iw e, (x), (5.70)
2/dy Ba(,y) =2 Balw) = —we(2) + 10 i) + i h(z) + 20 0 (@), (5.71)

For the antiquarks one needs to consider matrix elements

6iij(k’P’ S) = ﬁ /d4§ e’ kE<P’S|¢1(E)A?(£)E](O)|P7 S> = - %ij(_k"P7 S)? (572)

(0B ). P.S) = g [ 6 T EPSIuA(E) A3 O, 0)P.). (5:73)
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For them one obtains, using

for the nonlocal quark-quark matrix element

408

¢ e (P, Sli() U0 U ;(0)|P, S) = —k" B (k, P, S) (5.74)
— —
(where i0" can be read as ¢ 85 or i 9%') and the equations of motion, the relations
— [0%7] B ftx[iaﬁfws]
g(I)Aa (x>kT) = —€rap g(I)A (makT)
=i (Mze—mT,) — erij k.85 (Ryr — ahiy) (5.75)
or
g k) = @1 k)
e = F o a 7 7L
= —iet® (Mze—m fy) — (S¢kE — k2S2) (har — xhy), (5.76)
— [ic% s — — k2 _
g84e k) = ~Mahs+mgy, + (ke - o) e + 35 o, (5.77)
g8 ko) + e g8 30 " (a, k)
a7t e} — = m L e} — 7
= _kT (xf - fl) =+ ZeTﬁkTﬁ (‘rgj_ —91s — M hls) + ZGTBSTﬁ (M{E g/T - mth) :
(5.78)
The k,-integrated result is
gtbA[Z ](;1:) = —€rag g EZ[W 75](:0) =i(Mze—mf,), (5.79)
or
—afic? 5] —Bic™ " 5] _ - apB = 3
d () — gDy (x) = —iex? (Mze—m f,), (5.80)
g0 7 gy = _a (Mx I —mg, — 2M hfL‘”) : (5.81)
985" (@) +iex? g 1 (@) = e S (Magy —mby — Mg(})). (5.82)
For the fragmentation part one needs to consider the matrix elements
1 ek N _
Rig (ko Fas Pho Sn) = (s / dig dty e P TR0 () A3 (1) afanth;(0)[0),  (5.83)
or after integration over k; the bilocal matrix elements
A% ij(k, Pr, Sp) = & €M 0hi(€) A (&) afant;(0)]0), (5.84)
(3045 70)i; (k, Pa, Sh) = & M0l (€) afan AF(0)¥;(0)0). (5.85)
The twist analysis for the projections
o 1
A ) = L / dk* Tr (AST)
4z k==P; /z, kr
dErd2%L e
= ———= """ Tr (0 0)ro 5.86
J e T OO A3 ahanTOTO)| (5.86)
is completely analogous to the distribution part. The equation of motion together with
1 } _ _
G €€ O 0" T, (0)0) = b Ay (k. P 5) (557)

(where i0" can be read as ¢

— —
¢ or i dy), now give the relations
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o~ alio” " s M M,
gAA[a ] = _GaBgAA[ "l = <hE— hH)
z z

qjk;SgT< HT+Z D )

M M;, k2
= <hE le—z—H—l— A H1>
h

i Qi 1 .
+ei5 kLS5, <H1T - ;H% A DfT) , (5.88)
or

alio” ™ s 10 s . M, = M
gaclio® el _ o ABlie* ] _ —zeg5< P M H)
z

e% @ 1~ . m =
- (Sthg - kTS}[jT) <ZH7J: + ﬁh D%T)
2
= —je2? (ME m D 71%H+ i Hf)
1
+ <Sng£ - k%ng) <H1T - ;Hq{' —1 ﬂ D%T) 5 (5.89)

_ M, M ~
'YS] 7’1 H + Es
z

gA LT
h . Mh v
= Ml m Gy i LBy — (k- Spe)Hip — ~2 [ (5.90)
z z

m H) (R R ) Sy g
M 1 1T
1

L
oyl s aB A sl _ D~ .
gA, "t ier” gA g = k7 (z +1 M,
G Df D
+iePkyrp (Z — i\ ;) +ie2P Sy 5 ( Gl — i My, T)
o1 . m kS i
:kT (ZDL—Dl —"—ZMLHlL) Mh El]k S{],TD].LT

1 Di
+ieP g <2Gj Gy, — Mﬂh HE — i, )

M D
+ iegBSth <ZhG/T m Hyr — 1 M, T> (591)

and A% = (A%y* . Note that the twist two profile functions Di;., Hi and the twist three profile

functions Fy, Ep and H, that are odd under time reversal, enter as the imaginary parts in AZ[F]. Again
the tilde functions are the "interaction-dependent’ distribution functions. Note that the time reveral odd
functions are interaction-dependent, e.g. DILT = DfT, etc. We have, however, made the choices D =

Dy — zDJ‘(l) and H = H — sz'(l) which guarantee the absence of Di; and Hi- in the integrated results.
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The k,-integrated results are

o alic? ™ . ~ M, -
gAA[a ](Z):_eaﬁgAA[ 75](2):Z<hE—zhH>

H
:i(zhE—le—iMh [Z+2H1l(1)]>
(M o d (1)
—z(ZE—le—thdz [zHl } (5.92)
or
o M,
Aa[wf 75]( ) gAb’[w Ws](z) _ _Z€%5< h B h H),
z
M H
= e (hE—le—iMh [ + 2 Hj “])7 (5.93)
z

0% s M M, M . M,
gA el () = <h Hp+i—= EL> =\ (ZhHL —mGy +i ThEL —2Mj, Hf,f”) ,(5.94)

_ - My - M, -
o851(e) +ies? 9 [ ) = i Sus (M2 G 41200 D)
M, D
= i€®P Sprs (Zh Gr —mHy — M, G +i M, [7T + DfT“)] )

M, , d
= €28 Shrg (Zh Gr—mH, — M, G —i My {D#”} > (5.95)

where )
k.
DW(z) = 22/d2k 2M2 Dy (z, —zky). (5.96)
For the antiquark fragmentation part one needs to consider the matrix elements
—_—Q 1 —ik- - o @
AAij(kathsh) - W /d45 e kg@h/’j(o) AT(f) a;rzah7/’i(€)|0> - Aij(*kaphash)a (5~97)
N 1 —ik- - «a
(057 103 (k, Pas Sn) = @ / d'¢ e=" M E(0[9,(0) afan AF(0) ¥i(£)[0). (5.98)

Using the equation of motion together with

“RE(0[);(0) 10" af,an i (€)|0) = —k" Ayj(k, Py, S) (5.99)

(where i0" can be read as ¢ 6“ or i 8 ), now give the relations
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— [oot —alicPt~s M, M — 3 k‘2 —
gAia ]zea,@gAA[ 7]: (hE le—H—H— J\/;Hf)
z h

S 1-— . —1
+€ij k‘;SiLT (HlT — - HT +1— DlT)7 (5100)
z Mh
or

alicht —Blic>t M;, — — M, — k2
gaolT el gRBITTl _ eas (hEleJrihH'M , )
z

- (S?ka - k?SfT) (Hir — = HT +iyr DlT) (5.101)

o My — Val My — T k2 H
gl 4. [i™ "] :——h H5+mG15+i—h Eer(kT'ShT)HlTJrﬁThHls» (5.102)
— - 1 — k& i o =L
BT i 8 = i (DD D Y ) e S D

1 m —1 5J'
_’Le ﬁk'TB < a _Gls_MHls_FiAh;)
h

My, — — M, —
_iG%BShTﬂ (Zh G/T —mHiT +1 7h DT) . (5103)
The k -integrated results are

— [ooT alic? M, M
GA L) = eap gBSET T () = (ZhE mDy +i " H — 2 M, H, “’) (5.104)
or

—alic?t —Blic>t M M
gAA[ 75](2) - gAi[ 7] (z) = ie2? ( E—-mD)+i—"H—2 M, H, (1)) , (5.105)

— [0t s M;, — M

AJEl ) = (" H,—mG,—i " F, —2M, Hfj”) , (5.106)

alyt 5 .« M — —_— — 1(1 M
gAAh ](z)— aﬁgAA’y ’Y]( )——ZETBShTﬁ (ZhGT_mHl_MhG(l /LMthj(w)+ JD )

(5.107)
5.2 Gluon distribution functions (new)
The simplest gauge invariant correlator involving two gluon fields are the lightfront correlator
v d(f ) P) d2£ ip- nv n,C| ~n,
" (2, pr;n, C,C") = /TgT el (P|G™(0) U[[o’g] e U [g 0] |P> LF7 (5.108)
where a color trace over the operator is understood, and the lightcone correlator
I (zn) = /d2pT " (z, prin, C,C")
- pP) n
[AED arepiam U 9 UM E0)l) (5.109
(2m) [04] LC

For a proper treatment of the transverse moments we need the weighted correlator

g (z;n, C,C") = /deT pe T (2, prin, C,C") (5.110)
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and the three-gluon correlators

et = [ PO UL, ID°(©), OV, P) RS
Vi / d P d P i (o’ ' iat .
Dy (@, —a; )=/ (éw))((n%))e( )P€ gia'P

x (PIG™(0) Uy, [G™* (). Uy g G (OU U 0]|P>]LC, (5.112)

Ff{g}a(l’ T — .’L‘/;’I’L) _/ (é f) ((772 )P) ei(:c—ac/)Pf ez’.’c’Pm
e ™

X (PIG™(0) U {G™ (), U G (U MU

e |P>‘ . (5.113)
Lc

Of the latter two matrix elements given as multi-parton correlator, we actually need the case z’ = 0,

the gluonic pole matrix elements. Making the (suppressed) color trace in the latter two matrix elements

explicit one sees that one deals with fully antisymmetric or fully symmetric matrix elements, in lightcone

gauge

i fabe (P|G"(0) G5 (n) GE*(E)|P)

)

LC
and

dape (P|G5"(0) Gy (n) GEH(€)]P)

LC

5.3 Gluon distribution functions

When one considers QCD corrections to the tree-level results one will also encounter gluon-gluon correlation
functions, leading to gluon distributions. In a diagram one needs

1
(2m)*

but the gauge invariant object to consider is

/d4§ e'FE(P, S|AY(0)A ()P, S), (5.114)

DR P.S) = oy [ €SP SIPO)U0.6) () |P.S). (5.115)

The constraints following from hermiticity, parity and time reversal are

[Py (k. P, S) = TP (k, P, S) [Hermiticity] (5.116)
rHvieo (g, P, S) = Fuy;pg(l;, _, S) [Parity] (5.117)
#7307 * (ke P, S) = Ty po (K, P, S) [Time reversal] (5.118)

where k = (K%, —k).

In order to find antisymmetric structures we use the following tensor structures and relations
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between tensors,

eHvpo

9.0 = 9% = 99" — 9"

A[MgV][PBU] = ¢g"PAFBC 4 gh7 AV BP — g"P AV BT — " AMBP.
eﬂuaﬁ €poaf = -9 g[ltpgu]”’

ehvoa epaaB — %e,uuaﬂ epo'aﬁ gAB _ B[ugy][pAo]

eHVAB poCD  _ leuuaﬁ e’ AC  BD AD BC)
2

o (97°9°7 —9""g
_C[ugV][pAU] g% + C[ugV][pBG] g + D[uQV][pAU] g”° — D[#gu][pBUJ g*°

—clrp¥l Al gol,
elvalopel o poalv pul — uvpo ",
6,LWA[U'Bp] . GMVB[O'AP] — ¢ABYO gp,p + ABHP gua' _ ¢ABuo gup _ ¢ABYD g,ua'
— €ABu[pgo]V _ GABV[pgo];L — gp[ueu]oAB _ go[ug]pAB.
For changing from matrix elements with F)},,, to matrix elements containing F/w = —(1/2)eupo F'P,

we note that

—5 N €T = (g7 — g™,
,% Elwm\ erirab Epoaﬂ — 9 Mvpo

_% Ewm ehraa P = EPUB[VJM]7
_% ENVKA 6#@)\AB6pO'CD _ A[MBV] Epo’CD,
_% e efAalo gl — _A[ugul legol.
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A possible parametrization of T'*¥3P7 ig

3P (k PS) = M? Xy P 7,

+ X P[#gV][PPU]

+ X3 k[“g”] lpgol

+ (X4 +1i X5) Plrgrllegel

+ (X4 — i X5) ke g¥lle po]

+ (Xg/M?) Pleg¥! ploge]

—2M X7 €7 (k- S)

+i M Xg erlogel

+i M Xg e*vslo prl

+ i M Xiq e'vFlo grl

+i M X, evslofr]

+i (X1o/M) Pl PPl - 5)
+i(Xag/M) Mok (k- 5)
+i (X1a/M) e PR (k- 5)
| (X15/M) ekl pel (k. 5)
X6+ iX17) /M) S Ele pol
/M) oSl pY]
/M) euuksk pPO']
/M) Epgksk[MPV]
/M) EuukPP[pso'
/M) e”"kPP nsvl
/M)
/M)
/ 3

g
=
+
e
t
S
-
=
<
=
v
ER
A
v
Q
- =
2

+ ((Xo4 — i Xo5) /M3 e7RP R PY] (k. §), (5.119)

with X5, X7, X16, X138, Xog, Xo2 and X9y being T-odd. The constraints from hermiticity imply that one
finds real amplitudes X; if the tensors symmetric under uv <+ po are multiplied with 1, while the tensors
antisymmetric under pv <> po are multiplied with ¢; the constraint from parity requires that even numbers
of e-tensors are combined only with vectors k and P, while odd numbers of e-tensors are combined with
the axial vector S and furthermore vectors k, P; finally the constraint from time-reversal requires that any
e-tensor appears multiplied with ¢ and for the rest real stuff.

For the amplitudes with an odd number of e-tensors, it is useful to realize that the quantity

1

f\uu;po(k; Pa S) = (271')4

/ die e R (P S| FM(0)U(0,8) FPo(€)|P,S). (5.120)
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has the structure

wieo (ks P,S) = ...+ MX7et? €7 (k- S)
—iM Xg p[ugVHpScr]
— i M Xq Slgvlle pol
—iM Xqp k[u Ve gol
—iM Xy S[M 1lp g0l
_@(X12/M)P[# lle pol (k. S)
— i (Xug/M) Kt g k7 (1 - 5)
Z(XM/M)P[M e ol (k-S)
(X15/M) kg1 P (k- 5)

—1
+ ((X16 + ZX”) /M) plr gVl pol
— ((X16 — i X17)/M) eHvtE epors
+ ((X1s + 1 X19) /M) kW 5V kLo pol
— (X158 — i X19) /M) eHviP epoks
+ ((X90 + i X2) /M) Kl pY1 plegel
_ ((X20 o iXQl)/M) eHhvpPs 6pakP
+ ((Xa2 + i Xo3) /M) kI# P11 57
— ((Xag — i Xo3) /M) kS epokr
+ ((Xoq 40 Xo5)/M?) K PYIEP POl (k- S)
— ((Xa4 — i Xog)/M3) kP erokP (. 5). (5.121)

In the next step we try to isolate the dominant parts by expanding the vectors in lightlike and transverse
vectors, and the invariants ¢ = 2k - P and 7 = k2,

M2
— M2 — 2z M?
k:xAni—&—k’;—&—%n’i, or k—xP:k‘T‘—l—%n‘i, (5.123)
A M P M
and we have "
k~S:/\%+kT-ST. (5.125)
The tensors can be expressed as
gp,l/ _ n{#n”} +g (5126)
ehvrT — n[rn’/] epa +7’L[f77/p] 61/(7 [JlrL o] ;p
[Vnp] e’ —I—n[ n et ehr nEfnU] el (5.127)

The dominant parts are the ones containing the hightest powers of A = P*, e.g. for the unpolarized
part we have in order of importance,

ap.B

r+estb (g P, S) = A?{_ggﬁ [Xo + 22 Xy + 2® X3 + kM’Z X6} (5.128)
— 2z M?

P+t (5, P,S) = A kS [(X4 +a Xs) —i X5+ (C’mj) X«;] (5.129)

F+a;[3’y(k7 P,S) = Ag?[ﬁkz] |:(X4 + 2 X3) +7;X5:| , (5.130)
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ete. Integrating over k~ we then find that the leading functions (o and S being transverse) are

9% (x, k) = /dk‘ etk P, S)
.’L‘P+ Eijk‘ ZS 1
= 2 <_gg6 G(x7kT) - ggﬁ # GT(m7kT)

« 1 a 2 HL(kaT)
+ (kaé + 79Tﬁ kT) T

kT'ST
M

—ieoh [)\ AG (2, k) + AGT(x,kT)]

k{a ﬂ}ik ;
_fr Cr P 2742 T [AAHf(x,kT)+
kS 4 S [
aM

kT'ST

AH7 (z, k:T)]

AHp(z, ky) — AHED (2, kT)] ) (5.131)

These give the leading (twist two) distribution functions, Gz, AH} and AHr being T-odd. Note that
the tensor multiplying Gr is actually the antisymmetric version of the tensor multiplying AHp. The use
of the combination AH, = AHp + AHTL(D where AH%(U = (k2/2M?)AH# will become clear when we
consider explicit representations. At subleading order we have

Mok, = [db 0 RS)

M
- xT (fﬁﬁ Srp AG%T(@"» kr) +

ie?ﬁ krp

i AG;(x,kT)+’;\;G;(x,kT)>, (5.132)

where the imaginary parts of these functions are T-odd. Furthermore

Fg‘;ﬁy(x’kT) = /dk* FJra;ﬁ'y(k;P’ S)
M [ P ] o
IT (gTM = Hi (2, kr) +i 27 SY AHp (2, ky) + i€l =2 AHF (x, kT)>g5.133)

where the imaginary parts of these functions are T-odd.
After integration over the transverse momenta, we obtain

Pt
ry’(z) = a 5 <—g§f6 G(x) +iexP AAG(&U)), (5.134)
M .
rg(z) = — ¢ 2P 815 AGap(2), (5.135)
ryP(z) = % i €27 5% AHsp (), (5.136)

where AGsr = AGy + AG;‘T(U and AHsp = AH, + AH;‘T(U, of which the imaginary parts are T-odd.
Examples of the amplitude expansion for the various functions are

ki
zG(z, ky) = / Xo+22 Xy + 2% X3 + e XG] , (5.137)
cH (z,ky) = /...[XG], (5.138)
— 2xM?
RexG3 (v,ky) = / (Xg+2X3)+ (%) XG] , (5.139)
ImaxGy (v, kr) = / . [—X5] (5.140)
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where

/...:/deTé(ki+$2M2+T—$U).

From the matrix elements and the commutation properties of the gluon fields one immediately gets
symmetry relations like G(—z) = —G(x), etc. This differs from the case of quarks, where similar relations
connect quark and antiquark distributions at positive and negative x-values. About the normalization, we
note that for an unpolarized target

P+ 2 00
/dk+ 5% (x) = —go? % / dz =G (z). (5.141)
The left-handside is equal to
/d4k [+otB(k; P, S) = (P|FT*(0)F#(0)|P). (5.142)

Contracting a and [, using the support restrictions —1 < z < 1 and the symmetry relation G(—z) =
—G(z), one finds that

1
/ A THO (ks PS) = 2(PT)?2 /O dz 2G(z) = (P| FF(0)F*, (0)|P) (5.143)
N————
e 05+ (0)

and realizing that the right-handside is only the gluonic part of the energy momentum tensor, fol dz 2G(x) =
€¢ < 1, while the chosen normalization assures the complementarity with the quark part of the energy
momentum tensor discussed earlier, ¢, + ¢ = 1.

5.4 Explicit spin representation

The correlator Fg’g contains two transverse gluon fields and can be interpreted in terms of gluon distribution
functions. To make the gluon spin explicit, it is useful to consider the explicit matrix M*? = (2/ xP*)FS‘B
with « and § being transverse indices. The result for M is

2 2
G—i—%GT—l—ﬁfg cos2¢p H+ —i 5, AGL—zk:TSTAGT—i—QIXI2 sin2¢ H+
1 g2 2 1
+ B sinog AR + BESTHRESH A gy ~ ke cosop AHL — GESTRESE) Apy

2
1S, AGL—I—szST AGT—&—QI;Q sin2¢ H+ G—I—kT]/\\/éSTG Ij:v[z cos2¢p H*
2’7\/[2 cos2¢0 AH: — %AH’ QIfW sin2¢ AHE- — %AH’
(5.144)

where (for later convenience given also in spherical vector components and in matrix form in the nucleon
spin-space)

. _ _ 0 kr| e
koS =kpSp+kpSE = —gp® = —(Kf Sy +ky SF) = [ g €+ | T|O ] . (5.145)
—q —i¢
ko A Sy = kLS2 — k281 — kS — _igts —poshy= | 0 e [orl e , (5.146)
ilkr|e 0
+ig
KLSL — k282 = kSt 4+ ko Sy — [ " f@_w ‘kﬂoe ] , (5.147)
T
‘ o 0 —i |kp| eT?
kLS + k2SS = —i(kF ST — ko S7) = [ T | Bl ] . (5.148)
We now have used transverse gluon polarizations. Instead we can use circular polarizations,
+) = 7 (lz) +ily)),
1 .
-) = ﬁ(\@ —ily)), (5.149)
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and we obtain

Mttt Mt— %(Mll + M22) —Im M12 —%(Mll _ M22) +iRe M12
_ (5.150)
M+ M-~ —%(M”—M”)—iReM12 %(Mn—f—M”)—i—ImM12
For the above matrix we find for circularly polarized gluons
2 . [
G+ k?T]/\\/[ST GT + SL AGL + kTMST AGT _2,7\}2 e—21¢7 [HL +ZAHSL] — kT]\jT A}L}1
2 . + ot
— Ky i (gt i A i S AL Gy BenSe g -5, a6, - BrS A,
(5.151)
Extended into a 4 x 4 matrix in gluon ® nucleon spin space we obtain
G+AG bl (AGr —iGr] e [HH0 4 ian )] glhrle P A g
bz NG +i G G- AG —ilbrle ™ AHy —e 2 [t —jan O]
—et [0 —jan; ] bzl Ay G~ AG —Lerle ™ (NG + i Gr]
GLrle T A @) —et2id [HMU +ZAH§“>} Tl NG — i G G+ AG
(5.152)

5.5 Gluon fragmentation functions
For the fragmentation functions one needs the matrix element

Ly po 1 i k- v o

D307 (ks P Sn) = Gyt 2 / d*¢ e FE(O0[F* (€)| P, X) (P, X7 (0)[0). (5.153)

X

In this case no constraints arise from time reversal invariance and the most general expansion of the matrix
element becomes,

9% (2, k) = / dk™ TP (k; Py, Sp)

_ A €9 ki S i A
= B, <g?5 Gz, —zks) — g?fﬁ #hh” Gr(z,—zkz)
1 G*(z,—zk
+ (kgk? + = g2f k;) %
h

2
kT ' ShT

+i 2P [)\h AGL(z,—zky) + Y
h

AGr(z, —sz)]

e . ki Shr \ -
+#}%T {/\h AGE (2, —2kr) + TT}LTAG%(Z, sz)}
+kT{a6§}i5hm + S0tk

2M,

T AGH (z, —sz)> . (5.154)
These give the leading (twist two) fragmentation functions. At subleading order we have
05z, —2ks) = /dk* ;% T (k; P, S)

ie?ﬁ kTg
M

My, <z €28 Shr s AGhy (2, —2kr) + AGH,(z, —2kz)

ka AJ_
L —zk;) |. 1
+ x G5 (z,—z )) (5.155)
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Furthermore
0597z, —2ky) = /dk;+ =8 (k; P, S)
alB 7] B as
gr k1 - kv S) 1€%°krs -
= Mh< TMhT Hi(z,—zks) + T]whhT ?th Hip (2, —2ky)

R R
+i €l S AHp (2, —2ky) +ieY —Th AH; (2, —zk:T)> . (5.156)

After integration over the transverse momenta, we obtain

- P A A

137 = 2 (—g?ﬁ G(2) +ier’ A, AG(z)>. (5.157)
N M N

P5(2) = —5 8" Suap ACar(2), (5.158)
Ao M, N

577 (@) = —5 i S5 Allar(2), (5.159)

with Ay = AGL, + AGEY, and AHsr = AL, + AFHY.



Chapter 6

Drell-Yan up to 0(1/Q)

6.1 The hadron tensor

Up to €(1/Q) one needs to include the contributions of the handbag diagram, now calculated up to this
order with in addition irreducible diagrams with one gluon coupling either to the soft part involving hadron
A or the soft part involving hadron B. The expressions thus involve the quark-gluon correlation functions.
The full result is neglecting 1/Q? contributions given by

oM Ay, = / dky k) kar dkyr 6% (kar + ke — q7)
{Tr (®(ka)vu® (ko))
—Tr ﬁi P (L D — Tr ﬁi‘k D @aT k
70[72(]*%/ A( a)'Yu (Kp) W,qu% (kv) v A( o)

—Tr ('Yu(;i];)'Ya(b(ka)'Yuq)ZT(kb)) —Tr (7a (zll)méi(kb)%@(kao } (6'1)

Here the terms with i1 arise from fermion propagators in the hard part neglecting contributions that will
appear suppressed by powers of Q2, i.e.

Pri—d+m _ pl—d ) T e wala 62)
(-9 =20 —qt)g~ —2¢ -2¢0 Q% '
d—Fi+m (¢ —ki)y" " pe wsP 6.3)
(@—k1)?  2(g—ky)gt  (2¢7)  (2¢%) Q% '

501
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The full result expressed in terms of the twist two and twist three distribution functions and perpendicular
tensors and vectors is [Check sign of g1 g1 and 1/Q terms]

1 v — _
W = 3 /d2kaT d?kyr 6*(kar + kor — qr) X% {_gﬁ fifi +91sg151
_k({likll:} (kllJ_ k’bl_) gJ_ h h klEjL_SZ}J_ + (kbl- ) SAJ—)giU h BL
MaMg Mp s
k{u Su} + " .S nz B _
——el-Bl (M: 51) 9] hizhir — [55{15 +(SaL-Sp1)g)” ) hirhir
A{Mkl/} L
+ Q flfl +2mAf fl +glsgls _2$Ags 9i1s
Mz, hihs + ——2hig1s — ki hi,hi;
MA B M lsgls MAM 1s
kyi -Sa1 - kvl -Sp1, | kyi-Sa1 e
_TB thh‘ls TAh h1T+TB2xA h’Th’ls
—S41-SpLhirhir + 8aL - Spy 22z, hhir
A{ukﬁ
+— Q flfl _2553 flf _glsgls+2nglsgs
MA - m - ka
+M—B2xA hshi, — M—2glshfs . fw hi.hi,
k., -S _ al * S al * S _
= S e P Sy
B A A
+841 - Sp1L hirhit — Sal - Spi1 2z, h1TFLJT‘1
My 2in8Y) M - om
% —2z, g&“gls - Mij 2z hirhs + m 2 thgls
ki, =1 kel ke, -1 kai-kpo et
— hith —————— hith. — ———— 22, h7h
MAMB 1T 1s + MAMB 1T 1s MAMB 'TA T 1s
kol -Spl1 - kv, -Sp1 - kot -SBl1 1z
————— hi7hi — ——— hi7hit — ——— 22, h7+h
+ Mo 1T Ma 1irhar Mo Tahphir
Mp 3{ng") _ m _
% []\43 2 4 hshir + 225 91597 — My 2g1shar
k2, kol - kyo kol - kyo .
al__plh Zal Z0L plh 24 0= ox, hivha
MM U MMy M, 17T

kot -Sal - kvl -Sal - kol -Sal -
—————— hithit — ———— hiTh ————2x5 hiTh 4
+ P irhir My irhir + e zp hirhy | o, (6.4)

where the quark distribution functions in hadron A depend on z, and kaT, fi(za, k2p) etc., while the
antiquark distribution functions in hadron B depend on z, and kjp, fi(zs,kir) etc., and we use the
shorthand notations

kot -Sa1

Mg + el 2AL

91s AG1L M4 gir
kv, -Sp1 _

J1s = AB .
J1s BO1L + M ar
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Table 6.1: Contractions of the lepton tensor L, ’ with tensor structures appearing in the hadron tensor.

wHY L, wt”
—g'” 4Q% (3 —y+v?)
al"p — (a1 1) g™ —4Q2y (1 —y) |a | [by] cos(pa + 1)

L (a e, b0 aL,) | 402y (1 y)la | [ba] sin(, + &)

é{liaj_} —4Q* (1 — 2y)\/y(1 — y) laL| cos ¢a
é{ﬂei}palp 4Q? (1 —2y)/y(1 —y) la| sin ¢,

In rnany cases it is convenient to express the tensors with respect to measured directions, i.e.  and g, g*

= el Z,. One can use

>

i = -al) QASIL + (eﬁ_gxpala) ’Ij“

al)fc”—l—(:ic/\aj_)y“
a )i+ (y-a)g"
xﬂ+ayQU7

>

(
~
o

where ay Ab, = €7a,bi,. Other combinations give

elai,=—a’i" +a” g*,

aj_”blj_} —(a; -b1) g = (a"b" — a¥VV) [233“33” + gj‘_”]

+ (abY + a¥b®) &ty
aj_”b”l = (a®bY — a¥b®) &y,
% (aJ_ ey, + bt am) = — (a"b’ 4 a¥b") (233"35 + g“”]
+ (a"b" — a¥b) 2 {rg¥h,
Because the transverse direction is fixed by g = Qr &, one has specifically
ko +kyy = Qrat,

k2, — ki ko kY
T T . A#+2€l al®oL on

¢ Qr Qr

This allows one to pull the tensor structure outside the integration over transverse momenta.

(6.10)

(6.11)

The contractions with the lepton tensor, given in Table 6.1 use azimuthal angles defined with respect

to the orthogonal momentum ¢,

0 ay = —|aL]| cos(a),

(uar, = |ay| sin(¢,).

(6.12)
(6.13)
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6.2 Drell-Yan after integration over transverse momenta

The hadronic tensor simplifies to

=

W =

{_giy lfl (mA)]?l (353) +AaAB g1 (‘rA)gl (CUB)]

- (SXLSE}L —Sa1-Sp1 gﬁ”) hi(xza)hi(zp)

o MATESEL 0 (g1 + r(0.) )
s MB;% wahi(@,) (ho(es) + hiles))
+Aa AM'Q;LSE}L Ta (hL(xA) + iLL(xA)) hi(zs)
+AA]%%xB 91(.4) (g7 (xs) +§T($B))}v (6.14)
where the twist three functions are the ones given in chapter 2,
@) = ore) - [k, o arteks) _m@) (6.15
hr(z) = hi(z) +/d2kT]’§2 hfL(i’ kz) _ %gf). (6.16)

We will consider the various possibilities for unpolarized (O) and longitudinally (L) or transversely polar-
ized (T) target hadrons.

6.2.1 Drell-Yan cross sections for unpolarized hadrons

Integrated over the transverse momenta of the produced mu pair one has for unpolarized hadrons,

W = 2 (=) e i), (617)

and the cross section up to €(1/Q) is given by

dooo(AB — ptp~X)  Ama? [ 1
2

5 _
dz, dz s dy T 3Q2 5 YTy ] fi(za) f1(zs), (6.18)

and integrated over the muon angular distribution,

dooo(AB tuX 47 o2 _
el dx,;;xi ) - 97TQ042 Si(za) f1(2s). (6.19)

6.2.2 Longitudinal double spin asymmetry in Drell-Yan scattering

Integrated over transverse momenta, there are no single spin asymmetries. For the case that both hadrons

are longitudinally polarized, the hadronic tensor is
1 v _
P =3 Aaxs (=g17) 91(24)31 (5), (6.20)
and the cross section up to €(1/Q) is given by

dO'L A'BE' — + - X 47'(052 1 B
L(dx dx Mdyu ) 302 [§ _y+y2] AaAg g1(24) 91 (25), (6.21)
A B

and integrated over the muon angular distribution,

do,(AB — ptp~X) _Amo?
dz , dz - 9Q2

Aarg 91(24) Gq(z5). (6.22)
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6.2.3 Transverse double spin asymmetry in Drell-Yan scattering

For the case that both hadrons are transversely polarized, the hadronic tensor is

1 v w
W _ -3 (Siﬁ_SB}J_ —Sa1-Sp1gl ] hi(za)hi(zs) (6.23)

and the cross section up to (1/Q) is given by

dorr(AB — ptp=X) _Ama?

i = S Sl ISs 1y~ y) cos(0d +67) () Ta(ea). (620
A B

and integrated over the muon angular distribution,

dorr(AB — ptp=X) _ 2ma?
dx . dz S 9Q2

1SaL|1SBL| cos(df + ¢F) hi(2a) ha(xs). (6.25)

6.2.4 Longitudinal-transverse double spin asymmetry in Drell-Yan scattering
For the case that one hadron is longitudinally polarized and the second transverse, the hadronic tensor is
1 My 2tng%) - )
W = 2 {AQM 2 (ho(ea) + hi () Paas)
| Mg glugy)

0 75 g1(24) (gT(xB)JrgT(xB))}a (6.26)

and the cross section up to (1/Q) is given by

do.r(AB T ¢ A o2 )
T(dxA C;Bﬂdy.u ) _ _37@2 AaSeil (1 —2y)vy(1 —y) cos(¢p?)
X [MAQ:EA (hL(a:A) +iLL(xA)) hi(zs) + Mpzxy 91(z4) (g7(75) +§T($B))].

(6.27)

which vanishes upon integration over the muon angle.

6.3 Azimuthal asymmetries in Drell-Yan scattering

We will consider separately the various possibilities involving unpolarized (O), longitudinally polarized (L)
and transversely polarized (T) hadrons.
6.3.1 Azimuthal asymmetries in unpolarized Drell-Yan scattering

The relevant result expressed in terms of the twist two and twist three distribution functions and perpen-
dicular tensors and vectors is

W = %/koaT kyr 6% (kar + kor — q7) ¥ {—QTI {flfl}
+{ v} B ~ { v} B B
Sk [h+ e R] + S [ - 20 7 }

= —gVIlfiAl+ 2 (AZQAI L\lf,q za(f* Jrfu)ﬁ]

_]\Z;I[J\ZixBfl (fL+f~L):|>7 (628)
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where the last expression involves integrals of the type
z pl ¢ 1 2 2 2 x 1 r
LK [ 1] (a,2s,q7) = 3 d°kor dkyr 6% (kar + ko — qr) ko [ (T4, ko) f1(25, kor).  (6.29)

Note that a contribution proportional to 2 {“e vhog %, appears, but it is multiplied with integrals of the type
IKY (2, |kar ) f1(75, |Qr & — Kkai])], Wthh Vamsh
The cross section is given by

dooo(AB — pt = X) 4 o? 1 ) B
dr,dry dy d*qr Q2 [i—y—l—y ] I[f1f]

~( -2y = ) cos<z><QAI [ b

Mp {k

(f“rfl)f}

(Fr+ft D} (6.30)

6.3.2 Azimuthal asymmetries in singly polarized Drell-Yan scattering

Ll
Q

There is at tree level up to order 1/Q no azimuthal asymmetry in single spin asymmetries.

6.3.3 Azimuthal asymmetries in doubly polarized LL-asymmetries

The relevant result expressed in terms of the twist two and twist three distribution functions and perpen-
dicular tensors and vectors is

o = %/koaT d*kyr 6°(kar + ko — ar)
X AaAB {—giy [gnglL} - kiik;’j} AE/I:(;\J/.}B ko) 91" h h
+2{H(§ﬁ [gnglL — 22, gL 1L — %M‘Bh h + —— M 2higgir — Mk2M b ]
+2{N£ﬁ l GiLgiL + 205 1097 + %B 224 hphip — Mg 291L711LL + &h hi 1 }7

Lo Kok — KYKY
= )\A)\B{—gﬁ Igiog1] — (2$“$ + g ]I[bh hi; }

MyM

o { Ma  [E L Mg [k
+zlkg }<—QAI[MA T (9f+gi)gm] — QBI[MA hlL(hL+hL)]

Mg k My k ~ =t
+ 0 1 [MB T 910(97 +9L:| + 0 I [MB Ta (hL+hL)h1L:|>}a (6.31)

The cross section is given by
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L R N TR P
= Aa A - I
dz, dzg dy d*qp Q2 408 5 Y +y [912.G1L]
ETEE — kYEkY -
+y(l —y) cos2¢ I {‘M hthfL]

M ke L
+(1 = 2y)vy(l —y) COS¢<A I |:]\£4 x4 (9% +9f)gu]

Q
+% I J\IZ v hi (B +}~1L):|
_%1 J@bB 2 91171 +§ﬂ
—% I :J\Ij’; a (hr +hy) Bﬂ]) } (6.32)

6.3.4 Azimuthal asymmetries in doubly polarized LT-asymmetries

The relevant result expressed in terms of the twist two and twist three distribution functions and perpen-
dicular tensors and vectors is

1 v kvr - S _
e = = /dgkaT dkyr 6% (ko + ke — qr) Aa{ g 2B L Gir
3 Mp
R R 4 (ks ko) 91 kur - Spy pi Rl kL SPL + (ks - Sp1) gt Wi
dngt [ky, - S ky. - S Mg kyi - S _
z
Qaj_ bLMB BL o bLMB BL o gt gur — M7j bLMB BL o hi B
m kvl S, _ kEf, kyi-Spi ., -, koi-Spi,, -
— —————2h — hiy hi7n — ————hi7 h
M, Mg 1L 91T MaMg Mp 1L 'iT M, iLar
gt [ k) S ky. - S
z
QM [— bLMB BL giL 91T + M'TBBL 2T 11, G
My kyy - Spl1 - m kp - Sp1 -
My My oMM gn Ty e
k2, kyi-Spi ., +, kai-SpL . | - k.1 -SBl1 LTl
a hir h —————— hishit — ——————2x; hi7 h
+MAMB MB 1L '“1T + MA 11T MA Tp 1L"*T
Mp 289 [ _ m _
% []\/[2 22, hphir + 275 G10.G7 — My 2g1.hir

k2 _ k?a .k _ al _
I L R T | N
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This can be rewritten as

1 v kyy -Spi1 _
W 3 /koaT d’kyr 6*(kar + kyr — qr) Aa {—gi lglL M—TBBL ngl

7’@’31]“113 + (kar - ko) g ki - SpL L

kilj_SE}J_ + (ka1 - SB1) g} Bl
MiMpg Mpg 1L

L7l 7
iz hir — M4 har

- g{ukﬁ
Q
+z~{ukgj [ku . Sp.

kv -Sp1
Mp

kv -Sp1
My

wa (97 +G7) Gur + x5 hiy (hr + hr)

=1 My ky - S -
Ty 911 (97 + 1) + M7A % x4 (hr +hr) hiy
B B

Q Mp

ka1 - Sy

=L
M, U hiy(ht + hr)

| My glugy)
Q

koy k1

— TJ—
m Tp hllL (h:% + hT)

b

= M 7 7
lx,a 9119 +37) + 7 @a (b he) b +

or

€T

Vv o k’ _ ~ v xT v km
o = /\A{—gﬁ SBI[A/;BQMQH] - [x{#SB}J_+SngL_ ] I{ -

My

hthl]

- ( [2@%“ + gi”] sz — g lngvh S%)

AKE (k)2 — 2kF (Kot - Ky, ) — K K} ~
x I |: a \"Vb 2bMAaM% a Vbl hf_L hf_T

duar) [ M I M -
+Z{#SB}J_ (C)B el [glL(gT + gT)] + ?A xal [(hL + hL) hl]

M ko, -k _ -
A | B by i+ r — )|
My ka1 - Ky N
—61 [QMAMJ;QCA (gf‘i‘gf)gl:r])
My [2(k;)* — ki,
AR

Ma [2(kF)? — ki -
+?I _W x4 (hy + hp) hip

Mp  [2KZkf — ka1 - koo
QR | 2MasMp

My [2kTk — Koy - Ky o
Q! SMA]WLB LxA(giﬂLgi)ngD}. (6.34)

S AV T 2 U A =L
+ [z{“x bez — sy }53’9] ( TpgiL (9%+9T):|

— — == Tl
wp hiy, (hr + b + hr + hT)]

The cross section is given by
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dx 4 dxy dy d?qp Q2

§—y+y2] cos(¢p — @) 1 { u gnglT}

door(AB — ptp=X)  4ra? 1 z
= Aa|SBL] [ i
B

kZ =
Fal1 =) cos(o + 01 |1 hiyh|
A
A kG (k§)? — 2k (ka1 kor) —kgkpy 151
2MA M]23 1r'1r

Ty~ y) cos(36— 67) T [

(1 2)V/5(1 ) cos o (”Zf v g1 (G +72)] + 5w T (e + n) ]

Q
Mp _ (ka1 - koL . -
—? [WAZWBQUB hfL (hT_h%‘FhT_hT)]

Ma  |kat -kpi TN
_ A r|xe— o~
Q [QMAMB a9z +92) ir

Mpg {2(;«;)2 — ki,

—(1-2y)vy(1—-y) COS(2¢—¢>§)< 0 g x5 11 (07 +§?)}

MA -2(k$)2 _kgl T 7L
Q _ZT% T a (hL+hL) th

Mp _ngkrfkal~kbL - - = =1
ol ;MAMB xshﬁ(hﬂhﬁhﬂhﬂ]

My [2kk — Ky, -k o
—UAI GSMA]\j_B = wA(giﬁLgf)ng}. (6.35)
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6.3.5 Azimuthal asymmetries in doubly polarized TT-asymmetries

The relevant result expressed in terms of the twist two and twist three distribution functions and perpen-
dicular tensors and vectors is

1 w | Kal - S ky, - S _
e = */d2kaT Phyr 6% (kar + ko — qp) x § —gh" | 2 2AE 2L I8 g G
3 My Mp
_kiikﬁ + (kar - k1) 9" kar-Sai key-Spi hi 7L
MAMB MA MB 1T 1T
kS + (ks - Sa1) gt kol Spl, .
B har hip
Mp Mp
k{ﬂ Sl/} + ka . S g ka . S _ , , -
_MaiPBlL (M: B1)gY LMAAL hllTth— (SiﬁSB}L"‘(SAL'SBL)gi ] hyrhyr
2{“7651 kot -Sai kyi -Spl1 _ ka1 -Sa1 ki -Sp1 9p ok g
0 M, Mp air g1t M Mg adr g1t
Mp kqy-Sa1 koy-Sp1 L3 m ko -Sal kvl -Sp1L ., _
- 2x5 hir h _— 2h
Ma Mg My TR R T My o
ki kai-Sas ka_'SBJ_hL Pl ~kyi - Sal ka_'SBJ_h Bl
MAMB MA MB 1T '1T MB MB 17 'y
kyy -Spi1 ka1 -SaL . kyi-SaL kyy -Spy -
Y Ma hiphir + My My 21 4 hs hiy

—S 41 -SpiLhirhir +SaL - Sy 2z, hihir

2{“klﬁ ~kai-Sai key - Sp1 — kot -Sai kyi -SB1 9 L
0 M, Mg agir g1t Ma Mg B 91T 9T
Ma kot -Sar kyrL - SB1 . m ke -Sal kvl -SBlL -
— 224 hr hip — —— 2 h
Mg My Mg T My My My T
k2, kai-Sal ka_'SBJ_hJ_ A JrkaJ_'SAJ_ ka_‘SBJ_h Pl
MaMpg Ma Mg 1T '1T Mg Mg 1T T
kot -Sp1 kot -SaL, | 5 kot -Sp1 kot -SaL LT
hirmhir — 2z hirh
+ Ma Mo irhar Ma Mo Tp hyphy

+841 - Spi hirhir — Say - Spy 225 hirhy

M8 [ k- S Mg ky, - S _
A 5 AL | bLMBBL 204 9 G117 — M—]j MTBBL 2% hag hr
m kpi - SBL _ kl, k. -Spi _
B T PBL oy - hyr b
M. Mg TOT = A My Mg rmr

kol kv kyi - Spl1 Bk kot -kyy ki - Spl1
MsMp Mg 7Y TMuMp Mg

21, h hip

k.1 -SB1 kv -SB1 k.. -SB1

e T8 hirher — 2= T8~ her b — 2z, hh
+ Ma irhar i irhar Ma Lalpiir

Mp 21n8%) [ My Koy - S fon . Kot S

% 2 % 21, hr hir + % 225 1797

m kg1 -Sai . k2, Koi-Sai | -
=) h & hirh

Mg Ma girhir + MaMp Mo irhar

kot -kp1 kar -Sal

kot -kpi kar -Say

— hish 22 himhr
MaMp M, arMT T e T A, cvehirhr
ka ) - k -S T k - S -
+7LMB AL hiphir — 7MMB AL hirhir + 7MMB AL o2 thh%l }7 (6.36)
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which can be rewritten as

1 k., -S ky,, -S
pwro 2 2 2 _ v al Al RpL Bl _
4 3 /d kor d&°kyr 0% (kar + kor — qr) X { g1 [ i My giT 91T]
7k¢£lj_kzﬁ + (kayr - k1) 9" kar-Say key-Spi hl 7L
MAMB MA MB IVARS VA
_kéﬁsﬁ + (ko1 -Sa1)g)” koL -Spl hup B
MB MB 17T
S 4 (Kot - Sp1)d" kel S . v v .
— =B (Ma: kN LMAAL hiphir — (SEQSB}L +(SaL-Sp1)g" ] hirhir
0 [ kot - Sal Ky - S
z a a A ~ _
+ Q L [_ J_MA 1 bJ_MB B1l T (g%_ + g%_)ng
Mg k,, - S ky, - S _ =
_Mifj aLMA AL MMB Bl - th (h + br)
ky, - S ky, - S - = -
+ bLM = MM = Ta (h% + hJT_) th + (SAL : SBL) Ta (h% + hJT‘) th]
B B
Anp Tk -84 kri - S _
2Ry [ Ral oAl Kyl -OBL _L =L
+ a) [ Ma Mg s 917 (97 + J7)
My kgt - S ky, - S -
Mig LMA AL bJ_MB BL (h + B By
ko -Sp, ko, -S _ =1 _ =1
ot Sns Kol SAL o (g o) = (S Sy hur (i + )
MA?:’{“SV} ka_'SBJ_ - _ MB k:bJ_'SBJ_ - =
+ 0 AL [— Mg T4 (93* + g'T) aT — E TB g har (hr + hr)
kot ko kvl -Spy L 5ivg1 kel -SBL I
— x4 (h7 + hy)hy;n — ————— x4, (h+ + hy)h
MAMB MB A( T T) 1T MA A( T T) 1T
Mg 208% [ Ma koo - S - ko - S -
+% lM;‘ % x4 (hr + hr) har + % zs 17 (gp + g/T)
kol ko kot -Sal . =L ky -Sal . =L
J(\}AMB < Mo xs hip (hy + hp) + T M zp hir (h7 + hy)
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or

ka1 - kb1 _ kXY — kYK _
wy = AL (Sa - S b z gz Y QY Ralvp ™ Palvp
4 g, <( Al BJ_)I [QMAM ngng} + (SASB SASB] I [ O MM giT 91T

v v . k2 k
Sl{qlLSB}l‘F(SAl.SBL)gﬁ] <I[h1h1]1|:41\j_22\bz_2h h :|>

k.mQ_ kyz _
(a0 + a9t ) S5+ (9080 + 4ot ]sg)zr{mhlhﬂ
2 M2

[
_( {#SBJ_‘FSB.‘] ]S (A{us} +S%giy] SZ)I{W_(M}L hl:l

Zx“m + gt ] [ssz Sysy] g lugn (SfSMSysB))

o [0 GGG — RP) - g g )
A" B

Q Mp

v - M k M ky h 7
_A{“SA}J_ SE <QA 1 []VIB T4 (97 + gT)ng:| +=27 [b xphy (hr + hﬂ})
ke =L
Z{“EL}pSALp Sy ZBy { x5 hy (h + hT)}

Q

ey en n s . kE [(k2)? — (KY)? Al =
— [z{”x b85S — 2l }SZSB] (Q I[ [(2]\)431]\/[; )]xA(g%—i—g%)ng]

] LAl L P )

Q STEAT x5 hip (hy + hy)

Mg [ kEkYKY "
-0 I [MQM; xp hip (hy + hT)D
A

s{p v A{pusv} oz M k;fkgky ~ -
- [z{“a: Y54 .8Y 4 2lng }SASJ%] (QAI [M%M; 24 (97 Jrg%')ng]

M ETkYEY
+ BI|: a™avp

o 3z, x5 hiy (hp + BT)]

M L 2 _ kY 2 kxr — =L
Mo [K a;M;ﬁ;} b, hig (h%+hT>D

) Ma [ ko 1 Mg [k
+alngy) sy < QA I |:MA (hT+hT)h1:| +QBI{ A, ST (9T+9T):|>

kY

—z{“eff’smpsy Q { (hl+hT)h1:|

s{u v T QT s{unsv x k:C ki)? — (ky)* A =L
+ [z{"x tgege — zlng }SAS%] ( 0 I[ [(23\)4AM(2 :) ]ZZTBng (g7 "‘QT)}
B

k.ac k)2 _ (EY)2 ~
A G571, G, ]

A [ FUkTK] R
- ! {M,ﬁwg 24 (h + hy )iy
B

s{nsvt QU Qy {psv} Qy oo kyk-ﬂﬂky
+ [z kgt SHSE + 2y SASB] Q I{M M3 s zagir (7 +9T)}

MAM2

Q
Ma | [kal(kg)® = (k)] -
Q! { i h%)thD (6.37)

kY kzky -
AT [ x4 (hr + hr) hi_T:|
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The cross section is given by

013

dorr(AB = ptp~X)  4ma? 1
Td:;( dr dyudzl; ) Q2 [SaLl |SBL|{ [5 fy+y2] cos(dg ¢f)1{
A B T

kaky — kilky

+ [E—y‘FyQ] cos(¢y + ¢ —20)1 |:2]WA]\4B

B airT ng]

_ k2 k2 _
+y(1 —y) cos(g? —|—<bf)<[ [hlhl} -7 [ alRblL th hf;p})

1M
T\2 _ Y\2 B
=) cos(zo 02 - 2) 1| BB
kx 2 _ kY 2 B
1= cos(zo - o2 + o) 1| B g |

+...

kol - kyo

m gir git
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[(k5)? — (k&)*) [(k5)* — (K)?] — 4kG kY

g1~ ) cos(dd — 62 — 7)1 [ L, th}

SYENTE
A B My kZ ~ N =
(-2 ) cos gt cos(e? — o) [MAT [ 2a (g7 +gT>ng]
Q Mp
%I []Zi xp hy (hr +BT):|>
e My K I
L 2) VAT =) sin o sin(6 = 0) "2 |46, b (it + )|

(1= 29)/y(1 — y) cos(2 — 62) cos(6% — 9) (J‘Z; [l )]

Mp [k [(KD)* — (kY)?]
+QI[ 2 M2 Mp

24 (g% + 35) ng}

2p hip (hr + ;ET)}

Mp  [kTkYEY o=l
,?B I [MQM; x5 hip (hy + hT)D
A
, o My [ kTkYEY o
+(1 = 2y)\/y(1 — y) sin(2¢ — ¢7) sin(¢? — ¢) <Q I {MiM]l; x4 (97 + J7) ng}
Mg [ kTkVEkY =
+?B I [M2 (zle; x5 hip (hr + hT)}
A
M ©)2 _ (kY)?) ko o=l
_UB 1 [[( )ZMQ(ML L x5 iz (b + hT):|>
A

% .
I |:]\4a,4 XA (hT +hT) h1:|

~(1= 2Vl = ) sin? sine! — ) T2 1 [A’}A 2o (st B%)hl}
x T\2 _ Y\2 .
(1= 20) V5T~ ) cos(26 — 67) cos(9? — 6) (MB [ i wur ot + 30|

Q

Ma ki [(k7)? = (k)2 e
Ly § A

+ 0 [ TP (hr + hr) hip
My [ KYEPK]

—? {MAM]% Ta (h% =+ B%)th]>

, o Mp  [kVETEKY I
—(1=2y)Vy(1 —y) sin(2¢ — ¢7) sin(pg — ) <QB I [MAM; x4 917 (97 + gT)]
B
My [kVEZEY -
+?A I L\;Aiw% w4 (hr + hr) th]

My Thil(k5)? — (k)7 P1NT
QI{ QbMAMéb :z:A(h%Jrh%)th])}. (6.38)
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6.4 Convolutions and gaussian distributions

In order to study the behavior of the convolutions of distribution, it is useful to consider gaussian distri-
butions,

R2
f(@a,kar) = f(24,07) exp(—RiKr) = f(2.4) — exp(— R2k2,), (6.39)
_ _ R2
f(@s,kor) = f(z5,07) exp(—Rikir) = f(x5) f exp(—Rjki,), (6.40)
2(kyr,Ry)

In that case the convolution becomes

Iff] = /ko:aT Pkyr 6*(kar + kor — qp) f(2a, kar) f(25, ko)
T Q2 R’R? _
= R?L—FRf €xp [}%—&-Rib] f(mAaOT) f(xBaOT)

= fl(za) flas) (a3 R) (6.41)

with R? = R2R?/(R2 + R?). The other convolutions that appear in the cross sections are of the form

L ff} s, (6.42)
I:%ff] —I[%ff} gi 2?\}2 [ff], (6.44)
z'kﬂ(’f]@ ;4(2 Sy 7] - Rf; AT (QiRQ—l) I[ff], (6.46)
I:kfj[(k:b) 25\12)]\4]5 2kbkyk§jff}

I{Kszf<kg>2n<k2;gM<§z>1 UKEHL |7 Rf; Aj% HF7. (6.49)
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Another way to deconvolute the results are using the following weighted quantities,

[ #ar T3 17] =219 @) few) (6:50)
[ar G BB ] 2 ) O ), (6:51)
[ a, TP RE ] <o ) o), (6.52)
[a, PRkt ) 0 70, (65
[ ar g 1O ] s 1) 79 e (6.5
[ ar g 1 £ 1] = =479 1), (6:55)
[ #ay i [P 2 Be us) SRRL ) 0, e, (056)

QL [0 — ()% [(k§)> — (k))?) — Akzkykihy . )
/dqu M(%MI? I[[( ) (k)1 [( 23\4(12]\/22[7) ] b b ff} :24f(2)(96A)f(z)(xB),(6.57)

where f(")(z,) indicate the (k2,/2M2)"-moments of f(z.,k>.),

2 n
™ (2,) = | dPkar kag f(za, k2.) = Zi!mf(m). (6.58)
2Ma (QMG,RG,>




Chapter 7

Lepton-hadron up to 0(1/Q)

7.1 Inclusion of gluon contributions

We will consider in this section the inclusion of diagrams with gluons connecting the soft and hard part.
The additional contribution is given by four diagrams. Two of them have gluons connected to the lower
soft part (the hadron — quark part), the others gluons connected to the upper soft part (the quark —
hadron part). Including the contribution of the handbag one has

My = / dpd*k 54 (p + g — k) Tr [®(p)7uA (k)]

(F —pr +m)

Ny
(k—p1)2—m2+i€’y (pﬂp pl A/}L

- /d4p d*k d*p, 8 (p+ q — k){Tr [va

k—p1)2 —m? —ie

)
+Tr[’m( it — Y A(k)7 @5 (P — p1,p }
)

—pF1+m
*/d4pd4kd4k1 54(p+qk){Tr {% » _@kl)fl_ mz)ﬂe D(p) AL (k — ki, k

10 0 A b = k)2 0(0)| }m)

[Note that we have for a quark-quark-gluon blob used momentum p; (or k1) for the gluon and p — p; (or
k — k) for the quark. This is easier to extend when we consider multiple gluon correlation functions.] The
momenta p; and k; connected to the soft hadronic parts are parametrized according to

_ 1@

m o= [pl,\/?pm}, (7.2)
by = [2\1/22 kf,ley (7.3)

The momentum appearing in the extra fermion propagator is p—p; +q = k —p; with (k—p1)? = —21 Q2,
or k—k; —q=p—k; with (p — k1)? = —21 Q2. Thus one has in leading order in 1/Q,

F—p+m _ vt Yo - (kr —pip) —m (7.4)
(k= p1)? —m? + e QV2 (21 —ie)QV2 (21 —ie) Q> '

p—ki+m o v~ LYo (Pr—Rar) —m 5)
(p—k1)? — m2 +ie QV2 (21 —ie) QV2 (21 —i€) Q% '

701
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This can be used to consider separately the contributions of transverse (42) and longitudinal (A™) gluons.
For the transverse gluons, the trace of the first gluonic contribution becomes

—p1+m
— | d*pd*k d*p, &6* — ) Tr |7 k-1
/ P P16 (p+q—Fk)Tr |y (k= p1)2 —m? +ie

4
— d4pd4]€ 54 P + q-— L d P1 d4l' d4y ei (p—p1)-z+ip1-y
(2m)*

X (P, S[5(0)yu A (k) ”Q}Q Y gA%(y) ()| P, S),

which starts off at order 1/Q) and at this order requires leading parts from ®% (proportional to Py ®%P_)
and leading parts from A (proportional to P_AP,). As {y,7%} =0 and vy~ Py = P_y~ = 0 only the
v~ = Pyy~ P_ part in Eq. 7.4 contributes. This term is independent of any of the components of p;, and
we thus can immediately consider the distributions [ d*py ®%(p,p — p1), or explicitly

Y @A (P, 0 — p1) VA (k)

/d4p d'kd*(p+q—k) /d4$ ' (P, S[(0)7,A(k) g}; W gAZ(x) ()| P, S). (7.6)

This contribution will be studied in the next section. Note that it can be written in terms of the covariant
derivative as

/ d'pd* k6 (p+q— k) / d*z &P (P, S[P(0)7, Ak ﬂg} Y i D (x) ()| P, S)

- / d'pd*k 8 (p+q— k) pS / diz ¢'P <P,S|@<omA<kﬂ5} ¥()|P, S). (7.7)

In this section we consider next the contributions of longitudinal gluons (A™). They lead to traces of
the form

F—p1+m

@4 (.0 — p1)vu Ak
(k_p1)2—m2+i67 A(pap pl)*yl (k)

- / d*pd*k dp, 6*(p+ q — k) Tr {'y

The first term in Eq. 7.4 does not contribute. The second term contributes at ¢(1) as the dominant
contribution in ®7 is the part projected out by [ dpy P, &% P_ which is of 0(Q). Explicitly, we get for
the first correction in Eq. 7.1

d* , ,
—/d4pd4k‘(54(p+q—k‘)/ o p)14 /d4m/d4y el (p=p1)-atipry
T

< (P, STB(0) 1, A(k)y~ @_%@ o A () () P, 5)

e—tmipt (@ —y7)
_ /d4pd4k54p+q— /dl/d4 /dy —.elpﬂﬂ
T — 1€
x (P, S[P(0), <k>L Ty, gA*(y) ¥(2)| P, )

/d4pd4k64p+q— /d4 /dy 0(y ) et

(P, S[1p(0)y, A (k) Py, igA™ (y~) ¥ ()| P, S)
= f/d4pd4k54(p+q—k)/d4x e'rT

yT=zt, yr=zr

€T

% (P, S0, (k) Py 4 ig / dy~ A* (") ()P, S). (78)

oo
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The second term in Eq. 7.1 gives

(k=P +m)

A BT (p —
(k—p1 )2 —m2 —ic | (k)7 @4 (p — p1.p)

- / d*pd*kd*p, 8*(p+q— k) Tr [m

= /d4pd4k§4(p+q—k)/d4x et
0

% (P, S[5(0) ig / dy~ A% (™) v P A(K) 7 ()| P, S) (7.9)

o0

The last two terms in Eq. 7.1 give

(= Fr+m)

(p—k1)?2 —m?2 +ie

— / d*pd*kd*ky 6 (p+q — k){Tr [% YF®(p)yu Ay (ks k)}

(B—Fi+m)
(p—Fk1)2 —m? —ie

+ Tr [y* YAy (R k — /ﬁ)%@(p)} }

= /d4pd4k54(p+q—k)/d4x ek

0
{Tr<0|1/)( )ahahzg/ dy™ A™ (y) 1(0) v Pr 2(p) 74/0)

— 00

ot

T (0 () ig /

— 00

dyt A= (y") al an $(0) 7, ®(p) P- w0>}~

The result of multiple A*- or A~ -gluons together with the tree-level result gives in leading order in 1/Q
(when the projectors P, and P_ don’t matter) the exponentiated path-ordered result

2M A = [ dpdh S o+~ F) T [2(0)3,A ()] (7.10)
with

D, (p, P, S) x e'PT(P, S|1/J (0)4(0,00;07) G (00, 275 1)1 (x)| P, S), (7.11)

Aij(k,Ph,Sh) = (27)4 /d4x eFT (09 (—o00, 2T a0 )i () aLah Jj(O)g(O, —00;07)[0). (7.12)

Provided we assume that matrix elements containing bilocal operators 1(0) A (y* = Foo, y.) 1 (x) vanish
for physical states, the above links can be connected resulting in a color gauge-invariant matrix element
that must be used in the definition of the correlation functions.

Before considering the transverse gluons let us check the case of two AT gluons. For instance considering
a gauge choice A~ = 0, one needs only to consider the absorption of the A™ gluons in the ’distribution’
part. Dressing the diagram leading to the first of the four terms above with another 'parallel’ gluon one
obtains a contribution

4
/d4pd4k(54(p—|—q—k;)/ dpl dpQ /d4 /d " d4y ez(p p1—p2)-z+ipi-yi+ip2-y2

(2m)
. 7+ At
X (P, 8|1 (0)y,A (k)v’( 0ovs (I . ZE)Q\f%gA (y2) gA™ (y1) ()| P, S)
T2 — 1 2 =
dx dx e—i(@ita)pt (@7 —y) g—iwapT (y7 ~yz)
4, 347, 54 _ o1 aL2 4 ipx
/dpd kd*(p+aq /d /dyl Ay (z1 + z9 — i€) (x2 — ie) ¢
X (P, S|4 (0)y, A (k)Pi Yo 9AT (y2) gA™ (1) ¥ (2)| P, S). (7.13)

The integration over x; and xo gives

i0(y; —27)i0(yy — 1), (7.14)
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leading to the path ordering.
Dressing a diagram with an A%-gluon with a longitudinal gluon leads to one contribution of the form

d d4k(54( +q—k d4p1 d4p2 d* d*us dt i (p—p1—p2)-x+ip1-y1+ip2-y2
p p q ) (271_)4 (277)4 xz Y1 Y2 €

AP ST AW e D A () 043 ) V(P S)

d —iwapt (2T —yy )
- /d4pd4k54(p+q—k)/%/d%/dy; S
T Ty — i€

< (P, S[P(0)7, A (k) Py Z)j@ Y gA* (y2) gA% () ()| P, S). (7.15)

The x5 integration gives 6(y;, — z~), the first term of the link. Note that the AT (y;)A%(y2) contribution
vanishes at €/(1/Q) because of the nonmatching Dirac structure.

As a final note of this section, we look for the contribution that combines with Eq. 7.15 into a covariant
derivative. Since the term we consider is @(g?) and €(1/Q) we expect the i02 to be in the €(g) contribution

also at 0(1/Q). Again considering the A~ = 0 gauge, the only part at ¢(1/Q) that we sofar neglected is
coming from the ~y, part of the fermion propagator instead of the v in Eq. 7.8,

4
— [ d*pd*kétp+q—k d’p1 d*z | d*y € (p—p1)-z+ip1y
2’

< (P, S0}, A ()~ Hv 94" (4) Y(@)|P,S)

—zmlp (z7—y7) )
/d4pd4k(54(p—|—q— /dml /d4 /dy —e”"r
T — 1€

X (P, S[B(0)7, A (k) ”Q% Yo AT (y) i029(x) P, S)

d e—iwipt @ —y)
/d4pd4k54(p+q k) (k& — /‘Tl/d“ /dy R § 2
T — i€

x (P, S[ih(0)y, Ak )Z;} Yo gAT (y) ()| P, S). (7.16)

We correctly obtain the first term in the link for the covariant derivative and the p3-term in Eq. 7.7 (and
for as far as we now performed the calculation, namely in A~ = 0 gauge the link contribution for the
pr-term arising from g Ay = iD; — i0r in the fragmentation part).
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7.2 The 0(1/Q) contribution from transverse gluons

Up to 0(1/Q) one needs to include the contributions of the handbag diagram, now calculated up to this
order with in addition irreducible diagrams with one gluon coupling either to the soft part involving hadron
H or the soft part involving hadron h. The expressions thus involve the quark-gluon correlation functions.
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The full expression for the symmetric and antisymmetric parts of the hadronic tensor are,

2M WSMV = th/deT d2pT 62<pT +q, — k:T)
w €7k ,Shio
X {—gl f1D1 + g15G1s + Wipu lelLT}
h

R Ry ep )y RESD 4 (kSO

MMh 1s — Mh 174

{#SV} . S MV

Py S+ (P Shi) gy hi Hir — [SE_MSZ}_‘F(SJ_'SM_)QT/] hirHir

M

(k{uej_ P+ E_Mej_}pk‘Lp> ., (k{u V}pSLp+SiM€lj_}pkLp) |
2M M, P = 2M,, far Hy
2 lng Dt Gt
+—L [—f1D1 + fi— — g1sG1s + g1s—=
Q Zh Zh
M m Py -Sho
+ﬁh x5 hs His EglsHﬁ - LM hi,Hir
-Spy .| Hi HL
+MTM hi,—L — 8, -Spi hirHir +S1 - Sh1 thT]
Zh Zh
24 {up") N N My, H,& m, K
_— D Gis+ —hy,— — — h7.G1, h H
Q T f 1 + T gs 1 + M 1s 2n M 1sV1 + MM}L 1s
k,-S -S
oM itestt[ M, H, m k2
e o e T G hir Hi
+ 0 g 9pGis + R Vi 17G1s + MM;L 1rHi;
k- k,-S -S
AL e P HL + S harHip — P h%HlT]
oMy, tnsi [ G m ki -p,
_— heH —L g H hJ‘ H
+ 0 [Mh Tp hsH1T + 912 Py M, g1sHiT + MM, 1T
kl Y2 J‘ kiLwS'L kle'L HZJ:
b =L hirHir — hip——
MM, T, L 4 M, irHar M, 1T Py
28 e}, D M m N
A 2 Loy Y hHE — g H
+ 0 A f + M, xp hsHy A g1sH7
ki S P Shi
—Thlefﬁ g, P
2itnedp (M, | H K k,-S,
+$ M hfsi + MM}, h Hl Tp h%Hll
oM iteedrs, (M, H K Ckipy i
—_— hir— hipH+ h+H
+ Q B V5 A N V5 Y A A

oM, i (eS| Dy k% ki p, 1L
+ 0 =L fz*’MQle M2 rp [~ Dir

706

(7.17)
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and
MW = 2z, / Pk d*py 6(py + 4y — r)
. k[#sl’] B
X ielj_ f1Gis + g1sD1 | + ZLT:L g1sDip
2f i [ M Loom o, DE ki -Sh.
; _ H — AHE = A\grs =2 + —"= g, D}
+i 0 thBe 1 +th1 1 h g1 Py + M, g1s D1t
S -8
*Thhl ™ bt DL pLMih“ng;DfT
M m
-85S o, 25 gpDiz + 81 - Shi o, thDfT]
28lkp) M, LE oM ilst M, E,
+1 0 A hy ZT 7 T
Zh
‘QM}L #Shj_ DT k2 1 kJ_ b, m |
ST Pl g <D Di
+1 0 g1s—— o M2 9ishr — MM, Mh 1s
k.-p S, M ki-Si m
4 W Ly J‘DlT + M, ﬁh B Q%Df_T - M, ﬁh thDf_T‘|
h
2f ey Gt Dt M m
_i_Z#J‘p 1 Zh Gls“‘glsz _glle +EIB 6H1st - mlelJ;
2fluele M, m
-H#plp [JJB frGis+ 259Dy + h hi Mhllle
2M s M, E m
-HTLLP x5 gp D1 + ]\; thZ i hir Dy
2M, fleeileg G, M
z% fi 7+ﬁxB€H1T_7f1H1T (7.18)

Note that one can make the replacement f[“ej_]p a1, = é*?ay,G4s. The quark distribution functions in
hadron H depend on z, and p2, fi(xs,p2) etc., while the quark fragmentation functions into hadron
h depend on z; and —zpk; (the perpendicular momentum of hadron h with respect to the quark),
D1 (2p, —znkzr) etc., and we use the shorthand notations

-S
g1s = Agip + plTlmT,
k,-S
Gis = MG + lThJ' Gir.
h

The contractions with the lepton tensor, given in Table 7.1 use azimuthal angles defined with respect to
the scattering plane and the (spacelike) virtual photon momentum,

[ 9%

cap = —l-a, = —lay| cos(¢a), (7.19)
(uear, = Inay = |ay|sin(g,), (7.20)

where we have used a; Ab, = ¢|”a;,bi,. In many cases it is convenient to express the tensors in #



October 30, 1997 708

Table 7.1: Contractions of the lepton tensor Lfﬁfq ) with tensor structures appearing in the hadron tensor.

wh? Lwh”
—g o (1-y+ 1)
" —(ar-b1) g} 19 (1 y)lav|[bL] cos(¢a + 1)
3 (ol oL, +beaL,) —2195 (1= y)la[bo sin(éa + o)

_ Aw vip po wv
=aj e "bi,—(€7ai,bis) g

_ o mvp W vp v
—alelbj_p—i—blelaj_p—i—(aj_~bJ_)el

tlea’) —19% (2 — y)yT—y |aL| cos &,
> v 2 .
t{“eJ_}palp 4522 (2—y)vV/1I—ylay|sing,
Qe A9y (1- 1)
ialp” Ae "9y (1- %) lay||by| sin(¢y — ¢a)
if[uaﬂ — 84522 yv/1—yla,]| sind,
if[ﬂei]palp e 4yQ22 yv1—yla]| cosd,
with respect to measured directions, i.e. & = —h and §* = ez,
K —pll = =Py /z = —Qr h*, (7.21)
a‘j_ = (’AL-(IL)]Al“—F(’Al/\aL)EIj_pi?,p, (7.22)
#ay, = —(hAa )h* + (h-ay)éh,, (7.23)
")~ (ar-b) gt = [2(h-an)(h b))~ (ar-bo)] (200 + gt )
+ [(ﬁ ca ) (hAbL) + (hAay)(h- bL)} ACE (7.24)
]‘ L V L UV o o o~ ~ ~ AV v
5 (aj' by, + bl ejf’cup) = - [(h ca ) (hAbL)+ (hAay)(h- bL)} [Qh”h + g ]
n [2 (h-a )(h-b)— (aJ_~bJ_)] Pl doh, (7.25)
ap) = [(ﬁ a ) (hAbL) — (hAhay)(h- bl)] hte PR, = (al AbL) e, (7.26)

This allows one to pull the tensor structure outside the integration over transverse momenta. A useful
relation is b - (p, + k1) = (p2 — k%)/Qx.

In the next sections we will consider the cases of production of unpolarized and polarized leptoproduc-
tion separately, that means either one sums over all final state configurations of, say, a produced particle,
or one determines from the final state configurations the spin vector S;, (characterized by A, and Spr)
that determines the production matrix. For each of the above cases we will consider separately the case of
unpolarized (O) and longitudinally polarized (L) leptons and of unpolarized (O), longitudinally polarized
(L) or transversely polarized initial hadron state (T).
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7.3 Lepto-production integrated over transverse momenta

The hadronic tensor simplifies to
oM /dQPM e = Zz’h{—g‘f_y D1+ WG| = (STSEL + (S0 Su) gt )

+iel” [fl)\h G1+ )\91D1}

2M7?{”SV} Mh HL 1(1 m
+)\hTJ‘ ngTG1+ﬁh1 [;-FHlL()—MhGl]
2Mht{“5 GT 1 m
AlexshLHl + 91 [Z*Gngfﬁﬂvl]
QMhtA{“Ei}pSLP H 1(1) 2Mht{uelpSth 1(1)
+—Q hq {; + H; ] + 0 f [ +Dip ]
oMilsth ay, B, 2M,ikS) Dy
i\, S0 PL P BL oy SRR E Phl {7 D (1)]
+tAn 0 o o 7 0 91 +
_2Mhbt[uéu]p5hl M GT 1 m
+1 QL £ E2$B€H1+fl [Z—Gng—ﬁhHl]
aMilkePs, M., (E

where the quark distribution functions in hadron H depend on x5, while the quark fragmentation functions
into hadron A depend on zp.

7.3.1 Unpolarized leptons and hadrons

The relevant part of the hadronic tensor is

IMy, t1re” l
Q

2M /d?PM W = —g" 2z f1(x5) D (2) + " Snip 2z i) [%F( )+ DV (2 )] . (7.28)

The semi-inclusive cross section is given by

dooo(tH — ('hX)  4ma’s | (4°
()Od(x i ) _ ot { [2+1y] xBfl(zs)Dl(Z)
B

28] (2= y)V/T =y sin(6h) gt 7 ) [ 22()+ DEV(:)) }(729)

We remind that DlLT(l) is related to Dr via

1
D
= —z/ dy r(y) (7.30)
or equivalently
Dr ¢(1) d ( )
D; Diy . 31
L&)+ DY) = 2 (731)
7.3.2 Unpolarized leptons and longitudinally polarized hadrons
The relevant part of the hadronic tensor is
2M /dzPhL W = —g" A\ 22 g1(x5)G1(2)
oMy, ilnst [ i .
M S 3| M by (ea) H(2) + 22 g1 (1) S2E | (732
Q My, z
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where
Gr(z) _ Gr(z) Gng)(z) - Hi(2) (7.33)
z 2 h

is a pure quark-quark-gluon (twist-three) matrix element. The semi-inclusive cross section is given by

dAcor(CH — 'hX)  4ma®s
drg dydz Q4

A{Ah [y; +1 —y] z5 91(75) G1(2)

Q

218311 (2 — ) /T =y cos(o) [M 2 bz Ha(2) + 2 2 01(2) GTZ(Z)] }%34)

where Ao,y indicates that only the part involving polarization is given, which can be extracted as a cross
section difference, e.g. between A = 1 and A = -1.

7.3.3 Unpolarized leptons and transversely polarized hadrons

The relevant part of the hadronic tensor is

2M / PP = — (SVSyL 4 (SLSh) gt ) 22 h(es) H(2)
IV EALH M Hy(z
+TJ- h QszgT(mB)Gl(z)Jrﬁhllzhl(m]g) Lz()
2th{“ei}psj_p FI(Z)
R 22 hn(wa) =, (7.35)
where
Hi(2) _ HL(Z’) 2 [ m
-5 /d ky 2M2 i 5~ 2her) = 17 Ga(2) (7.36)
f{
/ & ﬁg (2, — k) (7.37)
h

are pure quark-quark-gluon matrix elements. The semi-inclusive cross section is given by

dAoor(CH — ¢hX)  4ma®s — M, H(z)
de dydz - Q |SJ_| { ( ) 1 y Sln(¢8) Q xB h’l(xB)
M M H
232 1)y y eos(y) [Q 7 90(0)G(2) + " o ) T
*|Shl| (1 - y) COS(¢S + ¢}gl) T hl(ms)Hl(Z)}- (7.38)
7.3.4 Polarized leptons and unpolarized hadrons
The relevant part of the hadronic tensor is
2M /dQPhJ_ W = ieliy >\h 2z f1 (LL'B)Gl(Z)
v lp 8
+i2Mht € Snip| M 2rpze(xy)Hr(2) + 22 fl(xB)GT(Z) . (7.39)
Q M, z

The semi-inclusive cross section is given by
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dAo,o((H — ('hX)  4rma?
7201 ) _ e SAe{m (1-9) w0 hiws)Ga(2)

dr g dydz Q4

—2|8h1|y\/1 —y cos(oh) []g 22 e(xy)Hi(2) + % s f1(xp)

7.3.5 Polarized leptons and longitudinally polarized hadrons

The relevant part of the hadronic tensor is

2M,, in5y)

2M /d2PhJ_ W =ie" X2z ¢g1(xp)Dy — i 0

A2z g1(x5) [IZ—:(,Z) + Df'T(l)(z)] . (741

The semi-inclusive cross section is given by

dAo,((H — (hX)  4ma’s
oL ) = )\EA{y (1— y] zpg1(2p) Di(2)

dry dydz Q4 2
+2|Shi|yv/1—y sin(¢?) %mB 91(z5) [lz)—:(z) + D#l)(z)] } (7.42)

7.3.6 Polarized leptons and transversely polarized hadrons

The relevant part of the hadronic tensor is

iZth[”SV] EL(Z)

oM /dQPhL W 0 L \n 22 hy () ——2

oM flnehlr M, E
ig QszgT(xB)Dl(z)+h2zh1(x3)(z)1, (7.43)
Q M z
where B
= — — D¢(2). 44
-2 - D) (7.4
The semi-inclusive cross section is given by
dAa,r((H — 'hX)
drg dydz B
4’ s M M E(z
O A IS4 20Ty cos(o) | a2 gr(wa)Da(2) + o8y () 2
Q Q Q
M E
2 M yy/1—y sin(es) ?h 25 hi(25) LZ(Z) } (7.45)
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7.4 Transverse momenta in lepto-production without polariza-
tion in the final state

In the case that no polarization in the final state is observed or for the case that a spin 0 particle is
produced (e.g. semi-inclusive leptopionproduction, the hadronic tensor simplifies to:

My = /d2pT d’ky *(pp +q, — kr X {—QTJ 2z 1Dy +i€Y 22 g15Dq
(klpﬁli{” Z}erlpﬁi{“ki}) . (kLpﬁi{ALSi}+SLpeﬁ{uki}) A
2zhi H 2zhir H
MM, zZni Hi + oM, ZhiTiiy
gt N Flupt N
- {—4Zf1D1 +4 /1D ]"FQL‘MIZf D,
ku_pelj_{ufy} M 1 m 1
—= | ———dxzh,H —4 H
+ Q thzsl+Mthlsl
gy 2
D1p€ t Mh k kL . SL
+p5[_M4hﬁH—M]\l/fh 4z hi, Hi — i dxz hsHi
MSLpei{“f”} My, K% 1, ki-p Loyl
. |- AhypyH — ———4zhitH dxzht H
+ 0 A MMhle1+MMh Xz il
,f[”ky] M m
—+1 Ql [_ i 4oz eHi + i, 4z lelL]
koo v
pimketL T {49131} - 4291514
Q
. ep[“f"] M m
_le’% dazgltDy + ﬁh 4hiE — i 4z hi, Dy
MS AR M, m
+z$ dzz gl Dy + ﬁh4h1TEf 7 47Dy (7.46)

We will again consider all situations separately for different polarizations of the lepton and target hadrons.

7.4.1 |(H — ('hX | (unpolarized hadrons)

The hadronic tensor is given by

M = /dsz dsz 52(pT + qr — kT) X {_gill 2z lel

AL

Flupd
[42 fiD1 + 4f1DL} + TL 4az f+Dy
—g1" 22 1[f1D]

ﬁ{‘g”} <4zI [(ﬂ k) fo [Dl - Dl] } a1 [(hop.) fLDl]), (7.47)

where the last expression involves integrals of the type
I[(h-pL) f*Di] (20,2) = / &, d’kr (P, + a; — kr) (- p,) [ (26, pr) Di(2, —2ks), (748

with q, = —Ppi/z = Qr h. Note that a contribution proportional to ﬁpep{“f”} appears, but it is
multiplied with integrals of the type I[(h Ap ) fi(zs,|p |)D(z, 2|Qr h — p | |)], which vanish.
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The most explicit differential cross section is immediately obtained from the first expression for the
hadronic tensor and is given by

dooo(l+H =0 +h+jet+ X)
degdydzd?Pp, d?p | o

dra? s 2
{[y+1_y] x5 f1 Dy

Q* 2
L

1202~ )/ ' cowh)astl[Dz—Dl]

1
2(2 - y)v 1—y % COS(¢J’) [x%fJ-Dl — x5 f1D; ersleZ] }, (7.49)

where the arguments of distribution and fragmentation functions are fi(zz,p ), Di(z, Phi — zp, ), etc.

The semi-inclusive cross section where the jet direction is not determined can be found also from the
(first) most general expression above, but this is cumbersome, since one must be aware that integrating
over d?p , the argument of the fragmentation functions depend on P — zp, . It is easier to start with
the second expression for the hadronic tensor and obtain

dooo(l+H = 0'+h+X)
drsdydzd® Py, o

dra? s
0" {[ +1y]1$5f1D1

o=y en) (e[ o (2 )]

+61[h]\5i %fLDlm}, (7.50)

which involves the above defined convolutions over distribution and fragmentation functions.
Returning to the previous cross section, one can integrate over the transverse momenta of the produced
hadrons in the jet and find

dooo(l + H =l +h+jet+X)
degdydzd?p | N

2 2
47:;4 g { [y2 +1 _y] xBfl(xBapL)Dl(z)

22—-y)V/1—-y % cos(¢;) xQBfL(a:B,pJ_)Dl(z)}, (7.51)

where the arguments of distribution and fragmentation functions are fi(x5,p ), D1(2), etc. Integrating
also over the transverse momentum of the jet we obtain the result discussed earlier,

doco(l +H = V' +X) dra? s [y2

drs dydz AL 2 +1_y] v f1(wp)D1(2).
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7.4.2 |(H — hX (longitudinally polarized target)

The hadronic tensor is given by

My = /dsz d2kT 62(pT +q, — kT)

22hi Hi-

) (kLpéi{“pJ_}+pr€’j_{Mki}>
% MM,

ki [ M m

% —ﬁh49L‘zhLHll—i—ﬁhélzglLHlL
P{/LAV} 2

pLp€ "t Mh k1

PlefL ° 7 Ahi H - Az i HE

0 l MM, L

2(h-k)(hop) kil H]

= A {hpej{“hV} 221 T

_ﬁpgfi{ﬂgv} (‘g 421{’; Ky (th - m91L] Hﬂ

M, M
+%4 I{hz\flh [H ZQHI]D} (7.52)

The most explicit differential cross section is given by

dAoor((+H — 0+ h+jet + X)
dep dydzd?Pry d?p | o

4o’ P
Q" S )\{(1 7,y) M Sln(¢h+¢j)IBh I—I1

Q4 ZMMh

2
yy .
+(1 -y MJJ\_i sin(2¢;) x5 hllLHlL

2* \/ | hL' sin ¢y, 7553 [IEBhL 91L] Hll
. M m
/; |PL| sin ¢; [Mh Tg [ZL‘BhL - Mgm] Hf

M;, H k3
+or rhiy [ M2 Hi ”} (7.53)

where the arguments of distribution and fragmentation functions are hlLL (r5,p,), etc. and Hi-(z, Py —
zp, ), etc. The cross section averaged over the jet angle is found from the second form for ##¥,

dAoor(0+H =0 +h+X)

drsdydzd®Py,
dra? s . 2(h-ki)(h-p)—ki p,
Qzl)\{(l ) sm(2¢>h)fl MM, rphip Hi

. M rh-k
va - T snan (1 [ (st~ o) 1]

]\ghf[ﬁj'\fi eshiy [H kaz Hi ]})}.(7.54)
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Integrating over the transverse momenta of the produced hadrons in the jet one obtains

dAoor(0+ H — 0" + h + jet + X)

degdydzd?p |
4ma? s . M, H(z
Q4A{+2<2—y>\/l g, A;thfLuB,pui’}, (7.55)

where hiy (z5,p, ) is a 'leading twist’ distribution and the fragmentation function H(z),

H(z):/dszﬁ(zZ,kT):/koT [f+kiH%] : (7.56)

z

is a 'twist three’ quark-quark-gluon matrix element.
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7.4.3 |(H — ('hX| (transversely polarized target)

The hadronic tensor is given by
QMW = /dsz ky 6% (py + qp — k)

(/ﬁ Efi{ltpi}_’_p ei{“ki}) .
x{ ’ - PLSi, L gl

MM, M
(kLpeﬁ_{st_} n SLpeﬁ_{Mkj_}>
2M,,
_ klpéi{ufu} P - SJ_
Q My
pluzuy 2
tvi | M, - kK )
_ DLty lh PLoSi gl [H+ ZHi- ] lM = 4xzh%H%]

+ 22}7/1'1“]‘]1L

m
4z [th—Mng] Hf‘

Q M M M? N

MSL ep{uty} Mh ki 1 kJ_'pJ_ 1yl
T ﬁllth H+WZH1 — MMh 4thTH1
p{n v} p{uzv} (ﬁk’l)
(h ST+ S, R ) [ A
. 97 g 5 .
z p{;wy} P 4h-p )(h-ki)—pi(h-ki)—2(h-p )k -p,) 1 gl
+ Byt R (R Sl)l{ N 2zh1TH1}

22 hlﬂﬂ

1
2

[Zh”h" n g“”] (hAS.)

2(h-p)(kL-p)+pi(h-ki)—4(h-p,)*(h ki)
x 1| AT 22 hip HY |
B plupy (M 7kL Py om0 gl
St <Q I[2MMh 4z [mBhT M91T CEBhT] H1}
M, H K
o M, 2(h-p )2 —p H K
— hye? Y (B8 (Q}II[WLL%th [ i Hi ]]
M Q(ﬁ‘kl)(fl'PL)*kL'pl m 1 1
+51[ 2M My, 4z (2ahr - MngHCBhT] i
NP M, —2(h-p,)? H k1
ki -p — (il'kl)(ﬁ'pL) 1
M, 4 - = H
t0 { MM, ‘ [mBhT MngJ””BhT] ]

(7.57)

The most explicit differential cross section is given by
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dAO'OT(€+ﬁ*>£/+h+jet+X) dma? s p.| . n
S ; s hi1H
de dded2PhJ_ dng_ Q | | ( )Mh Sln(¢] +¢k)zB 14147

+(1- y)ﬁ sin(3¢; — ¢s) xphinHi

2 M2 Mh J 1T+41

P .
-y ](Z' sin(én + 6) oy Hyt
_(l_y)M (QQS +¢h_¢s)x[§h
2 M2 M, J
M, H
+22—y)v/1—y ah sin(¢s) xphy =
M, p? . H
122 - )1 —y 2 Pl sin(29; — 6.) wahiy
Q 2M
m
Y/ 1— 2M 0 sin(2¢; — ¢s) =5 (mBhT — 9T —th%] Hi
P’ m 1 1
+2(2 — y)m 2MJ_Q sin(¢s) 5 [thT — 9T + thT] H;
p m
\/ ‘2JZ_|A‘4 }5| ((15 +¢J ¢s) Tp (mBhT_Mng_mBh%] 1[‘[1L
\/ |p2L‘]\|4— g_ ((b _¢J+¢s) Tp [mBhT_Mng+thT] HlL}a
(7.58)

where the distribution functions depend on x5 and p, and the fragmentation functions depend on z and

22K% = (Ppy —zp,)?

hl(thpT)

mBhT<vapT) -

mBhT<vapT) -

- th(mBapT)

. We have used or can use

2M2 th(vapT)

m ~
Mng(wB;pT> - th%(:EBpr) = _2hl(xBapT) + th%L(:EBWpT%

(xBapT> + th%(xlhpT) =

m
M air

P’ - -
MTQ hir (X5, Pr) + 25 (hT(:cB,pT) + h%(a:B,pT)) . (7.59)
Integrating only over the jet directions one obtains
dAoor((+H = ' +h+X)  4ra’s , h-k, N
1—y)s )1 H
depdydzd?Pyy Q* 1§11 (1 =) sin(én + ¢.) { My, o1 Hj }
: A(h-p )?(h-ki)—2(h-p, )k -p,)—pt(h- ki)
+(1 —y) sin(3¢p — ¢s) I{ 22 0, Bh T H; }
M H
+2(2 - y)y/1 -y sin(gs) <Qh I[:vBhl ;}
M r2(h-p)(h-ki)—ki-p, m Y
61[ 2MM,, vo (wahr = g ovr +aaht ) 7]
i My, 2@'1%.)2—1% J_E[
+2(2 —y)/1 — y sin(2n — ¢5) (Q 1| =Pty }
M rki-p, —2(h-p)(h-k.) m 1 1
+ 0 I[ M, Tgp [thT 2 I thT] Hl} :

(7.60)
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The cross section integrated over the transverse momenta of hadrons h within the jet becomes

dAoor(t+H — ' + h + jet + X)
degdydzd?p |

dra? s

M, H
oL 1S | {2(2 —y)V1 —yah sin ¢ thl(mB,p¢)¥

M, p? q
+2(2 —y)\/1—y ah 21;\}2 sin(2¢; — ¢s) xphizp(rs,p)) iz) }7 (7.61)

where the fragmentation function is integrated over transverse momenta. Integrating further over the jet
angle one finds

dAoor(l+H =0 +h+X) 4ra?s M, . H(z)
= S1122—y)/1—y— s Tph . 7.62
de’B dy dZ Q4 ‘ J-| ( y) Y Q Sln¢ Tp l(xB) > ( )
7.4.4 |(H — 'hX | (unpolarized hadrons)
The hadronic tensor is given by
My = /d2pT dsz 52(pT +q;— kT)
f["k:j_] M Loom N
i ——4dxzeH — 4z f1H
X{z 0 th oszelJrMh z f1Hj
cia M h-k m
- wpv] 2% L e 1
it'"h Q4zl[ A [xe Mfl] Hl} (7.63)
The most explicit differential cross section is given by
dAo,o((+ H — 0 +h+jet + X)
dxpdydzd?Pr, d?p | o
dma? s p.] . M m
oL {2)\ey\/1—y 5 sin ¢; ﬁhx[; [xBe—Mfl] H
|P}LL| . M m
=2 ey 1 —y 0 sin ¢y, mxB [mBe—Mfl] Hi 5, (7.64)

where the arguments of distribution and fragmentation functions are é(x,p | ), etc. and Hi- (2, Py —2p ).

Integrating over the transverse momenta of the produced hadrons in the jet one obtains zero. Integrating
over the jet angle the result is

dAoo((+H — V' +h+ X)

diL'B ddedQPhl
dma? s ) M h -k, m n
72)\634 1—ysmq§h6[{ A Tp (mBe—Mfl] Hl}. (7.65)
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7.4.5 |(H — ¢'hX (longitudinally polarized target)

The hadronic tensor is given by

MW = /deTkoT 52(py +q, — kr) X )\{ie‘f’ 22 g11D1
k [Ntu]
il b {491LDL —4z 91LD1}
Q
prGL[MtV] M L
+i T 4xz gt Dy + —+ % 4hi E — M4zh1LD1 .
. g (Ma Rk D+
A{“i 221 [guu D] +iho,el i ]<Q4ZI[th1L (% -]
M h-p, M, h-p, ., (E m
+§4zf[ 2 szD1}+64 I[ 2Lty [ZMpl]D}.(mG)

The most explicit differential cross section is given by

dAo,  ((+H — 0+ h+jet +X)
dep dydzd?Pyy d?p | o

dma” S)\ )\{ (1—%) g g1z D1

Q*
Dt
_2y\/7 \pﬂ cos(¢;) l QBgf D1+ x5 911 [z —D1]

Mh FE m
el [Z‘MDI]]

€1

1241 —y 1:*5' cos(dn) Tp g1L [DZ - D1] } (7.67)

where the distribution functions depend on x5 and p, and the fragmentation functions depend on z and
22k = (Ph1 — zp )% Integrating only over the jet angle one finds

dAo (C+H =0 +h+X)
drg dydzd? Py n

dra? s
A )\{ (1 - %) I'xs g10 Di]

St

h k D+
—wwmew¢h< L%ﬂm[zr—DJ}
M
+—=1
Q

h .
{ DL flfringl}

M
+%I[h]\;u sohl, [S_J\W;Dl]])}' (7.68)

Integrating over the transverse momenta of the produced hadrons we obtain
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dAo L (C+ H — 0 +h+jet + X)
drpdydzd?p | N

dra? s
Q )\ )\{ (lfg)nglLDl

M E
—oy/1—y @cos [x%gi‘Dl—l-]\;thfL[Z—]\T/;Dlll}(?.%)
h

with the fragmentation function integrated over k,, and thus only depending on z. Integrating also over
the transverse jet momentum, one is left with the leading result for longitudinally polarized targets,

dULL(Z—l—ﬁ—)f’—i—h—&—X) dra? s
drgdydz Q4

Ay (1= 2) 25 g1(2s) Di(2). (7.70)

7.4.6 |(H — ('hX (transversely polarized target)

The hadronic tensor is given by

) S
My = /d2pT dsz 52(pT+qT_kT) X {Zelj_ pLM = 2ZngD1
k EP[HtAu] . S
? lpé pLM = |:491TDJ_ —4291TD1]
P[l‘Au]
i M,
+i pre pl [4ngTD1+ A;4thE—A";4zthD1]
MS kv
+i l"el [szgTDl—&— AhirE — M4zh1TD1H.
= i (h- SL)QZI{ ngDl}
i i 1
2 plup] (f My 2(h-p)(h-ki)—p, ki D+
+ i byt 18 (R sg(Q 121) SN gr | == —Ds ]
M 2(3'P¢)2*P2
Q WE Tl Mt
il M, 2h-p)(h-ki)—p, ki D+
(jv] Lh L L =z _
titleq (h/\SQ(Q 421{ STITA gir | == D1 }
M 2(h-p,)? — p?
Q 20?2 T\ Mt
M M, E m
(p] [ 22 Mh = _
+ZSLp6J_ t <Q4zl[ngD1}+ 0 4zl[h1 [2 MDl]]
M, k D+
n Q’ 4z I[2MML gir [Z—Dl]D. (7.71)

The most explicit differential cross section is given by
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dAor((+ H — 0 + h+jet + X)
drp dydzd?Py, d’p | -
dra? s
A |SL|{ (1 9) P cos(o, — 62) 2 gur D
M My, E
—2y+/1 —y cos(¢s) | —= 2 gr D1 + —h Tphi —
Q Q z
M;, FE
—2y\/1—y 2MQ cos(2¢; — &) [ BgTD1—|— i thi z]
DJ_
—2y V 1- 2MQ COSs ¢j) COS(¢ ¢€) Tp 1T 7
|pL|| hll D+
sy T=y PLL cos(on) costy = 00) wagir 2= b, (172

where the distribution functions depend on zz and p; and the fragmentation functions depend on z and

22K% = (Pny —zp )%

Integrating only over the jet angle one obtains

dAoyr(f+H -0 +h+X)

drvgdydzd® Py,
et aisilfu (1) coton - 1[0 e
f2yﬂ cos(¢s) (g I[z2gTD1} + % I{xhl g]
e Bt 2
—2y/T—y cos(26n — 6) (Q I [% gt Di
g g
+ % 1[201 : pl)(ZIMk]\lJZ L xgiT ?}) } (7.73)
Integrating over the transverse momenta of the produced hadrons we obtain
dAo (0 + H — 0" + h + jet + X) _
drsdydzd?p |
472; ° Ae |SJ_{ ( %) % cos(¢j — ¢s) Tp gi17 D1
~2yy/T—y cos(9) [Q o 91 Dyt g sats
+2y/1—y ;\}Q cos(20; + ¢s) | 2% g7 D1 + J\]@ Ty hip — E } (7.74)
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with the fragmentation function integrated over k;,, and thus only depending on z. Integrating also over
the transverse jet momentum, one is left with

dAo (0 + H — 0 + h + X)

drg dydz
4ma? M M E
—% AelS 1| 2yv/1 — y cos(¢bs) o 22 gr(zs) D1(2) + Uh 5 h(25) (2) (7.75)

7.5 Transverse momenta in lepto-production with polarization
in the final state

For the case that polarization in the final state is measured, we will restrict ourselves to the leading
order (parton model) results. The hadronic tensor, omitting the unpolarized contribution discussed in the
previous section becomes

M = /dng d2pT 52(pT +qr— kT)

X {—gT’

kMY + (kL py) g 9 h

po
€ kLpShLJ

2z f1D1 + 22 15G1s
2 f1D1 422 g1,G15 + i

2z lef'T]

ks 4 (ky - S))

ynz
Lol 91 1
Hi, — 2 H
MMh 1s*+1s Mh Zth 1s
pE_MSZi + (pl : ShL)gﬁL_V 1 {pav} v
- Vi 2z hy Hyr — [SL Sy +(S1-Sn1) gl ] 2z hirHir
k[HSV]
+iel 22 f1Grs + lehhl 22 g1sDir ¢ (7.76)

As before we will consider the various possibilities separately.

751 |(H = ('hX

The hadronic tensor relevant for this situation is

9 L
QMW = /koT d*p, 6 (pr + @r — kr) (—91") wﬂ 2z fiDir. (7.77)
h

The cross section is given by

dAooo(0+ H — 0 + h + jet + X))
desdydzd?>Pyr, d?p |

dra? s 1 P .
7 |ShL| { [1 —y+ §y2] |ZJ\’ZL‘ Sm(¢h - (bg)melD%T

] P

1
- [1—y+fy2 A, sin<¢j—¢2>sc3f1D%T}- (7.78)

2

Averaged over the transverse momenta of the hadrons A in the jet this gives zero.
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7.5.2 |(H — 'hX (longitudinally polarized target)

The symmetric hadronic tensor relevant for this situation is

IM W = /ko:T d°p, 6°(pr + @ — k) A {—gi" 2291.G1s

KPP 4 (kL py)
MM,

{MSV} .S Hv
_PLShiF (P Shi) gy zzhfLHlT}. (7.79)

g/“/
L 922 hi, HL

M

We will give only the cross section averaged over the transverse momenta of the hadrons in the jet. This
is

dAoor(6+ H — 0 + b+ jet + X)
dep dydzd?p

2 2
‘”g‘fx{xh [1—y—y2] ragi(@sp1) G1(2)
181 (1 - 9) P cos(a; + 6) 2 by (20 p1) H1<z>}. (7.50)

Integrating over the jet directions one obtains

dAoo((+H =0 +h+X) 4ma®s y?
= Ay |1—y— = G1(z2). 7.81
dzp dy dz 0l h Y B) rp 91(25) Gi(2) ( )
7.5.3 |(H — ('hX (transversely polarized target)
The symmetric tensor relevant in this case is
uvo 2 2 2 uv Pl ° S
2M W - d kT d Dr d (pT + qdr — kT) -9 T 2z ngGls

kY 4 (ke p) g Py S

MM, M

k{MSV} ki -S 124

kLS A kLS9 g

M;, °

Sy (L Shu) gt py - Sy
M M

L 92 hip HE;

2z hlLTHlT
_ (siﬂsﬁ +(SL-Shi) giw] 22 thHm}. (7.82)

We will give only the cross section averaged over the transverse momenta of the hadrons in the jet. This
is
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dAoop(f+ H — €' 4+ h + jet + X)

drsdydzd?p |
4 2 2
~gr ISl {Ah [1 —y- *”2] Pol cos(; — 62) g1 (s 1) 1 (2
—|Shi| | (1 —y) cos(¢s + &) x5 hir(zs,p, ) Hi(2)
2
(1) P cos(, + 61) eos(s; — 64) o (1) Hl(Z)] }

(7.83)

Integrating over the jet directions one obtains

dAoor(t+H = 0 +h+X)  4ra’s
dry dydz o

7.5.4

The hadronic tensor relevant for this situation is the antisymmetric tensor

S| [Shil (1 —y) cos(ds + ¢L) wp ha(zs) Hi(2) (7.84)

QM W+ = /koT d*pr *(pr +ar — kr) (i€)") 22 1G1s. (7.85)

The cross section is given by

dAoLo((+ H — ' + h+ jet + X)

drp dydzd?Py, d?’p |
dra? s 1
7>‘e {)\hy [1—531] 'rBflGlL
1 Ip.| e h
+Snhil |y 1—2y M, cos(¢; + @) xp f1Grr

1 P
—y [1_ 5y] |z]\}/ift| cos(¢h+¢?)$3 fiGir

}, (7.86)

where the distributions depend on x5 and p, and the fragmentation functions depend on z and szi.
Averaged over the hadrons in the jet, one obtains

dAoLO(Z+H—>€’+ﬁ+jet+X) _ Ama?s
dx s dydz d?p | 4

Ay (1-39) 20 fileap)Gi() (78)

where G1(z) is obtained by integrating G1, over the transverse momenta. A similar expression discussed
earlier is obtained after integrating over the transverse momentum of the jet.

7.5.5 |(H — ('hX (longitudinally polarized target)

The antisymmetric hadronic tensor relevant for this situation is

k [HSV]
MW = /koT d’p, *(p, + g, — kr) <le:l A2z g1 Diy. (7.88)

An asymmetry is obtained in



October 30, 1997 725

dAo, ((+ H — 0 + h+ jet + X)

depdydzd?Pyy d?p |
dra? s yy Ipol .
Qél)\e)\{|ShL| [y [1—5] Z\jh sin(¢; 7(;52) nglLDf‘T

_ Yy [Phi| . _ 4h L
+y (1 2] I, sin(¢n, — &) Tp 91 Dir| ¢, (7.89)

which vanishes upon integration over the transverse momenta of the produced hadrons.

7.5.6 |(H — 'hX (transversely polarized target)

The antisymmetric tensor relevant in this case is

k [#SV] P, - SJ_ |
QM WM = / d’k, d*p, 6*(p, +q, — ky) | i—= 0L 22 g1 Dip. (7.90)
Mj, M
An asymmetry is obtained in
dAo r(0+H — ¢ +h+jet +X)

desdydzd?>Pr, d?p |

dra’ s Y p? .

“gr AelS 1118 [—y (1-5) 3hg sin0s — ob) cos(é; — 62) wo gur Dy

1— Y M i — P - Dt
+y (1-5) P sin(on — L) cos(6; —6:) s i Dip .
(7.91)

which again vanishes upon integration over the transverse momenta of the produced hadrons.

7.6 Convolutions and gaussian distributions

In order to study the behavior of the convolutions of distribution and fragmentation functions it is useful
to consider gaussian distributions,

f(x?pT) = f(J?, OT) exp(_R%Ipi)
R2
= 7@ ey~ Byp) = f(2) P, ), (792
D(z,—zks) = D(z,0;) exp(—R,%ki).
R} 2 D(z) Ry
= D(z) W—th exp(—Rik>) = o> P(kr;Ry) = D(2) (—zsz; z) ,  (7.93)
In that case the convolution becomes
15D = [ @p ks 8o, + 4~ ko) Flanp,) Dls k)
™ Q2 R4 R? ]
= ————exp | ———2] f(z,07) D(2,0;)
R% + R} [ R% + R}
— flas) D() 29 ) (7.90)

22
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where R? = R?, R% /(R% + R3?). The other convolutions that appear in the cross sections are of the form

R? Qr R? Qr '@(qT;R)

I[ﬁ s D) = g A D) = g S ) D) (7.95)
I[ﬁM':TfD} - —ﬁ%%[[fD], (7.96)
I[IE\Z]\/ZT fD} = 1\41\4;?%,}%%) (1-Q2R?) If D), (7.97)
I[W fD} - gl 2M§2 1[f D] (7.98)
I:Wfp} - 122]\3,3 11f D), (7.99)
J:Q(f"pT) (:MEZ — Py b fD] = _R§4R§ Mcﬁﬂ I[f D], (7.100)
1:4(ﬁ~pT)2(fL-kT)—2(2%§;;h(m-kﬂ—pi (ﬁ-kT)fD} _ _}%m”ﬂ)y
(7.101)
Another way to deconvolute the results are the following weighted quantities,
/d2qT Cj}][f‘]'\? fD} =2 () D(2), (7.102)
/quT JCZI[EM’;T fD} =2 f(z) DD (2), (7.103)
/d2qT ]\fﬂih IH\}J\ZT fD] = 4 fW(2) DY (2), (7.104)
/d2qT %I{W fD] =2f®(2) D(2), (7.105)
/d2qT ]\éf{WfD} — 2 f(z) DP(2), (7.106)
/quT Jv?z\ih 1[2(5 Pr) (QhM';\;f —Pe ke pl 2 g p0 (@) DO(2), (7.107)
/dqu M%im 1[4(ﬁ-pT)2(ﬁ-kT) —2(2’3M§;4)h(pT-kT) —pi(h-ky) £D] = ~124® () DO (o),
(7.108)

where f(")(z) indicate the (k2 /2M?)"-moments of f(x,k2), and similarly D(™(z) indicate the (k2 /2M?)"-
moments of D(z, zzki), in terms of the Gaussian parametrizations given by

2 n |
f(")(x)=/d2pT (21;\;2) fla,p?) = @ﬂélwf(x)’ (7.109)
2 \ N
D(”)(z)zz2/d2kT (2’;\;2) D(Z7—z2k:3) = (2]\4,%7‘;%%)711)(2) (7.110)

7.7 Lepton-hadron semi-inclusive DIS including Z-exchange

[Rainer Jakob, October 9, 1997]
Differential cross section for semi-inclusive lepton hadron scattering e + H — €’ +h + X
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do 7ra2
- = L ) WIW
dzp dy dzy, d°q, 20t Y* (CR%)
Ty O
wem L W)W/_w
Ty Qr Mz rir ) 2 Y
Ty Olem (»YZ)W;W
- 2 (Q*— Mz —iT'zMz) Q2 D)
2
yixe%
w L 2y
To (@ My g U (22)

leptonic tensors for ete™

1+ Avys .
L,Ew v — ,Tr |: Z Z/W:| = QKHZ:, + 2[,,[;‘ - gWQQ + 21)\6,u,upaqp£0

L(Zv) 7Tr [’y# {(g% + ghvs)n Z/} =g (20,0, + 20,0, — gWQQ) + 218 € po P07 + N

1 . -
LGA = 5T [(g% +8475) 7 £ l’] =g (20,0, + 20,0, — 2,,Q%) + 2ig€pa 707 + X

1 /
Lﬁz) = §T1” [(g{, + gfb’s)% l(gf, + géA’YS)’YVZ } =

(952 + ¢t (20,0, + 20,0, — gWQz) + (20594 2i€,0po P07 + X

727

(7.111)

(7.112)

(7.113)

(7.114)

(7.115)
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October 9, 1997
hadronic tensor for semi-inclusive lepton hadron scattering e + H — e’ +h + X

2MAE = / dp~dk* d*p,d’k, 6% (p, + k., — g;) Tr [fb@)ka)ﬂ (7.116)

2M W"(’Y’Y) - 2Z}L/d2kT d2pT 62(pT + kT - qT){

v ek, Lo e p,S 1o
_ gi lel + 915G1s + %leILT _ lpJ‘ipJ‘flLTDl
M;, M
p1-ki S1-She — p1-Shi ki1-S1 D
- MM, firDir
5 k.{ﬂ Atl/k
—(stsy 4 gt S| -Spy Yhar Hir — 1P MMh L PL (hi HE + 1 E)
p{L#ShL"_gl pL- Sth H _k{fSi}—i—gT’kL-SJ_h L
i 1T M, 1rHi;
k{” V}Pp er{ue }p]fl
{N }KJS + S 6 k{HGV}PS + S{MGV}Pk
M;M hL J_ pl”hLH 1 €L L;MhL 1 LpthHf (7.117)

2M WX(Z;’"/) = 2Zh/d2kT d2pT 62(pT + kT - qT){

p[lts'/] N k[lts'/] N
i " (f1G1s + g1sD1) — i J}WL firGis +1 JM:J' g1sDip (7.118)
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DA = [kt P,y 8, 4 K a) T 20) (v 506" AGYY| (019

DM AL, =220 / Pkr d*p, 8*(py + kr — qT){

v 7k 1pShio LS
— gt lgv (lel + g1:G1s + LMiphlef'T - #ff%D1

Epo-kj_ ShJ_g' GPUPL SJ_o
—ga (flGls + g1sD1 + =—£—""g, Dir — L Z £l G,

M, M
PJ_ ‘ky §1-Shit — pL-Shy k1-S1 D
N, firDir
— (sS4 S1-Sni JgvhirHir
k,{upv} IW ki -pL )
_kipy MMh [gv (R HE, + hi HiY) — i ga(hi Hi — hi H)]
Psy) + g pi-S
_ Py Ppy L;]\/L[ P1L-OhL (gvhllsH1T+igAh1lH1T)
k{ﬂs’/} + l“’k .S )
— =L ]\gj}; Lo (gvhairHE; — i gahip HiY)
k‘{“ }ppL +p{u ka_ )
2/;\/[Mh p {gv (hiyHi- — hi HL) +1i ga (hi,Hi; + hi HY")

pShJ-p + ShLei}ppr (
2M
k{f pSJ_p+S{ pkLp
a 2M,,

S{# V}PS S{# V}PS
ga h1€1 Olpt oy € hJ-pthHlT

gvhi Hyp —i gAhf‘us)

(gvharHi" + i gahir Hiy)

5 (7.120)

2M W:(VZ’Y) = 2Zh/d2kT d2pT 52(pT +kr — QT){

+i e | +gv(f1iGis + 91sD1) — ga(f1D1 + 915G1s)

p1-ky S1-She — pL-Shi k1-S1 FED
MMh 17+~1T

+9ga

[t V] [ qv]

.P .
Lo (gy fi5Ghs — gafirD1) + i ==t (gy 91D — gaf1 Diz) (7.121)
M My,

note: for the interference of v and Z exchange there are the simple relations for the symmetric (S) and
anti-symmetric (A) parts

Wit = (W <”z7>)* and WA = (Wg(yzw)* (7.122)
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MW gy = / dp~dk*d’p,d*k, 6% (P, + Kk, — q;)

xTr [‘P(p) (gv +ga7s5) " AK) (gv +8avs5) 7| (7.123)

DM Ay = th/d%T d’p, 6*(p, + ks — qT){

po
€' pLpSis

k1 pShio f
M

1 1
- giy JirD1 — M, 1Dip

(9‘2/ + 9124) (lel + glsGls +

p1-ky S§1-She — pL-Sni k1-S1
+ MM, firDir

EiaklpShJ_U 1 Eﬁ_opJ_pSJ_U 1
+2gvgal f1Gis + g1sD1 + ThglleT - TflTGls

B 4 g k) py

+ (9% — 92) [ (S{Msfﬁ_ + 94" 81 -Shi YharHir — (hi,Hi; + hi Hi")

MMy,

{uSV} +¢" pL-Shi WL KEs 4 g ky S, b L

M 1sd11T M, 1T 4
k{# V}ppJ_ +p{ pkL

- B P P R i — g )
{“ }pSth+ShJ_€J_ Dip hi-Hyr kiﬂei}pSLp+SF€i}pklph Hi-| (7.124)
2M 2My, 1 '
MWLz = 220 / ks d*p, 6% (py + kr — qT){
k1 S1-Sn1 — -Sp1L k1S
ZGJ_ l29V9A<f1D1 + 15G1s — PL Bl oL hJ]_WMfJ_ hi 7L J_ff_TDf'T>

+ (gv + 92) (f1G1s + glsDn]

(v vl

P ST
i B2 dgrgafio Dy - (ah + )G

) k[#s“]
LT:L [+ 29vgafiDir — (g7 + 9124>915D1LT:| (7.125)




Chapter 8

Calculations of distribution and
fragmentation functions

8.1 Quark distribution functions in the bag model

The starting point is the calculation of the lightcone correlation function for a target at rest P = (M, 0),
expressed as a spatial integral,

oz, kp) = ﬁ/da‘ d?ar exp (—ixMa—/\/i+z'kT~aT) (Plp(a)Ty(0)|P)|,4

= (2 )13f/d3a exp (ixMa + ikr - ar) (Pl{(—a.,a)Ty(0)|P)

1
= d? Ma, + ik7 - ar) (P .,a)l P 8.1
v | T e (iaha +ikr - a) (PI(-as @) V(O)|P) (5.1
The kp-integrated distribution functions become
1 _
ol () = / da exp (izMa) (P|i)(—a,0,0,a)T(0)|P). (8.2)
212

In the bag model one can consider the bag as a wave packet, i.e. a superposition of plane waves centered
around P = 0. The forward scattering off a bag gives the distribution function,

2M :
o) = ——— [ d® exp(izMa. + ikt - ar)

bag(kaT) - (27_‘_)3\/5

/} d®r (bag|i(—a.,r + a)T(r)|bag). (8.3)

Assuming that all quarks in the bag are in the lowest eigenmode, i.e. ¥(x) = >, ¥n(x)a, is restricted to
one mode,

Yo(t, ) = Yo(r) e W E, (8.4)

with for massless quarks w being the solution of jo(w) = j1(w), i.e. w = 2.043, one obtains
o) z, k /dga exp (ik - a &1 o (r + a)Tepg (1), 8.5
o) = 25 (k@) [Tl et (5.5)

where k = (kr, (*M R — w)/R). This can be rewritten as

2M —
bag( kr) = W%(k)ﬁ%(kﬁ) oot (8.6)
where
wnll) = [ exp(=ik- 1) do(r), (8.7)
bag

801
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8.2 Quark distribution functions in the spectator model

To illustrate the calculation we will consider a simple nucleon-quark-diquark vertex connecting a nucleon
with momentum P and mass M, a quark with momentum k and mass m and a scalar diquark. The
essence of the model is that the diquark will be considered as an on-mass-shell spectator, i.e. (P — k)?
=M, giqumk. The quark-quark correlation function is then obtained as the product of the tree graph for
N — g + diquark.
The matrix element of a quark field interpolating between the nucleon state and a diquark state is
i

(X[i(0)| P, S) = P mE e (F+m)i Y Uy(P, S). (8.8)

For a scalar diquark (with mass M), the vertex will be taken
Y5 (Pok, P —k) = (1)i; gs (k%) (8.9)
(to be discussed later). The quark-quark correlation function for a scalar diquark becomes

Dgii(k) = x e " (PS|h;(x);(0)| PS)

e YU (P.S) (2m) 8 (P = K = M2) Tu(P.S) o Ml =

(f+m)( P+M)%(;¢+m) } (2;)3 (k2g_(k;n)2)25((P_k;)2_M52)

2(1.2
2+ m(P+ MK+l g ey (P R ) (5.10)
which gives for an unpolarized nucleon
By(k) = — k) s (P = k)2 — M2)

202m) (k2 — m2)?2

><{(mM2 +m*M —mM? + (M + m)k?)
— (K =m?) P+ (M +m)* = M2+ k* —m?) ;é}. (8.11)

The result for ®,(k) can be used to calculate the projections

1
(. kr) = 5 /dk‘ Tr(I®,) : (8.12)

kt=zPt

which depend on # = k*/P* and k2. The integration over k= can be rewritten in covariant form as

W) = [k Pai? o ek o aar? - o) TR
= [arza s -0k - - —arl) ZEZL

where P, = P — k and the latter form is suitable in the spectator model where one has the delta function
§(P? — M?) in the integrand. For the k,-integrated functions,

ol (z) = g / dk~ k3 Tr(T'D,) : (8.14)

kt=apP+t
one has
Tr(T'd,)

olll(z) = ﬂ/dedk:29(95(1—36)M2—(1—95)k2_xps2) 4P+

9] zM?— £
_ 7r/ dPQ/ VTR g TRy
) S

: (8.15)
P2(min —00 4 Pt
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where P?(min) is the minimum mass contributing in the antiquark-nucleon spectral function, which is
larger than (M — m)? in order to render the nucleon stable.

Writing ]
.06 = B8 oP2 A2 .10
we get the ’spectator model’ results
Tr(I'd
oz k) = /dk2 5 (a(1— 2)M2 — k2 — (1 — 2) k? — z M2) %
Tr(Cd,)
- ) (8.17)
4(1—xz)P
U= e < o)
with
Rk = F T e e (5.18)
y vp 1_ 2 1= 5 . .

The k -integrated result is

olfl(z) = / dk;, ot ?(N)SI)H
0 ( - .Z‘) k2 — kQ(x, k?‘)
o Tr(T'D,)
= d(—k*) ——=~. 8.19
T TR T (819)

For the practical calculations it is convenient to introduce the quantities

p2(x) =m?*(1 — ) + aM? — z(1 — x)M?, (8.20)
M(z)= A1 —z) +aM? — (1 —z)M?, (8.21)

such that we have for the often appearing denominators,

k7 + p?
m2 — k2 = M7 (8.22)
1—=
k7 + A2
A2z k@) (8.23)
1—2
The function p?(z) has endpoints p2(0) = m? and p?(1) = M2, acquiring a minimum at the point
xo = (M? +m? — M?)/2M? with the value
m+ Mg)? — M?) (M? — (m — Mj)?

4 M? ’

which should be positive to avoid problems, i.e. |M —m| < My < M +m and |[M — Ms| <m < M + M,
at least if 0 < 29 < 1, implying |[M2 — m?| < M?. The condition for a valid application of the spectator
approach for distribution functions becomes

M, > M —m, (8.25)
My > M —A. (8.26)

The condition on the quark mass m is only relevant if the 'quark propagator’ pole is kept. In many cases
it is convenient to cancel it by the choice of the vertex function g(k?).

8.3 Quark-hadron vertices

The simplest way to construct valid quark-hadron vertices is to start with nonrelativistic (two-component)
spinors and replace them by a (rest frame) Dirac spinor multiplied with the appropriate projection operator.
Furthermore, to get the correct charge conjugation behavior, it is safest to start with the charge conjugation
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operator acting on positive energy spinors. Thirdly, one starts writing down everything in the hadron rest
frame. Technically, the ingredients are for the (renormalized) spinors (in the rest frame),

1 0 0 0
m_|0 @_| 1 m_]0 @_]0
u 0 u 0 v 1 v N E (8.27)
0 0 0 1
and for the charge conjugated u-spinors with C' = iv24°,
CuV) =@, Cu® = —pm, (8.28)
Projection operators involving these spinors are in the hadron rest frame given by
2
_ 149 P+ M
(@) g(a) — -
Z wHTY = = (8.29)
a=1
2 0
(e - 1 =1 P—M
> v = 5 T ou (8.30)
a=1
2 0
@) _ 1+ (P+M)ys .
;u 0] 5 S (8.31)
2 0
@(a) _ =) (P = M)ys
> ulu 5 T (8.32)
a=1
For spin 1, the rest-system spin states are e = —(e;, + iey)/\/i7 €0 = €, and e_ = (e, — iey)/ﬁ, or
explicitly
1 -t 8 1 L (8.33)
€ = — - |, € = , e =—| —i |, .
V2 0 1 V2 0
and the summation over states is pp
@ )k Hov
Ze,& )elor — —Gu + T (8.34)

[e3

The pion — quark-antiquark spin-space vertex is e.g. obtained by constructing a spin zero quark-
antiquark combination,

(= o (W Cu®)] —ul(Cu))
_ % (w5 + a5, (8.35)
ie.
ry LB L (i) 536
YT () o % Vs (P%MTH = —% (P%MTH Vs- (8.37)

The expression for ®(k) is similar as for the nucleon with scalar diquark case with the expression between
square brackets,

(P + M)
2M

(P + M)

5 | +m) % (P = M)s gy (F +m)

= 10+ m) (P M) (k4 m)]. (8.38)

In this expression the ’spectator-antiquark’ sum is taken to be P — M.
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Combining the spinors to spin 1 one obtains the p — quark-antiquark spin-space vertex, e.g. for the
spin 0 component one has

Yij(p;S.=0) =

_ % ( (Mgl _ 5%52))
= % ((O’ u(l))iﬁgl) + (UZU(Z))i@§2)) , (8.39)

which using that o,u = v,7v5((1 + 70)/2)u gives the vertex for a vector meson,

(uV(Cu®)T +ulP(cud)T)

&\H

T'u(p) o % ,Y,u (PP2J_W‘:)WP)’ (840)

L(PP_MP) m
V2o,

The ’spin’ part in ®(k) becomes (for an unpolarized p-meson)

7Y (p)v0 (8.41)

(F +m)

PP
M2

N =

= S0+ m) (P M) (k4 m)]. (8.4

In this expression the ’spectator-antiquark’ sum is taken to be —P + M.
In order to find the baryon — quark-diquark vertex it is useful to first build a nucleon spinor either
from a quark and a diquark with spin zero,

u® =@, (8.43)

or to build a nucleon spinor from a quark and a diquark with spin one, e.g.

1 2
Ui(l) = —\/geougl)—&-\/gwu?)
1 1
— _./= (1) il 1)
\/;eo(azu )i—f—\/;@r(au )i
1
- _\/; (U-eu(l)), (8.44)
K3

from which one obtains the vertices

TH(N) o 1, (8.45)
~ \}375 <w + ﬁ) , (8.46)
WYX (N)yg o —% (7“ + ];) 5. (8.47)

For obtaining the short expressions note that a projection operator P + M on the 'nucleon side’; i.e. left
side, becomes irrelevant. From the symmetric SU(6) wave function one deduces that one (with the above
factor in T%) need both vertices T® and T* with equal relative strength. For the axial-vector diquark
contribution to ®(k) the part between brackets in the scalar diquark case is replaced by

s mmns EEM (pan LB M o ] (g B2
= @+ mypan) (5= Gas) G m). (5.48)

In this expression the spin-sum for the axial vector diquark is taken to be —g* + P*PY /M?2.
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8.4 Quark fragmentation functions in the spectator model

To illustrate this calculation we will also consider the simple nucleon-quark-diquark vertex connecting a
nucleon with momentum P and mass M, a quark with momentum k and mass m and a scalar diquark.
The essence again is that the diquark will be considered as an on-mass-shell spectator, i.e. (k — Pj)?
=M, giqumk. The quark-quark correlation function is then obtained as the product of the tree graph for
q — N + diquark.

For a scalar diquark (with mass My), the vertex is as for the distribution functions,

Y5 (Pk, P —k) = (1)i; s (K), (8.49)
The correlation function that is the starting point for the calculation of the fragmentation functions is
1 . _
Buh) = g [ O @)eland; O0)
1 +m m);
= 7 (k )Zk le' Ui (Ph, Sn) (27) 6 ((k — Pp)* = M2) Uy (P, Su) v Yvivo (k )2

(2m
= [k+m Pn + My, )7(1+;5$h)(}é+m) Y (271T)3 (ng(k;nl)

S0 [+ m) (P + M) (K + m)l;; 2(217r)3 (k2g—(ljn)2)2

which is the same expression as for the distribution function and gives for the production of an unpolarized
nucleon

56 ((k— Pp)® — M2)

3 ((k—Pu)* = M7), (8.50)

1 g (k?)
22n) (k% — m2)?

Ay (k) 5 ((k— Py)?* — M?2)

x{(mMﬁ +m* My, — mM?Z + (M, + m)k?)

— (K* =m?) P+ (M, +m)*> = M2+ k* —m?) }é} (8.51)

The result for A(k) can be used to calculate the projections

AN Poy) = - [kt To(0A,) (352)

k‘*:P};/Z; kT:—PhJ_/Z

which depend on z = P; /k~ and P} or k2. The integration over kT can be rewritten in covariant form
as

. 2
AP Py = o /d(Qk.ph)dk2 5 (%Ph _ME e _k2> TH(PA.)
z z 4Py kP, /-
= —/dPQde ( (L-2)k* (A=2)Mi ., _Pf) Tr('A,)
z 22 T z 4P}; kre—P, ./
= M(1/z,—Pny/2), (8.53)

where P, = k— P, and the second form is suitable in the spectator model where one has the delta function
§(P? — M?) in the integrand.
For the Py -integrated functions,

2
ANz =12 / dk™ dk2 Tr(TA,) , (8.54)
2 k==P; /z
one has
All(z) = E/dP%lk? o((L=2)K (1—z ) MZ P2\ Ti(TA,)
) 2 ’ z 4P
2 P2(min) h +1 P2 4P 2
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where P?(min) is the minimum mass contributing in the antiquark-nucleon spectral function, which is
larger than (M}, — m)? in order to render the hadron h stable.

Writing }
Au(k) = Ay(k) 5(P? — M2), (8.56)
we get the ’spectator model’ results
1 1- 1—2) M} M2\ Tr(PA,
ALF](Z7PhJ_) — /dk2(5< Zk2—( 22) h—k)%— s) r( _)
2z z z z 4 P, k P..
T=— hl/Z
_ 1 Tx(TAy) (8.57)
2(1—2) 4Ph k‘2:k’2(27k3—v)
with A2 a2
2 2y _ % 2 s My
k(z,kT)_l_sz+1_Z+ . (8.58)
The Py, -integrated result is
2 o] A
s = e [ 2R
( Z) 0 h k2 = k‘Q(Z,k%)
o Tr(TA
= I2 a2 TAs). (8.59)
2 ket ARy

For the practical calculations it is convenient to use the functions also encountered for the distribution
functions,
11—z M2 1-—2
2 2 s 2
1/z) = —— Mj + — m°, 8.60
ﬂs( / ) 22 h P P ( )
l—z o, M2 1-z

N(1/z2) = — M+ - A? (8.61)

such that we have for the often appearing denominators,
k2 —m? = TZZ (K2 + 12(1/2)) (8.62)
K= A2 =< - — (kG +X2(1/2)). (8.63)

With the argument 1/z and 0 < z < 1, the function p?(1/2) has endpoints p?(1/z) — M7?/z for z — 0
and p?(1) = M2, acquiring a minimum at the point zg = 2M? /(M7 + m? — M2) with the value

((m + M,)? — M,f) (M,f —(m-— M5)2)
4 M} ’

12 (1/z) = (8.64)

which should be positive to avoid problems, i.e |My —m| < My < Mp+m and |Mp, — M| < m < My + M,
at least if 0 < zy < 1, implying m? — M2 > M?. This implies the following condition for employment of
the spectator model,

M, >m — My, (8.65)
M, > A — M,. (8.66)

The first condition on the quark mass is not relevant if the pole in the quark propagator is cancelled by a
special choice of g(k?).



Chapter 9

Perturbative corrections

9.1 Inclusive leptoproduction

In order to illustrate the inclusion of perturbative QCD corrections, we start with inclusive lepton-hadron
scattering, for which the tree level result, corresponding to v*(q) + q(p) — ¢q(k) with k = p + ¢ in leading
order in 1/@Q is given by

2MWH(P,q) = /dp‘dp+d2m Tr (®(p)y* (P +d+m)7") 6 ((p+q)* — m?)
~ / dp~d’p, Tr (‘P(p) ok 257")
~ ifl(xs) Tr (v ") = =g fi(ws) (9.1)

(Note that g5 = ¢/ in this case as ¢r = 0).

Perturbative corrections to this result for the nonsinglet structure functions come from the process
v*(¢)+4q(p) — q(k)+G(). This leads (omitting mass and vertex corrections) to the following contributions
at leading order in 1/@Q),

2M W™ (P,q) = / dp~d’p, 0(p* — p?) Tr (@(p) v qu_ v”)
92 Cr
(2m)?
{0 (02 = 12) O kir i br ") /2
+ Te[@(p)y sy By Fy”) /5t
+ Te[@(p)y* ke K ko] /58
TR (p)y ey Ry ]/}, (9.2)

where p/, = p, — 1, and where d,g(l) is the gluon summation in the final state. This depends on the
choice of gauge. For this a convenient choice is the axial gauge ¢- A = 0, in which case one has

_|_

/d4p d*kd*15(1%)6(k*) 6*(p+q — k — 1) das(l)

lo ol 21a1
45 T qals 4 5 9.3)

lq (l-q)
For any gluon field linked to a matrix element or constituting a final state (which means essentially on-

mass-shell compared to Q?), the above gauge choice implies a polarization summation that is equivalent
to the gauge choice n; - A = 0, where n; is the lightlike vector constructed from [ and ¢,

ny = pr\/§ <l =+ 2612;1 Q> . (94)

As we have seen that gauge choice is important for a parton inpretation of the correlation functions. The

theta functions cutting off or taking into account the first rung of the ladder contribution avoids double
counting. Transverse momenta larger than u? are not included in the soft part.

dap(l) = —gap +

901
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Implementing the energy-momentum conservation to eliminate integration over p*, k= and I, using
§(1?) to eliminate the integration over [+, introducing

file®) = [ @002 = p%) fiep?) (95)
and going to components (assuming P and ¢ to have no perpendicular components) one finds

QMW (Pq) = —g'" fi(zs, 1)

gQCF/d ~dktd?p, d?ky S 50k dus (1)
(27T)3 7Y pJ_ L 2[7 af

< {0 (K2 = u2) TH{@ @)y i Fr” iy )/
+ Tr[@(p)y" sy Iy fin®] /8
+ Tr[@(p)y* iy ] /81
+ TH@ ()7 Koy /3 - (9.6)

After this step we can parametrize the momenta

d
+

Q (1—2z)(1—zp) Q }
k = |zp—=,—"———""—— k|, 9.7
"2 zp V2t 07
[ Q z(l—1m) @ }
l = 1 — — k.|, 9.8
_( Zk) \/5 ) \/5 P L ( )
Q  Q }
= < _770 ) 9.9
EE RV NV, M (59)
. Q
= ) ) ) 9.10
p p {Epﬁ Y2 ( )
and rewrite the integration for the &'(g?) correction as
2
9°Cr Q /dxp/ / 2 < o ze(l—2)(1 — ) 2)/ - 72
—— —— | — [ dz | &k 0 kT — dp~d 9.11
217 22 72 k il 1L z, Q p a'p, ( )
The transverse momentum of the outgoing quark thus satisfies
k3 _ zk(l—zk)(l—mp). (9.12)

@ Tp
Positivity of ki restricts the domain for 2z, and x, to the regions 0 < z; <1 and 0 < z, < 1, while the
theta function provides (in the first term) a regularization near the endpoints, for x, not too close to unity
2 2

T, W T
o<y <1— —. 9.13
l—prQ_Zk_ 1—x, @ (9.13)
It is useful to have explicit expressions for the vectors
(Q 1-2, Q
ks = p+qg=k+1l=|—7, —, , 9.14
pt+q 5w (9.14)
[ Q l—zp+zpz Q ]
ke = p=l=k—q=|-(1—23)—=, ——— — k|, 9.15
t p q i ( k) V2 z, NG L ( )
[ Q  xpta—xpz Q ]
k, = k—-p=q-l=|zgp———"——"-—"F"F—"k, — . 9.16
p=4q Edve . N (9.16)
The Mandelstam variables for the subprocess are
1—
§ o= K2=-—T2@? (9.17)
Tp
. 1
Po= k=2 (9.18)
Tp
a = kK2=-F (9.19)
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satisfying § 4+ ¢ + @ + Q2 = 0 and the inverse relations are:

Q2
Lp = g 4 QQa (920)
U
=——. 9.21
%= o2 (9.21)
Useful inner products are:
1 R
2p-q = §+Q° = —Q*=—(a+1),
Tp
. 1
qu:—(t+Q2):—xp+Zk Q2:§+'EL7
Tp
20 = —(a+Q?) = T2 544, (9.22)
Tp
The vectors p acpp\/?/Q, k o 7, kv/2/Q and [ 7, 1v/2/Q are lightlike vectors, e.g. p o n,.
For the transverse and longitudinal structure function in
y PHpY
2M WH(P,q) = =2 FPr(z5,Q%) ¢" + 2 Fr(25, Q%) 52 (9.23)
(Note Fr = Fy = MWy = MW, and 2 Ff, = Fy/x; — 2 F1) we then obtain the results
2FT(£B7Q fl Tp, W
1-— 1
dxp dzk k.6 <k2 2 (1 — 21)( Tp) Qz) - 3 ( )
Tp (zp — 2k) Tp
y { (1- xp) ( — 2wy — 2002, + 32; —l— S:pzk + 22227 — 4z — dapzp + 22) 0 (k2 — %)

— 22z (xp—i—zk—i-xpzk—z,%)—i—

(1 —2) (22 4 23) }

1-uz,
- fl(IBwu

B e o fons(t- S

2= 2ap, 4 x) — 22, + Axpzy — 2002 + 2f — 2xp2; + 22027
(1 —ap)(1 — 2k)

— fl T,
49 CF/ dx”/ dzi 9( — )~ 2) Q2—1f> A <IB>
Lp Lp
" 1+ a:p n 1— 2, — 2z, + 221wy — Zkai (9.24)
(1—ap) (1 —2k) 11—z, '

2 Fy (2,Q%) = g CF / dz, / dond?k L <k2 21 (1 = 21) (1 — xp) Q2> dayzn fo <TCB> - (9.25)

Lp p

The lower limit in the z, integration comes from the support property of ®(p), namely Pt —p* > 0 or
pt /Pt = x5/x, < 1. We note a singular part o< 1/(1 — z;) in Fr coming from the first term in the
calculation. This is a collinear singularity (ki — 0) which is regulated by the theta function.

In order to perform the integration over z; one notes that

1-46 1
0

1— 2z 1—Zk

= / dzy, — £(1)In(5), (9.26)
].—Zk
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or in a functional sense 1 1
= —0(1 — z;) Iné. 9.27
1— 2z (1 — zk) ( Zk) ( )

One obtains

2C Ldx T 1+ 22 Q?
2F 2y = )+ 2 F/ e g (22 Pn (%
T(xBaQ ) fl(thu )+ 87T2 . mp fl xp ]._‘Tp n MQ
1+ 22 1— 1— 2z, — 2z2
+ m( x”)+ T (9.08)
1—2a, Zp 2(1 —zp)
2 1 1
g Cr Tp Qg dy Tp
2F 2y = 224 dz, 2 — ] = = — 2Cp — . 9.29
L(z5,Q7) Sn2 /a:B Tp 2y f1 (x,,) on ).y F ) fi(y) ( )

The first expressions gives the scale dependence of fi(x;u?), the second the perturbative result for the
longitudinal structure function. The scale dependence of the structure function is determined by the
singular term and requires an appropriate treatment of the singularities near x, = 1.

fl(xBZQQ) = fl(xBQNQ) + —

' dy Ip Q*
5 L5 e () o (55), .

1422
Py(2) = Cr {(1:Lz)+ + %5(1 - z)} . (9.31)
Since the singular piece only comes from the first of the four terms in the calculation, it is possible to obtain
the evolution without considering the full process and only consider the gluon ladder graph contribution
in the quark-quark correlation function. Implicitly here is of course the use in a hard scattering process
with a large momentum scale, which defines the lightlike direction n_. Requiring that k™ = zP™ and
implementing momentum conservation, the momenta for ¢(p) — ¢(k) + G(I) can be parametrized as

where

- € (ki —p,)°
k = - —r PT Kk
_p 11—z, 2zP*t P R
[z (’ﬂ—pL)2 1—2
| = 4 Lapt —k
11—z, 22Pt = FELPLT L
[z
p = |[p, —P"p|. (9-32)
L Zp

The quantities k2, 2k - P and (P — k)? then can be expressed in k2 and Tp,

2 2
r=k2=2%tp  — P (p? 2%k, -p,)— kLo R (9.33)
1—-z, 11—z, 11—z,
k2
o=2k P=——2 "1 2 (9.34)
l—z, =
k2
M2 = P-k%(”’l_ )—T. 9.35
r=( ) - - (9.35)

In Fig. 9.1 we show the region limited by x <z, <1 and ki < p2, which is described in the perturbative
calculation. Using the "large’ (Q? > k%) vector

Q2
q= [2$P+, —z P, 04 (9.36)
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Figure 9.1: The (dark-shaded) region k2 > p? and = < z, < 1 for x = 1/2 which is described by the

ladder diagram.

for the choice of gauge, one obtains

<I>[V+](x,k:l)

or

fl(kai) =

= 0 —Kk>)d (2, k)

+0(k2 — 1?) “égi - / dk / dI~dI* 21, §(1%) da(l) “W)@ZQW]
= 0 — k) e (2, kL)
2 ¢?Cp 1 [dI* [ dp=d®p Tx[®(p)y*fr T k")
+0(kj__p’2)ﬁ§/2l7+ aﬂ(l) — (k‘2)2

= 02— kD)o (2, k)
P Cr 1 [ dv,
(2m)3 4 ) 22 1—-m

[ dp~d®p, Tx[®(p)y* kv k"]

+0(k2L 7:”‘2) (k2)2

das(l)

a, C 1 11— T
0(u? — k%) filz, k) + 0(k7 — p?) =5 /d””p —= fi ()

21 7rk;2l » Tp
Q' (1+2}) (1 —x,)* +2Q° k% ) (1 — w) + k| ) N
2
(Q*(1 —x,)% — k% a2)

s(n?) 1 La
W—ki>f1<x,ki>+e<ki—u2>“2(jj)ﬂki [ () sty + 030

X

where the last step includes the iteration of ladder graphs. The splitting function P,,(z) is as given above.
The appropriate coefficient of the § function 6(1 — z) is easily found by using the result for f;(z, k) for
a free quark. This requires that [ dz Pyy(z) = 0.
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9.2 Semi-inclusive leptoproduction

For 1-particle inclusive lepton-hadron scattering the tree-level result is given by

2M WM (q, P, P,) = /d4pd4k 5*(p+aq—k) Tr(®(p) v A(k)v") 0 (1u® — pF) 0 (1 — k7))

/d2pT 0 (1* — p7) /d2kT 0 (v* — k1) 6*(pr + ar — k)
/dp_ /kor Tr [@(p) v* A(k) "] . (9.38)

The natural frame to work in is the one in which the two hadrons do not have transverse components
(frame II). The momenta of the photon and the hadrons can be parametrized

B '2 Q M

P = V2 2,QV2 T]’ (9:39)
_ e @

q = \[7 ﬂ7qT] ) (940)
~ fem? 1@

P = VT E VT T]. (9.41)

We note that Q2 = Q2 + Q2%, where Q% = g% = 95 4,9, We do not assume that Q% is small at this
point. Up to &(1/Q?) corrections one has

Jr
_ q Py - q
xB:_F:_Ph'P’ (9.42)
P~ P-P
while the usual scaling variables become
@ @ (e
xB:QP.q:xB@:xB 1,@75 , (9.44)
_2Pu-q _ QQ _ Q7
Zn = 0? Q2 =2z — Qig . (9.45)
The quark momenta are parametrized as
k' = [Zk %, ]{+, kT] 5 (946)
1 Q
p = [p 7; f,pT ) (947)
P

with for the tree-level calculation after implementing energy-momentum conservation z; = x, = 1. This
condition must be dropped when one considers perturbative corrections, in which case one obtains the
additional contribution

2M7W”(q,P P)=...

+7 “Cr /d pd*kd*l s*(p+q—k—1)5(1*) dup(l)

(2m)3
x {0(pF — 1?) (i — )TT[‘I)(p)VO‘kW“A(k) Y18
+0(u” — p7) 0(1® — k) Te[@(p)y" kv A(k)y" Fiy”] /38
+0(u* — p7) 0(1® — k) Te[@(p)y* ke A(k)y fsy]/ 81
+0(u* — p7) O(KTE — 1) Te[@(p)y" kv A(k)Y kr"]/8% ), (9.48)
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where p. = p; — lp and k!, = kr + l7. Implementing energy-momentum conservation we get

2M W+ (q, P, Pp) =

g2
@ C)F /d dk™ d*pp Pkr dl” diT d*ly 6% (pr + qp — kr — Ur) 6(1%) dup(l)
i
x {0(pF — 1?) 0(1® — k7) Te[®(p)y* By A(k)y" ey ]/
+0(1* — p7) 0(i® — k1) Te[®(p)y" oy A(K)Y iy ®] /31
+0(p? —192T)9(u2 - kz)Tr[‘P(p)v“kw“A(k) k)5t
+0(1* = p7) O(kT — 1) Te[@(p)y" kv A(k)y Fn"]/ 5%},
and the appropriate parametrization for the gluon momentum [ is
Q 1-xz, Q
I = 1-— = 77l )
U
First we consider the Mandelstam variables starting with
[ Q 1- Tp Q ’
ks = +qg=k+1= = = k )
< p q \/i ) \/i T
i Q Q
ke = _l=k—qg=|—(1—- - = ’
t p q ( Zk) \/5 \/5 Dr
Q@ 1Q
]{}u = — k = l — = | — —, — T, — k
p q 2k \/5 .’L'p \/§ pT T
The Mandelstam variables for the subprocess are
1-— ~ 1-— 2
o= KW= 2kl = —2Q*— =L _2p, gy,
Tp Tp Tp
. 1—2zr ~
io= k=———Q +2prlr = —(1-2) Q" ~ % Q7 + 2kr - qr,
P
Go— k2= k2 _Fk 02 _ 02
u u , Q , (Q QT),

satisfying 5 4+ £ + 4 + Q% = 0 and the inverse relations are:

QQ
§+Q*+2pr-qr’
£+ Q2 -2 kiT qr

@

$p:

Zp = —

907

(9.49)

(9.50)

(9.51)

(9.52)

(9.53)

(9.54)

(9.55)

(9.56)

(9.57)

(9.58)

The implementation of the I-integration and §(I?) depends on which of the four terms one considers. For

the first term,

drt 1 [Yde, 1
in term 1: di~di™ d*l 512:/7/(12':,/4 /d2/
in term / T 6(17) o+ Pr 2 ). = 1-a, P,

(the range in x, coming from the support of ®(p)) leading to the contribution

20p 1 [ dx 1
d2 0 2 ko 0 2*]{32 52 / _k g F 7/ Gdp
[ 0R ) Pl 00— k) 0+ ar k) G [

x / dp~ Py / Ak dop (1) TH[@ ()Y iy Ak )2

with )
x, 7 __Tp (P — pr)?
l—zp Q2 1—uap 0?2 '

in term 1: 1— 2 =

(9.59)

(9.60)

(9.61)
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For the fourth term we rewrite

di~ 1t 1
interm 4:  dl~dlT d®lp 6(1%) = /—koT = 5/ dzk /d2k’T,
Zn — Rk

(the support in z; coming from the support of A(k)) and obtain

2 1
2 22N 2 22y <2 /19 Cr 1 1
+/d pr 0w — pp) dkp 0(kp — %) 67 (pr + qp — k) 27)? Q/Zhdel—Zk

< [ o [k @l dop@) TR BB )5

with / 2
1- 1 10 1 (kp—k

in term 4: L N . ro_ (T~ T)'
Ty Ty 1— 2z Q2 1— 2z Q2

For the other two terms we use

908

(9.62)

(9.63)

(9.64)

in term 2 & 3: /dl it &y §(1 / dzk/ /d2lT 5( _U=z)d = )> (9.65)
Tp

leading to the contribution

> Cp
(2m)?

B d2pTe<u2 fp%>d2kTo<u2 —K2)

X/dp*/d’€+ daﬂ(l) Tr[‘I’(p)W“}ésv“A(k)v”}éwﬁ}/§£

+ Te{@(p)y" ki A(k)y K" /5

in which to use Il = py + g — k7 and consequently p/, = k7 — qr and k/y = pr + g

(9.66)
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9.3 Ordering the transverse momentum dependence

We make an angular expansion of a quark or gluon correlator in field space, only making the angular
structure of p; explicit. We write

We make a table with in the columns all possible TMD functions of the type ®(z,p:), pt. ®(x,pr), etc.
We use abbreviations ®™ (z, p2) = (—p2/2)" ®(z,p2).

Symmetry in pr

TMDs rank 0 | rank 1 rank 2
®(z,p7) o - -
pr @ - pr @ -
py’ @ - - i’ ®
Py @iz, p7) - Pl @ -
pepy Pi oW | - PP
p?’ph @; - ~iplremer | -

+1 g8° pi, @V
pY D, ;(x,p2) - - pY D,
pspy @y - —pl@ -
pi’pi @y )b | ~2ptoel)

+2 77 pl @)

ik
p7" ®iji(x,p2) || - - -

pep" i - - —pi <I>(2-a
pslpi* Dy, - . .
Symmetry in O

TMDs rank 0 rank 1 rank 2
(z,pr) | - -
ps @ - o8 -
P’ @ 72 Cac Oy | - 50
®(z,pr) || - - -
e ® 7 Cq P& - -
e |- I Ca (é({;gf} + Lot ) -

-5 Ca g7’ (‘iga + é?}c)
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9.4 Evolution and transverse momentum dependence

In order to investigate generally the high p,-tails of the distribution and fragmentation functions, we
separate the transverse momentum dependence and Lorentz structure, relevant to determine the leading
or subleading character of the correlation functions from the Dirac and target spin structure. Using p$
and

1
p7” = pepk = 5707’ (9.68)
in order to make an angular expansion in the transverse momenta, we write (we use y© =4 and v~ = P
with a dimensionful n-vector, satisfying P -n = 1)
apr) = [Bawpd)+ (B2) 052+ (B22) 057 (w02) +.. | P

+M [@3(I,p§) + (%T;) O (x,p2) + .. ]

0 (@ p?) + (57 ) B3 pd) - ]

T (9.69)

where the quantities ®¢(z,p2) are symmetric and traceless in the transverse indices («...) and depend
on the arguments x and p2 and get the (transverse) Lorentz structure from the Dirac gamma-matrices
and the spin vectors. The integrated and p,-weighted quantities are given by

P(z) = /deT ®(z,pr) = o(z) P+ M ®5(2) + M? y(2) 1h (9.70)
/ or <p> ®(z,pr) = 85 (2) P+ M &5V (2) + ... (9.71)
(03 p (03 (03
o <1>a§<m> = [@or (B2) o) = 85" @) P+ (972
with the transverse moments defined as
2 n
a...(n —D Q...

o ety = () B ), (0.73)

Similarly we have the (integrated) quark-quark-gluon correlation functions
G (z,21) = M B 5(z, 1) P+ M> @G 4 (x,21) + ..., (9.74)
@ji(m,xl,xg):M2<I>AA;4(x,x1,x2)P+..., (9.75)

and similarly ®%(z,z1), etc. Of course, the non-integrated correlation functions can be expanded in the
transverse momenta as done above. Some parts of ®% (z, z1) can after integration over one of the arguments
be related to the (twist-three) quark-quark correlation functions ®3(x) via the QCD equations of motion.
In the above parametrization, the functions on the right-hand side depending on = and p2 have canonical

dimension -2, while functions depending on z are dimensionless. Graphically represented we have
X, k
*TT

Hk The quantity ®(z,kr) = [dk - P ®(k; P,S) with canonical di-
mension -1 or after further integration the quantities ®(z) and

kw
?QJT a7 25 (@).

X, X

U =l

P P

@ii(z Z1,%9)
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A hard part can be connected to the soft parts via an integration over the momenta of the soft part,
J d*k d*k, ... Taking the dimensions following from this integration into account we get for the simplest
kernel, starting with two quarks with the relevant momentum components being y and k; and leaving two
quarks with non-integrated momentum components z and pr

/d4k ... H(p;k) =
dy Pk . {fi Hoo(y:2) P+ Haa(ys) + P Haalyi) )
——/dycﬂ P Hia(y.x) P
S [y dhy o {pH ) P H) + P H () )

/dy d%k,

{ Tij ﬁHég yv ) 7P + kTU 3 3 (y7 ) kTij ’PHZZ (y’ .13) ﬁ}
Qg i l i i
2 ];T /d @hr oo { ke RHEE (,2) P+ ey B (9, 0) + by PH{Y (y,2) 1}

T T
Qs Pri 2,
42 dy &k Hi + PHE J(y, 2
s (s, 2P+ PHy(y,0)}
o 1 2,
+p% p%/dyd {szHSZ(ya )P+szPH43(yv )}
Qs ;
+7pn-/dyd2 {ﬁHz 3(¥, )+H3’4(y,x)7’t}
Pr

Qg . .
+ 2 dy &k ... {kn‘ hHy 5 (y, ) + kri H§’4(y,x)ﬁ}

T

... (9.76)

(the Dirac structure preceding H refers to the fermions with momentum k, the structure following H
to the fermions with momentum p). The kernel connecting the soft quark-quark-gluon correlator to a
quark-quark correlator can be analyzed to contain (we now make the kr dependence implicit)

/d4kd4k1 L CHS(pykyky) =

**/dydm o YHG a0y )P+PH2‘;5,3(y,y1;w)}

Qs Pri i »
+ p; T /dyd’y1 .. ﬁHAgz(y yi;2) P+ Hyly 5(y, 915 ) +,PHA;574(y7y1;x)}/l}
T

Qg a;t a;t
+— f/dy dy .. sz WH S (g1 ) P+ kes HUS 5 (5, y152) + ki PHL;;g;A(y,yl;x)?‘l}
T

Qs « «a
+ pig /dy dyy ... {ﬁHA;g,g(y»yl;x) + HA;4,4(y7y1;x)ﬁ}
T

Qs Pri a;ij
= Tj/dydw o {ﬁHAsfs(y Y13 )+HA§4{4(yay1;$)ﬁ}

2
T
a is
— */dydw oS ki RH S (g1 ) + iy HOG (g, y15 )ﬁ}
T
Qs Pri d d k’ H//a,]z ki Hl/a;j,z’ .
o) p2 yayy - T]ﬁ A;3,3 (y Y1;T )+ Tj A4,4 (y7y17x)ﬁ
T T
Q .
+ pf;pm/dydyl pH G (v o)
T
a o
+ p%/dydyl ke R (g s @)
T

+... (9.77)
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To include the qqGG soft contributions we need
/d4kd4k1 d*ky .. HSS (03K, by, k) =

Qg af .

Z)j/dydyl dyo . pH 4.4 4 (Y Y1, y2; T)h
T
%s i dv dur d HB . HeP . P .

+p2 p2 yayy ays ... ﬁ AA;472(y?y17y27x)P+ AA;5,3(yay17y27x) +P AA;6,4(y7y17y271:)ﬁ

T T

Qs Pri

- D2 /dy dyy dy2 -~-{7‘LH3%;€1,3(2/73J1,Z/2;$) + Hzi;;%,4(y7y1,y2;$)ﬁ}

T

])T/dydyl dys {sz WH UL 3 (0, y1, y25 ) + For Hﬁ%ﬁ(%wwmﬂﬂ)ﬁ}
T

o
42 pL;J/dydyl dyy . HGE L (v, y2; )

pr Pr
as 1
+— p2 /dy dyr dys - riy RHLT (5, 51, s )
T T

Qg i s

3 pé /dydyl dys - kg RH SO (g, 51, s )1
P2 p3

+... (9.78)

Graphically the kernels are represented by

pﬁ o Ip
[d*k ... H(p; k)
kT lk
y.kp
pT o Ip
| [d*kd*ky ... HY(p; k, k1)
k| %k—kl K
\7
Pl o Ip
[ d*kd*ky d*ky ... HSS (p; k, Ky, ko)
MEE
Y Y %

Combining the contributions we can extract the large-p,-behavior For instance, for the corrections to @5
we find leading contributions proportional to a,/p2. Collecting these and similarly for other quark-quark
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correlators, we get
Aq)Q(xap?")

A (z,p2)

AP (z, p7)

A@:g(l',pi)

Ay (x, p7)

A®Y (z,p2)

A<I>4(£C,pi)

A (z,p})

AP (,p})

%/dy Do (y) PriHa 2 (y; )

Qg M2 ig i
o v e we) + [ dy vaty) s i0)
DPr DPr

+/dydy1 (I)Aa;B(y»yl)ypﬁszé,Q(%yl;-%')}
Qg M2 id
82 [y eswphiy o)

P2 pi

o / dy s (y) i () + / dy %) (y) Py (y; )

P
+/dydy1 (I)Aa;B(yayl)yp?/lHZ;S,S(%yl;-%')}

o / dy ®o(y) PHHS (v )

a, M? . .
[ v o) wHE i) + [ dy 2P (52)
T T

+/dydy1 DA (Y y1) Hiyly (v, 15 7)
1 ;.
+/dydy1 Y 5 (v y) PREAGE (v, 315 )
+/dydy1 dy2 (I)AAaB;4(yaylva)PﬁHji;;L,;a(yaylvaQfE)H
oy M?
2
+ [ dy @l ) PRS0, 02)]

[/ dy ®3(y)Hy's(y; 7)

%[ [ dy atoyipHatin) + [ dy 08P i)

T
+/dydy1 Paa(y,y1)HAu4(y, 915 0)
+/dydy1 ‘PSL;3i(y7y1)PﬁHA?§f4(y7yl;w)
+/dydy1 dyz q’AAaﬁ;zx(%3117yz)PﬁHZi;z;A(y,yuy%x)
Qs i
17%[ dy ®3(y)Hj 4(y; )
+ [ dydy @l ) PRH (0. i0)|
e ij
| v 2 PH ()
T

+/dydy1 DAy, y1) Hald 4 (v, 115 7)

+ / dy dyy dys ®axapa(y, y1,y2) PRHAA L (v, y1, 923 7)

913

(9.79)

(9.80)

(9.81)

(9.82)

(9.83)

(9.84)

(9.85)

(9.86)

(9.87)
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9.5 Equations of motion for various parts

For the matrix elements we write

d = ~ <I>2+P—M+<I>3+ (}KYW@L} (9.88)
= %777+ _77 @, + % ‘133} + %7 o % Q3 + <£{r>2 ol @4] ; (9-89)
e = %’VW* 20, + % o <I>3} : (9.90)
Nh = %7—7+ _}]ﬁy <1>3+2(]Z£>2<1>4 : (9.91)
%‘I’% = 7 (I’%s‘Fﬁ D4+<1]3Vi)2’7+q’(1¥3,5 (9.92)
= %v‘v [v ohH 3+ ]Jﬁ P 4} + ;v v % DpH 4+ (;ﬁ)%* ‘P%,s] - (9.93)
The equations of motion imply:
TiD Y+ iD ) +4*iDgtp — map = 0. (9.94)

Multiplying with a good projector y~v+ /2, we get for the matrix elements

1 _ o 1 _ o

27 Y25 + 7 2 —md| = 37 V[Pt @ 4+ 70 @H —m @] =0 (9.95)
or for the leading (twist-3) part in the expansion

g, (9.96)

Yo PP g =12 P35 — 7

9.6 The unpolarized case

The quark-quark correlation function depending on k* = zP™ and k; is for a spin 0 or unpolarized
hadron, including only leading (M/P*)° and subleading (M/P*)! contributions, given by

Oz, k) = ;{fl(a:,k ) +ihi(z, kr )ﬁ;}’y

- yﬂi{e(ag,mﬂﬁ(x,kaﬁ;Jrz‘h(a:,kT)W} (9.97)
The k,-integrated results are
o) = S h)r
" ”Aﬂ{e@mh(x)”gyﬂ}, (0.98)
1 8@ = %ihf(l)(x)ﬁv‘
b A ), (9.99)
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The relevant projections are (we do use the tensor ot~ = (i/2)[y",7~] but we use 7¢~* instead of the
tensor ot = iydyt),
OO N, kr) = fi(x, k), (9.100)
M
O (v, k) = S el kr), (9.101)
- M
ol N (a k) = 7 i@, k) (9.102)
oL (2, k) = —i kS hit (2, k), and @207 (@) = —i g8 pi D (a), (9.103)
o M al~B s M
S0 (@, ky) = S kS (2, k). and oo () = go? 5 1 O(@). (9.104)

For the ¥(0)iD%)(x) correlation function (bilocal, i.e. integrated over d*k;) one obtains from the
equations of motion

1 _ gt k< .
= O (@ k) = 55 (:c i % hf) (9.105)
1 a
yYi @gg'y+](x7 kr)=(xe—mfi —izh) (9.106)
Using the quark-quark correlations multiplied with k%,
kS k¢
3 o' (2, k) = 57 e k), (9.107)
k a a 1 o .
e gbi (@ k) = ol N (1 ky) = 20 D (2, k), (9.108)
the difference ®§ = ®¢ — k¢ ® is given by
1 ot k& .m
o k) = (me — fy o+ hf) (9.109)
zfL
1 jpot m . .
M@ga N2, kr) = ve— o h —ixh—2ih W (9.110)
s —izh

xe

The most general form of quark-quark-gluon correlation functions integrated over all transverse mo-
menta but not integrated over x; are

M _
®p(@,01) = 557 Eplz,2)97 77, (9.111)
from which one finds that
1
7 2ol@) = /d:vl Ep(z,x1) vy~ (9.112)

(similarly for ®4(x,z1)). The projections are

S (0, 20) = 2 57 Epl,z1) (9.113)
1 a
M@;Ew](x) = 2/dw1 Ep(z,a1). (9.114)

9.7 Sample calculations

9.7.1 The fermion propagator

We will demonstrate perturbative calculations, in particular when one uses a lightcone gauge in detail for
the example of the self-energy contribution to T'?)(p). Writing the (truncated) Green’s function as

D) (k) = —i (Sp) " (k) = =il — mo — S(k)], (9.115)
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one has the expansion

1 1 1
Sr(k) = p—— +k—mo Z(k)}é—mo +.... (9.116)

The contribution of the one-loop diagram,

RN
R an
k-1

to the self-energy in the lightcone gauge is given by

dil (k=7 +mo)y’ das(l)

Y(k) = —ig? 11
(k) = —ig CF/ 2m)% (2 +i€) (k — )2 — m2 + ic)’ (9.117)
with 5 5

o o 1*n” +n%l

d*P(ly=g 6_17+' (9.118)

The numerator can be written as

numerator = —2(F — J) + 4mg +

= moll T vm)

Because of the expansion around the zeroth order result, it is convenient to rewrite J/as (K—mg)—(f—J—my),
leading for the numerator to

numerator = —2(f — ) + 4myg
+ BT+ mo)k—mo) (k—mo)(f—J+mo) .
I+ I+ 7

+ (}é—Verol)JEk—V—mo) n (%—V—mol)yé—ﬂmo) )

We consider the case kr ~ k= ~ 0 and k* = 2 PT, while I~ = «l2/2P* and [T = y PT. We need the
following integrals®

2
_ . g 4 1
E = -
1(k) ’( )4/6” (12+ie)((k—l)2fm(2)+ie)
_ 1
N 47r2 27rz (ay — 1+ ie)(aly —x) — 1 + ie)
d2l
= 471-2 dy @11 Y,y — )
- 47r2 li
= % mA? (9.119)
© 4rw ’ '
2 +
_ .9 4 k
Yo(k) = — d=l
2(k) ! (2@4/ (l2—|—ie)(( 12— m2 +ie)lt
B d2z 1
N 4772 2mi (ay —1+ie)(a(y — x) — 1+ ie)
= 47r2 dy — G)11 Y,y — )
= 21/— 20° (y,y — x). (9.120)

Ireminder: 9(1]1 (y,y—=z) = % [0(y) 0(z —y) — 6(—y) O(y — )], thus one has for the y-integration (for positive x) foz dy



16 March 2001 917

We also need the integral

92

o (2m)% /d4l (12 +ie) ((k — 1)2 — m2 + ie) k+

_as/d%/d Q/di 1

472 2 N (ay — 1 +ie)(a(y — x) — 1 + i€)
Qg 21, Y 0

- 47r2/ 2 /dy x@n(y,y z)

1
= _ 3. 121
25 (9121)

It

It is useful to have the following integrals

— . g 4 J
Falh) = =iy /d Tk —m i)
_ % ks, (9.122)
— -9 k—7—mo
falk) = = (27)* /d4l (12 4 ie) (k — )2 — m2 + ie)
= %}621 — My 21, (9123)
— .9 F—7—mo
fulk) = —i (2m)4 /d4l (12 +i€) (k—1)2 —m2 +ie) T
1
= kj [%‘ (22 — 21) —myo 22]7 (9124)
33
- g9’ 4 k=74 mo
fiak) = (2m)4 /d : (12 +ie) (k= 1)2 — m + ie) It
1 2m
= o (B =20 4mo 3] = Ra(k) + k—f o, (9.125)
33
where one should realize that the only nonvanishing contribution in Jis § = Ty~ = ,lc—: k. Note that
Yt Ra(k) = 283 — R1(k)yt and Ra(k)yt = 283 — T R1(k). Tt is now straightforward to find the result
S(k) = kX1 +4mo X — (F —mo) Ra(k)y" — 7" Ra(k) (F — mo)
= —(F—mo) X1+ 3mo Xy — 433 (k — mo) + (f — mo) 7" Ru(k) + Ri(k)y™ (F —mo)
(9.126)
Inserting in the expansion for S (k) one obtains
) . 1
A T R T R
__ _ 1
G 1 Fel) = Rk s
= (= Relby) OB (1 (k)
| — (k/' - mo(l + 321)) | S
Uy (k) Ui (k)
= Uy k) (1=%) Uy (k) (9.127)
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with m = mg(1 + 3%;) and up to the required (first order) precision
Ui(k) = 1—=7"Ro(k) =1—253+ Ri(k)y"
1
= 1 D)yt R o D)y (9.128)
Us(k) = 1+ Rao(k)y" =1+285 —y" Ru(k)
1
= +k—+23(/€)}67++k—+22(/€)7 : (9.129)
9.8 Evolution of fi(z)
The tree level contribution is given by
a® 1 _
1) = 7 [1@) T [y 7] (9.130)
= fil(2). (9.131)
The ladder graph gives using
(&2
k= [2 kT,x,kT} , (9.132)
—[%p2 .
| = [2 K2,z y,kT}, (9.133)
p=10,v,07], (9.134)
and the trace
o kT)21- ktk, -1,
Tr [y kv ] dap(l) = —8k2 —32 ( z)+ +16 —
2
- K2 {816am+16m
(x—y) (z—y)
_ g2 [8(x +y) — 16 a 2?] (9.135)
! (z —y)
the result
[a!,Jadder] _ . 9°CF / dy dor d*kr 2(z +y) —42% ]
! () = —im (2m)4 2 k2 (r—ylalz—y)—1+id[a m—1+ie]2f1(y)
A’k T+y 222
= CF/ / {Ex y; 21(%55—1/) - (m Y) @21( y)} fi1(y)
o a (y? + a2 x
- e[S [ [ V) o — )+ 260 A1)
d2k; 24 x2
o / W) 60 - 1) A
d2k y +x )
= e [ “hw) (9.136)

(note that the support of fi(y) is —1 <y < 1). For the self-energy graphs on the two fermion legs we need

the traces

1

k
1

_ - A2 _ _

= w [y (e

= —4%; —1633 =4(3%; —43,),

E(k)] = Tr [VV*

435 —435,).

=
| —— |
\QI
™M
5
N—
~
| I
|

(S0 + BR()Y + v*fz(k);é)}

o)

(9.137)

(9.138)
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Then (taking into account a factor 1/2)

1[a_§,se1f] () = (=%1—4%3) fi(z) = (3% —4%2) fi(x) (9-139)

= 3 (3-0 [ L aet-0) )

s Pky
- ;‘ﬂcF/ki{2f1<x>—2f1<x>/dyxfy@?ay,y—x)} (9.140)

Using
/dy —y (091 (y,y — 2) + 6% (x,2 —y)] = 0. (9.141)

the total result becomes

A’k y? +a?
o [ [ v

The integral runs from = < y < oo, but for the first term it is limited to x < y < 1 using the support
properties of fi. In the next step we introduce 8 = x/y and find that

Al = 2 fio)| o)+ hio)}

r<y<l1 — r<p<I1,
r<y<oo <— 0<p<1,

y Py [ [1d 2 '
@) = o CF/ K2 { % 1+B)f (2) _2f1(w)/o 4w 1iﬂ +gf1($)}
B ke ﬂ 1+52 3 4
— / / 7/6’ { . " 5001 5)] f1 (6) (9.142)

= o / B PO (2)

9.9 Gribov-Lipatov reciprocity and evolution of D,

Thus

For the fragmentation function D, the tree level contribution is given by

Py = Ipem[y =D 9.143
1 7(2) = 1 1(2)1”[77}— 1(2). (9.143)
We note that the result can be obtained from the distribution functions by interchanging everywhere the
+ and — components and then later make replacements x — 1/z and fi(z) — f1(1/2) — D1(2).

The momenta for the ladder graph in the case of fragmentation can be written

1
k= [x % = kT] — L % K2, kT] , (9.144)
= [m —y, % k2, k;T} (9.145)
p=1[y,0,07], (9.146)

involving also simply an interchange of the lightcone components.
We now look at the evolution equations of fragmentation functions (FF) by looking at those for distri-

bution functions (DF) in the domain > 1. Starting with the result for DF’s obtained via fl[ai](x),

x

%f(w) = 520k /Ooody {@f(y)—Wf(x) Oule,z—y),  (9.147)

allowing for different numerators in order to treat the various distribution functions (f1, g1 and hy). We
consider .#'(3) = 2 3P, which will make it easy to get the results for A4 (3) = 1+ 82 or A (B) = 26. In
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all these cases 4 (1) = 2, the numerator result coming from the fermion self energy. We find (defining
B = x/y) for the DF

d _ o [tdB2p () 28
2O I e MO R
e<p<1 0<p<1

For the FF we employ an continuation to the region > 1 and then a substitution x — 1/z. For a quark
with k= = x P, to produce a hadron with P, the radiated gluon can have momentum ¢~ = (z — y)P,’
with 1 <y < z. This is obtained via the generalized ©-functions if one uses for the timelike fragmenting
quark a propagator prescription 1/(p? — m? — i€). Thus one has

o 1 1) 0-z2) — 021z
@?1(m1,$2)—/% (axy —1+ie)(amg — 1 +ie) 1 ;1—332 —
_ O(a1) —O(x2) _ O(—w2) —O(—21)
. [ da 1 o [0(z1) 0(z2) — O(—21)0(—x2)]
@ll(xl’m)i/%ri (axy — 1 —ie)(aze — 1 +1i€) 1 — T2
_ _H(ml) —0(—x2) _ _9(962) —0(—x1)

and for positive z-values

>0
9?1(x,x—y) = )

O (r,x—y) = ———

This modification happens only for the ladder graph, not for the self-energy. With the further replacements
z — 1/x and f(x) — f(1/2) = D(z) one obtains

d oy [dB NP, [z Ydg g (1)
w0 -5 5 G)- LA e
1<B<z
d _ag [dB AN (B) Ldg B (1)
T O N T S e
| ———
1<B<1/z 0<B<1
_a, [Ydp [BA(1/B) <Z>_5JV(1) }
- s[5l p ()T
2<p<1 0<p<1
_as [MdB BA(1/B) (2>
S w ) F - C\B (9.149)
We find the splitting functions
gy — ¥ (B)
PY(B) T (9.150)
plP] (B) = w (9.151)
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For a polynomial .4 (8) = 2 6P the moments become

2 P
PO =
1 n—14+p _
1] _ g1
— A _2/0 dg - =
2P~
PO = G,
P
— Al —2/1 dg -1
231-»
PO =

bl grr—1 Rl =1, 2 2 2
— A%]—2/dﬁf——22f——22fﬁ-g+ o+

B

921



Appendix A

Lightcone coordinates

We use two different notations for four-vectors,

a* = (a°a',d? a®) = (d°, a), (A1)

a* = [a",a",ad",d®] =[a",a",ay) (A.2)

The metric tensor is given by goo = —g11 = —g22 = —gzz =l or g4+ = g-— =0 and gy = 1 and defines
the scalar product

a-b=g,,adb = g™ (A.3)

The first vector notation corresponds to the expansion of a vector in a Cartesian basis with orthogonal
vectors t#, ##, §*, 2# with ¢ timelike (#2 = 1) and the others spacelike (22 = -1, etc.), the second notation

with an expansion in two lightlike vectors n/, and n” (n% =n? =0and ny -n_ =1).
The antisymmetric tensor e*¥*7 is fixed by
12 — 12 — (A.4)
We employ the notation
P a,b,cpdy = €00 (A.5)

A useful property is the following way of bringing a vector into the antisymmetric combination,

ehvpro gaﬁ’ = avPo guB 4 ehapo gVB 4 ehvao ng 4 ehvpa gaﬁ. (A.6)

The following fourth rank tensor is also useful in many applications,
SHVPT gp,ll gpa _ gup guo +gua gyp. (A7>

In several cases we will also be dealing only with transverse vectors, projected out by

m= gt —nlin” —nfnl, (A.8)
with as only nonvanishing elements gi! = g2 = —1 and the corresponding antisymmetric tensor with
€l =1 given by

N (A.9)

(or equivalently ¢/ and ¢/"). Given a transverse vector a, in the appropriate frame determined by two
components (a',a?) or determined by its length |a,| = \/—a2 and an azimuthal angle ¢,, such that

att = (al,az) = |ar|(cos ¢q,sin ¢, ), (A.10)

we can consider the vector
al = é¥a, = (—a®a'), (A.11)
which has the same length, |a;| = |a,| but an azimuthal angle ¢; = ¢, + 7/2. We note that @y = —ay.

Again we use the notation with vectors as indices, e.g.

g = ghvaub, = ar -br = —ar - I{T, (A.12)
6? = El;yaTubTV =ar Nbp = ar - by, (A.13)
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and we note that we can write af = g7/ and ah = g2/'=e;*. The symmetric traceless tensor constructed

from two (transverse) four vectors is denoted

S?ubu — a;ub;} _ (GT . bT> géf”. (A14)
In terms of the azimuthal angles,
95" = —lax|[br| cos(¢n — a), (A.15)
€2 = |a,| |br| sin(¢p — ¢a), (A.16)
S;de = |az||br|ler||dr| cos(¢p + ¢a — Pa — Pe). (A.17)

For products of tensors we have the relations

9 git = gl gt + € el (A.18)
el € = g1 g1’ — i 91, (A.19)
€ab gii = b gai 4 2t gbi, (A.20)

Employing two unit-length transverse vectors £# and §* = Z*, one easily derives the expansions

ay = g7t = —g7" 97" — 97¥ 97 = a" B + a¥ P, (A.21)
Gt = it = gl = g g — g7 Ut = —a¥ ¥ 4 a” . (A.22)
where a” = —(ar - &) = ar - & and a¥ = —(ar - §) = & A ar. For second rank tensors one obtains

aiﬂb?} _ (aT X bT) géfy _ S?/Lbl) — S;"cb'r S;/Lfl‘u 4 S;n"by Sﬁpyu

= (a®b® — a¥bY) (2213 + g) + (a®bY + a¥b%) i, (A.23)

a[T“b;] = g;[“g;]b = e‘;b etV = (a"bY — a¥b”) e, (A.24)
% (a;;@?} n b;ua;}) _ _goaby gauew | gasbe gruyy

= —(a®bY + a¥b%) (2813 + g1 + (a®b® — a¥bY) 2PV (A.25)
5 (a5 —plrard) = e i = (0t — a0 g (A.26)

Finally we want to give the following useful way of transforming a tensor involving external momenta
qr into quark transverse momenta k, and p,. Having p; 4+ k; = g, one sees that

Saeal = Gporl 4 GrakB 9 Graks, (A.27)
and elimination of the mixed combination in
2(prkr) SR = |2 SpoPB - p2 Rt (A.28)

The latter can be obtained by using |k,|Z = k; and working out SEPB and SPeks.

Spherical basis

Transverse tensors can also be labeled according to their rotational behavior in E(2). We can employ a
spherical basis, starting with
aV=a" +ia¥ = las|e'? (A.29)

generalized to
al™ = (ag + i a?)™ = |ag|™ ™. (A.30)

These are labeled by integer m values. The transverse vector has rank m = 1, the symmetric rank-2 tensor
k2P has rank m = 2. The components of a tensor of rank m are not independent. Being traceless and
symmetric they satisfy

. 1
alltt = — ai i} Traces. (A.31)

T m!
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The two independent components can be recast in

i1 lar|™ +imep
GT < F@ . (A32)

The components are actually proportional to cos(mep) or sin(mep). For example we have

¥ = (a® +ia¥)? (A.33)
= (aa"a” —3a%aYaY) +i(3a"a"a¥ — a¥aYaY), (A.34)
and read off that
aZt = —al¥ = i (a®a®a” — 3a"aYa") = |QZ‘3 cos(3¢p), (A.35)
ai®™ = —al¥¥ = i (3a"a"a¥ —avava¥) = ﬂ sin(3¢). (A.36)

In order to consistently include tensor built from different transverse vectors we define

1o
Tytm ﬁai .. .alm} — Traces. (A.37)

Such tensors are simply the product of lower rank tensors, e.g.
TP = oMb = (a® + ia?) (b + ib¥) = (a"b" — aVb¥) + i(a®B + a¥b%) = |as| |be| /Pt (A.38)

More general

TéZ%aerb) _ (ma)b(mb) laz|™ |be|™ e i(Mapatmopy) (A.39)
We can reduce the rank by constructing
Télf)na—mb) _ agma)bgmb)* = |az|™ |by|™ ci(Mmapa—myen). (A.40)

A wellknown reduction is the scalar constructed from two vectors,

Ty = afb" = Ja| by| /@) (A41)
= (a” +1ia¥)(d* —ibY) = (a®b” + a¥b?) — i(a®bY — a¥b") (A.42)
= (ar-by)—i(ar Ab;). (A.43)
We define the explicit components for any irreducible tensor as
e
Gt = = 1’"’ cos(p1 + ...+ ©m), (A.44)
1 i’ (m)

7n

— — (O D T )= sin(1 + ... + ©m), (A.45)

2m1

where A; can be any object, spin vectors, gamma matrices, etc., as long as they have a transverse vector
character. The other components are now fixed. In terms of

T, =04, |eilerttom), (A.46)
one sees that the Euclidean contraction of two tensors can be written as
giaim Ty 2; ( ropme a(Tm)*FiiT_)..Am)
|az|™ | (m)

= S Ty 4, cos(p1+ ...+ om — mep). (A.47)

Furthermore, we have
[ 5 )™ () = lar ™ B (A.48)

This immediately gives
[ 4 i, = (4E) e (A.49)

and thus also

d@ at...a i1...1 i1...0 a 2\ aq...o
5 e iayain v, = (140) r (A50)

s
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Integrating over transverse momenta

We can write down the following relations for integrating k:i dependent functions over k.,

/dsz kSkL ... = f%g;‘fi/dsz k2 ... (A.51)
/d% kCES KLk .. = é (957957 + g9 9B 4 g2P gid) /d% kL., (A.52)
[ wnt (ks ) = (e aiol - g [ R (A.53)
/dng (k?kﬁ + %ki gé‘”) (kiki + % k3 g?) = é (92°977 + 957 95" — 93P g¥) /koT k1A.54)

or using SE*F = 2 k;‘,‘kf — k2 goP =2 k;‘,‘kf + K2 ¢2? . one has the relations
/koT Shaki =0 (A.55)
/d% GhokB ghiki = 3 SiBi /koT (K2)%..., (A.56)

We also want to discuss the full products of irreducible tensors,

g R | y
K = ik, = o k2 g, (4.58)
R = KLRIRE — 3 k2 (kS + gih] + Ik | (A.59)

P = RS,
~5 k2 (g7 kKL + g kI KL + gl kI KE + gIF KL KL + o' KL KY + gk kL kD)

1 g o o
+ — (k2)2 (9 g + giF gl + g2 gF)

24
= kLI kR EL
-5 k2 (g kS + gkl + gl kIF + gIF K + gI' kI + gkl k)
1 g o o
- g (kD) (97 gk + giF git + gt gIF) . (A.60)

These are all traceless symmetric tensors,
grij ki = grig k" = gri KM =0, (A.61)
Products of tensors can be decomposed into these irreducible ones, such as
R 7Y 1 2 o
kL kY =k + 5 kT g, (A.62)
) . 1 )
ik = KRk — 5 K2 g0k
. 1 . . )
=k’ + 1 k2 (927K + 97k — 95ky) (A.63)
kZT kgﬂv _ kgaﬁv
1 ) ) . . ) )
t1 ky (2057 kY 42007 kY + 207 kP — g B — g2V kY — g2 kYY) (A64)
K kg = ko

+ = ky (0K + gk + gl kY + gk — 29k — 2927 k)

(=2}

+ = (k2)? (992l + g gi™ — g1 g2, (A.65)

ool =
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Convolutions for transverse momentum integrations

We look at the convolutions
I[F] = /dsz ky 8 (pr + kr — qr) F(d2, 97, k2),
and calculate weighted results. Linear weighting gives
/dng ky 6% (pr + kr — qr) 3 F(07, k) = 63 Ald2),
with
@A) = 5 T [(2 +0% — )@ )]

Quadratic weighting gives

[ e et e = a0) SEF QR = S27 Ba(al),

[ e @ 820+ ke a0) SE PR = S Balad),
with

ar Bi(a?) = I [SP™1 F(p}, k3)] =

Gz Ba(a7) = 1 [SP* F(p}, k3)] =

N = N =

For quartic weighting, we get

/ pr d®ky 0% (pr + kp — qr) SPOPP SPPI P(p2 k2) = §4%P §993 (2 D, — D)
+ g7 S (D1 — Dy),

/ Ppr d*ky 62 (pr + by — qr) SPOPP SKKRI p(p2 |2) = §9998 §9i47 (2 Dy — D)
+qr S (Dy — Ds),

[ e e ke = ) SESPR PR = S0 S5 (2D ~ Do)
+ 4¢3 5977 (D3 — D),

with

qr Di(q2) = I [SPPPP F(p3,k3)] = I [p7 F(p7, k7)),

gr Da(q3) = I [SPF" F(p}, k7)) = %I [(gr — 245 (K3 + p2) + (07 — k2)*) F(p3, k2)]

ar D3(q7) = I [SEPFR F(p2, k7)] = 1 [SP*™ F(p}, k)] = I [p2k: F(p7,k3)]

g Da(q2) = I [(S2%)* F(p3, k3)]

gz Ds(q7) = I [SP? S74% F(p7 k7)] |

qz De(q3) = I [(SE™*)* F(p3, k3)] .

I'[(qr —2¢2 k2 + (2 — k2)?) F(p2, k2)]

I'[(g7 (w7 +k7) — (07 — k3)%) F(p7, k7)) -

(A.66)

(A.67)

(A.68)

(A.69)

(A.70)

(A.71)



Appendix B

Frames in leptoproduction

B.1 The inclusive case

Consider ¢(k) + H(P) — ¢(k¥') + X in which the momentum transfer is ¢ = k — k’. Using lightcone
coordinates the momenta k, ¢ and P satisfying ¢*> = —Q?, 2P -q=Q?/x and P-q =y P - k are given by

1Q ye& 1 T—y,
= |7 = y— g + Q 14 ) B.1
{y v2iovey Tt y (B.1)

Lr
Q QF —@? }
== =z = , B.2
=5 5m e (B.2)
xM Q

P [ —*_.0 } B.3
<Q\@> a2 (B3)
where P~ = M?/2P* will be neglected in the rest. Here we have allowed for an arbitrary transverse

momentum in ¢ being g, = @+ ¢r. We note that the parton momenta satisfying p? = (p + q)? = 0 (up to
mass effects and with |p,.| < @) and the final state remnant momenta are given by

p=oP e = 0. % (p,)] (3.4)
Y=p+tq= [\%,QQ\%,%], (B.5)
PP=P_p= [0, “;x) \%,OT}, (B.6)
Pty = [\% Q7 Zéléx)Q2 , qT}. (B.7)
Note that the hadronic mass is given by
W2 = (1;1’) Q>  or :C_Wff@. (B.8)

Specific frames are:

(1) QT =0.
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In this frame one has for the momenta

_te -y Q@ ,vVi-y;
- [y ey wéy ()
q= [%7_%70T:|7 (BlO)
Q
P= {o,m,oT}, (B.11)
P =aP+q= [\%,0,04 (B.13)

(2) g, = Q11— vl (HERA frame).

In this frame the electron and target hadron are parallel and one has

1 Q
k= b 750 OT}, (B.14)
q= [%a_y%v_Q\/l_yéT}a (B15)
_fo. 9
P [o, x\/ﬁ’OT}’ (B.16)
r -y @ Q@ V(1-y)
F=k-q=| TR L, R Ak (B.17)
L _[@Q Q ,vl-y)
P =aP+q= [E’(l y)E,QTeT]. (B.18)
(3) QT = Q
In this frame one has in essence that ¢ is transverse, implying for the hadronic momenta
q= [\%,O,QQT], (B.19)
Q
pP= [o, T\/E’OT] (B.20)

(4) Qr | Q (Bjorken frame).
First boosting the original momenta by multiplying the plus components with a factor /@2 — Q?/Q and
the minus components with the inverse factor one obtains

2 _ )2 2 _ ()2
o= [ 25L B2 4] (B.21)
_ Q
pP= [0, o _QZ),OT] (B.22)

In the limit @, | @ this frame has a purely transverse momentum exchange and an infinite momentum
for the target hadron.
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B.2 Diffractive scattering

Diffractive deep inelastic scattering is considered as the situation in which a proton momentum P and
photon momentum ¢ in the initial state, lead to a colorless proton remnant P’ with invariant mass squared
ME ~ M? = P?. We consider specifically the regime, where (P + ¢)? = W2 > Q? = —¢*> > M?. This
implies that

Q? I
W2+Q2+M2  W24+Q2 W2

The momenta are written in lightcone components

Ty = Q%/2P-q = < 1. (B.23)

pP= [%,P*,OT} ~ {O,PtoT}, (B.24)
_—Q?
q= [q ,27_,04, (B.25)

with 2P*t¢~ ~ W? + Q? and they exchange a momentum p, leaving a proton remnant momentum P,

[ t+p? n
= [ e P o, . (B.26)
M2 +p2
P = [W (1= 2,)P*, =y . (B.27)
P

The exchanged momentum squared —t = p? is smaller or of the same order as Q2. Two often used frames
to look at this problem are the brick-wall frame (A) or the photon-proton CM frame (B). We'll add a third
one and refer to it as the diffractive frame (C). We have

(A) ¢ =Q/vV2 and P*=Q/z,V?2, (B.28)
(B) ¢ =V(W2+@%)/2=W/V2 and P"=/(W2+Q?)/2~W/V2, (B.29)
(C) ¢ = Mx/v2 and Pt — WQ;_QQMX\/?. (B.30)

In the brick wall frame the photon only has a space-like component and it naturally becomes the photon-
parton CM system. The photon-proton CM frame or the diffractive frame are more natural for diffractive
events. We see that the quantities ¢ and p2 appearing in the exchanged momentum satisfy

p2 M2
ty T g Y _ _M?) or t+p2~—z.(MZ—M?). (B.31)
1—xp 1—xp

The exchanged momentum will be added to the momentum ¢ producing a final state spanning a rapidity
range with invariant mass squared M%. Taking it to consist of two (massless) momenta

2
q1 = |:aqia 23#3 qT:|’ (B32)
2
¢ = {(1 —a)g, 2(1?2)(1_, —qT}, (B.33)
Qz

PX =1 + q2 = |:q77 aOT:Ia (B34)

20(1 — a)g™
where we have introduced Q2 = g2 and we find that the invariant mass squared M% is

e @
a(l—a)’ M%+Q2 M3

M2
and 1 —a = X

M3 = ~_ X
* M + Q%

thus o~ ~ 1, (B.35)

where the approximation has already assumed a < 1. The system X spans a rapidity range from 7, =
31n(qy /ai") = In(aq™v2/Qr) to n2 = 5In(gy /a3) = In((1 — a)g™ v2/Qr), leading to

An:1n<m>%—lna—az—lna. (B.36)
a
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A sizable rapidity range requires « to be small (and 1—a« close to one), which makes M% substantially larger
than g2. Including the transferred transverse momentum component p, in p the final state momentum
Px doesn’t change the validity of the various approximations above.

Matching the plus components in p + ¢ = Px,

_Q2 -+ Qi M?(
Pr=—1 —~_—= B.37
2q~ + e 20(1 —a)g—  2¢~ ( )
gives
M3+ Q? B @
N ——— d = —=—" B.38
Tp W2+ Q2 an ﬁ Tp M)2( n Q2 ( )
Looking now at the (exchanged) momentum
2
k=@—q=p—q=|-aq ,z,P" - ﬁ,m - qT} ~ [—aq_,ﬁxpP+,pT - qT} (B.39)
it in essence carries a fraction « of ¢ and a fraction z of P, and has a low (negative) invariant mass
squared of the order of 2ax; PTq™ —...Q% ~ —aQ? — ... Q% ~ —Q2% (Q* + ... M%)/M% Explicitly we
get in the parton-photon CM frame (A) and the nucleon-photon CM frame (B) the momentum
@ [=Q7Q @
- [ r% & } B.40
Y [—a WE+ @ @ pr—q } (B.41)

which acquire natural meaning as 'parton’ with momentum Sp = x5 P taken from the momentum p = z, P
(frame A, Pomeron picture) or as ’parton’ with momentum «gq in the ’photon’ interacting with the target
P via a colorless exchange (frame B, dipole picture). Finally the gap between the final state stuff X and
the target remnant at n(P’') = 1 In((M2 + p2)/(P*)?) is given by

P = L (2 Q2 M3, + @

Aoy = (F) = =30 (4MX(MY+,,) ~ 2ty (B.42)
_ o (MEr@ _ Q’
= ( o any ) ) = g ) ~s): (B.43)

We add to the Pomeron and dipole pictures a third (also equivalent) picture in terms of TMDs, which is
natural in the limit W — oo or zp — 0 (and thus also x5z — 0). For 2, = 0 the momentum transfer
squared t = —p2. The natural frame is frame B, where now a diffractive TMD f%4(p,) is combined with
photon TMD PDFs f9/7(a, q,.) and f9/7(a,q,). The transverse momentum ¢, (linked to My ) belongs to
the photon PDF and is conjugate to the ’dipole size’, while the transverse momentum p; (experimentally
linked to t) belongs to the proton TMD and relates to the ’transverse distance’ in the Wilson loop in the
matrix element in the definition of the ’diffractive proton TMD’.

B.2.1 Double diffractive scattering

In the situation of hadron-hadron scattering, we can for each of the hadrons (P; and P;) and remnants
(P{ and Pj) a similar situation leading to a soft transverse-like exchange to momenta

t—’_p%T +

- & P } B.44

h1 [2§1P1+ &P pyg ( )
_ ta+p3

b2 = [52 P ,ﬁ#’%}a (B.45)
2

with like zp in the previous section t; + p?p o & x (hadronic scale)? and & < 1. We now also consider
production of M% in the intermediate region as originating from two massless momenta ¢; and g with
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transverse momenta +q,. (for which g2 = Q2), in the appropriate frame where P;" = My /z1v/2 and

Py = Mx [29+/2 (thus s = 21 o M%), given by

o7 00 a]
= |0—F=, —0)—F—=,— )
q1 \/5 \/i qr
[0-075 0 5]
= — Q)= , =, )
q2 \/5 \/E qr
o [Mx M g
\/5 ’ \/§ y VT
The (for our purposes again small) fraction « is determined by
2 Q2 Q2 M2
al—a)="L o a~m-——T -~ L andl—a~ — .
M M% +Q3 Mg M5+ Q3

In this case the simple picture of a produced ’dipole’ implies

z1 t1 + piy ) Mx <§1 > Mx
k = p— :[ LA o) 2 (L ra-1) =2 p, — }
oo (51 M% V2 \z vz P

& T3 ty + p3, | Mx

Mx
= —_ == 1— _—— — —_— —_— —_— —
e |(1-0-2) T (-8 5RE) B

The solution implies

T2 t1 +pi,
= ==L ~1 and ==-=1-—-"=1.
3 M3 =5 M3
Thus
k [ Mx aMX }
N =, =, — .
\/i \/i qT

]

(B.46)
(B.47)

(B.48)

(B.49)

(B.50)

(B.51)

(B.52)

(B.53)



Appendix C

Kinematics

C.1 Single parton case: absorption of hard momentum

11( Q 7

S ;D%:O7 ﬁ’ ()T-
q lp q= %, _\6/257 OT q2=—Q2

0 _

k~|—=, 0, 0,

P=k2=0 V2 ]

[p‘ P~ lo, ;p\% OT]

[pT I~ l(lzk)%’ (1 x:p) \%, I (IZk;)vap> o

pr=1=0 p/z[_(l_zk)x%’ \% P /2:—(1_1%)115
C.3 Single-parton fragmentation: branching

B e[+ G 00

[;» I~ [(1 —zk)\% (1 ;pxp) \% kT] g2 O —zka)cil ~ ) &

B =12=0 = [\% - ;pxp) \% kT] K=4 ik%) v
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C.4 Single-parton case: absorption and branching

In this case we choose a parametrization satisfying

Q? q-k pk kg
g pk M AT T TR
]
b= 07 l‘p\/i’ 0T‘|
Tk 6 0 i
/\ q= ﬁa 7%3 qT‘| q2:7Q2:7(Q2+Q2‘)
q KJ 1 k%ZkQ 0, 0, (g2 = Q2)
", &
Q (1_3711) Q 2 (1—2z)(1 xp) 2
I~ |(1-— — —=,q, 2=
=k =12=0 l( Zk)ﬁ Zp \/iq] Lp N

ps = prag=k+l (1)
roo~ ~ N z — X ~ z
- Q (1,%)2 ¢ §=1p2 = k . P QQ—(l_ka)Qi
pe = k—p=q+l
_ ~ ~ ~ Zk ~9 Zk 2
t=pf = —=Q° = - Q7
- 22 L8 OT] S =)0 =)
2" T /2
pu = p—l=k—g¢q
r ~ ~ - 2 (L—2z) 50 1 2
uw=p, = — Q" = - Q7
~ _(1 - Zk?) %) %7 q’r] Lp (1 - xp)

C.5 Single-parton case (again): absorption and branching

In this case we choose a slightly different parametrization corresponding with

Q? q-k Q°
=—— = and 2z =
2p-q p-k Q2 b-q Q?

pr:
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~o L9 ]
p= ’ xp Q\/i’ T
q ~ \6/25’ _%7 qT] q2 = _Q2 = _(QQ + Q?‘)
k& zk% 0, OT] (a7 =@Q7)
- Q (@ Q (1= z) (1 = zp)
| ~ [(1 — 2i) ok (prQ - 1) \/§’qu Q: = oor P’ ()?
(L= z)(L = p) 50
T —1p @
ps = pta=k+I _
~ _E7 :L‘pQQ -1 ﬁ7 qdr P
pe = k—p=q+l B 2
[ 2 f=p?2 = _ZF02 - k2
~ Zk %7 7% QQ\/§’ OT] pt pr (l_xp)(l_zk) QT
P
pu = p—l=k—q (1 — )
_ _ - L2 — Zk 2 _ 2k 2
~ _(1 - Zk) %7 %7 qT‘| B Pu Lp Q (1 - ‘T;D) QT
C.6 Multi-parton distribution: absorption
~ 0. <
p [0, ok OT}
pl ~ |:07 xl %7 OT:|
q= [\% \% OT} ¢ =-Q?
Q
P=pi=p-p=k=0 kz[ﬁ,O,OT}
In general (p = >_p;):
k K3 ~ [%7 xi %a 0T:| (k _pq,)Q — _-'Iz'q, Q2
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C.7 Multi-parton fragmentation: absorption

~lo <
p= _Oa \/57 OT:|
~| 9 _Q 22
q~ -\/57 \/57 0T:| q = Q
ki ~ |:Zl %7 0, OT:|
e
M=k =k k=p"=0 k1750 OT}
In general (k = > k;):
O P e o2
ki —p=~ |:Zz \/i’ \/i’ 0T:| (szp) =—2Q
QR Q
kifq% |:(121)\/§, ﬁa 0T:| (q—ki)ZZ—(l—Zi)QQ

C.8 Multi-parton distribution: branching

Tp ﬁ’
~ Q (-) 4 C(-zm)(-m) A
I~ l(l_ k) \/i’ .’Epp \/57 T‘| pi— , E Q2
pP=p=p-p=012=0 N Q Q 2 _ 1 2
1 1 p N[ (1 Zk) \/57 \/57 pT - ].—Z'ppT
In general (p = > p;):
p _ Q ((1—%‘)—%)Q _ l—p)2—__ T 2
l i = [(1 Zk:) \/i’ , \/57 Dr ( p’b) (1 71']3) DPr

/ 2 _ (1_$i) 2
(" —pi) = =, P

Equivalently one can also use the following parametrization (where ! defines the minus direction)

pf":j |:0, |I)T|7 OT:|

V2
2 } D, | D
p1~ |0, , 0, l—pi~|—T—, —a;, —=, -0,
' { ) Pl 0 e )v2 V2
P, | ]
z~[ L. 0, 0r .| P2
1_$\/§ p/fpzN L 71 T T70T
( P) (lfl‘p)\@( )\/i
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C.9 Multi-parton fragmentation: branching

=k =k -k =12=0 Q@ (-z) Q 2o kg2
K~ [\/? T, 2 kT] g _(1—2k)kT
In general (k = > k;):
B _ Q (1—$)Q N2 _FiZk g2
ki +1= (17(1*21)219) ﬁv J}pp \/57 kT‘| (l_'_kl) (lfzk) T
e - Q@ TR Gt L %
k; kwl (1 — 2z 2p) 75 :cpp /2 kT] (ki ) (1—z) 7



Appendix D

Useful formulae

D.1 Combining denominators

Feynman trick:

1 ! 1
—_— = dx . D.1
AB /0 (zA+ (1 —1z)B)? (D.1)
1 ! (n—1)!
AA, A, —/0 dovdin 8 (3w —1) P (D-2)

D.2 Some indefinite integrals

(D =2) /dp \/p2im2:%p\/p2iM2+%M2 ln(p—i—\/inM?) (D.3)

(D = 0) /dp Jzﬁ ~In (p+ \/m) (D.4)
(D =0) g/dp Iﬁ — 7 In (p? + M?) (D.5)
(D = -1) /dp Iﬁ _ % tan (22, (D.6)
(D = -1) /dp]ﬂ_lwzj\l/jln’i;%, (D.7)

D.3 Special functions

Beta function

B(u,v) = /0 de "~ 11 —2)" ! (D.8)
_ AOO dy yufl(l +y)*l‘«*l’ (Dg)
/2
= 2/0 df sin 6 cos 0 (D.10)
_ TWTE)
= Tty (D.11)

The Gamma function is defined for Re(z) > 0 as

I'(z) = /000 dx v*~ ! exp(—x) (D.12)

16
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and satisfies ['(n) = (n — 1)!, I'(1) = 7!/ and the relation

2T(z) =T(z+1). (D.13)
The function has simple poles with residue (—)™(1/n!) at the points z = —n. Near negative integers the
expansion can be obtained from
° 1
Ml+e = 1+ / dx (e lnx + 3 eI’z +.. ) exp(—z) (D.14)
0
- L (D-15)
E 2 12 ceey .

where v ~ 0.5772 is Euler’s constant. One has

D.4 Dimensional regularization

Minkowski space integrals can easily be turned into Euclidean integrals using

iK% =K°, (D.18)
id"ky = d"k (D.19)
—k% =K% (D.20)

Basically n-dimensional Euclidean integrals are performed via the angular decomposition and integration

/d"x—/ dr v~ 1/ df,—1 sin""%0,,_ 1/ dby—s sin"30,_,. d91, (D.21)
r (=)

/ d sin™ 0 = /m 2L (D.22)

0 r(m32)

Radial and one-dimensional integrals are

7.‘.77,/2
/d"x f(r _2 /dr " f(r), (D.23)
p (et
[ G = 3 Tt 24
A basic integral is

/d M2—He) = z/d kg R =) (D.25)

= 4 _sﬂ_n/ZF(s_%) 2\n/2—s
(a2t o) (D.26)

_ i PT(s = 5) v
S ep w M (P20
Z(i_);) % [1 - (5 - g) [vg + In(m M2)] + .. } . (D.28)

where the last expansion is near n = 2s, or with n = 2s — ¢,

/dQHk (k2 — Mlz i i(;()ss)ﬂs E ~ g~ In(m M%) + ﬁ(e)] ' (D-29)
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Note that one needs to be careful with factors like

M =0 M — 1+§ In M? + 0(e),

1 1 1 €
e~ e = @ |1 5 ) + 0.

Thus one has

d"k 1 n=2s—e Z.(f)s 2
M¢ e In(4 % . D.
/ 2r)" (2 — M2 1 ie)° (@r )T (s) L Ve o+ Indm) + (6)} (D-30)
Including numerators we have for instance
1 I(s—1%) ,
d"k — _\s..n/2 72Mn—25 D.31
| G O (B30
k I'(s—1%)
n g © — _\s,.n/2 2 Mn72s D.32
[ Gt O g (0-52)
kyk 1T (s—%—1)
d"k pvv — L — = 2 M2 y
J le“p 2 T(s—3) g”]
r (s - ﬂ)
_\s,.n/2 2 n—2s
x (=) 7F(s) M . (D.33)

Actually the above integrals can be obtained by realizing that the proper averaging requires
1.2
kjuky — E k Guv,

kukokpks — ) (K*)? (guvGpo + GupGro + GuoGup) -

_1
n(n + 2
This leads to

n 1 (S n/QF(Sig) n—2s
/dk(kQ—M2+ie)s_Z( ey M
n k2 _ . s _n/2 n r (8 - % - ) n—2s—2
/d k (k2 — M2 +ie)s —iE)T g [(s) M
n k,uku __i(_\s.m/2 1 r (S - % - ) n—=2s—2
/dk(kZ—M2+ie)s_ )™ S 9 =y M
n (k2)2 s (_\S . .mn/2 n(n + 2) r (S - % - ) n—=2s—4
/dk(kQ—M2+ie)5_l( ) 4 O
n kpkukpka _s(_\s,.n/2 1 I'(s— % B 2) n—2s—4
/d k G- M2 ticr i) 7" 7 (GuvGpo + GuoGve + GuoGup) T M
Finally because g,,g"" = g!; = n one has in n dimensions
Vv =n, (D.34)
YW =—(n—2)7", (D.35)
Yy’ = 4977 — (4 —n) "7, (D.36)
YWY I = =297 + (4= d) . (D.37)
D.5 Some useful relations involving distributions
The integral representation of the step functions are
da eiaw da e—icw;
0(tx) =+ | — = — D.38
(+2) 2mi « F i€’ + 2mi a+ie’ ( )
d [1e%3
e(+z) =P [ L2 —9(z) — 9(—a). (D.39)

T o«
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The derivatives satisfy 6’ (x) = §(z) and € (z) = 26(x).
Other useful relations are

1
T — i€

In(z —ie) = In |z| — i O(—2x). (D.41)

= Pl +imd(x), (D.40)
T

In order to treat endpoint singularities in [ dz f(z)/(1 — ) near z = 1 one usually employs the ”+”
prescription,

1-8
(F@)s = lin |F@)60 -5 -)+30-5-2) [ dyF()|. (D.42)
0
satisfying fol dx(F(z))+ = 0. Note that for an integral not running between 0 and 1 one has
1 1-8 1-8
G(z) G(2) / 1
—_— = - G(1 - d
feamg = [ egmgocu-af e
1 o T
_ / dzwfg(l)/ ds 2
T 1—=2 0 1—2
1
—G(1
= / dz w +G(1) In(1 —x) (D.43)
One thus has regularized via the endpoint of the integration leading to
=Bl a)+ T+ O(F) (D.44)
T, - ln x 0=, . .
One can also use
1 1 1

To see how this works, consider for a small €

! G(2) ! . G(x) - G(1) ! . 1
/zdw T /zd -2 *G“)/z b Ty

_ [ G -6
/zdmﬁﬂ-G(l)/o dy y

/1 dx % - G(1) % +G(1) In(1 — z).

Another useful ”+” function is

| = (WL - [ O G2 Ly -a).  (.a5)

Let’s also investigate the PV-prescription using the definition (see e.g. G. Leibbrandt, Rev. Mod. Phys. 59

(1987) 1067)
11 1 1

PV— =3 ((x it s ie)n> . (D.46)

For n =1 this is identical to the symmetric prescription

PV/dm@z%/dm (M—I-M): _édxF;x)—i—/édfof). (D.47)

T +ie  x+ i€

For finite boundaries one finds

PV/bda; F(z) :/bde(x)_F(xo)—i—F(xo) In
a T — o a T — o

b—.l?o

: D.48
p— (D.48)
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Comparing with the + prescription yields

=5 F(z) =6 P(z) — F(1) B
PV/ dz _ / g 2= gy,
. 1—2z . 1-=2 l—w
1 z
_ / i (1F—(z))+ —F(1) In|8|. (D.49)

For n > 1 we can use

PV/bd;z:(F(x) S ( Fla) F(b)n_1+PV/bdx(Fl(z)>. (D.50)

x—x0)" n—1\(a—zp)"t (b—x0)

As specific example

b F(r)  bF(a)—aF(b) b F(x)
PV/a dz G20 = (a”20)(b— ) +PV/a dz P (D.51)

D.6 Theta functions

Often it is useful to attack loop-integrals via lightcone variables leading to specific integrals of the type

da a™
or )= — . D.52
n1n2...($17$27 ) /27Ti (aml —1+i€)”1(al‘2—1+i6)n2... ( )
In these integrals m can be reduced via
1 m— m—
Oty (o1,02, 35, ) = ———— [0 V(wa,ag,..) = OV (ar,ws,.)]. (D.53)
(21 — x2)
Proof:
OT11(x1,22,23) = da e
P 28 2ni (az1 — 1 +i€)(awe — 1+ i€)(aws — 1 + i€)
_ 1 /dfa (ax1 — 1) — (axz2 — 1)
T (w1 —x2) ) 2mi (am — 14 i€)(axe — 1 +d€)(axs — 1 + ie)
The lower index can be lowered together with an upper index via
Or (w1,..) = —(n1 — - 0D (4. (D.54)
ny.. \T1,...) = 1 doy =D T .
Proof:
! _ [ do «
On@n,z2) = /27ri (az1 — 1+ ie)2(azs — 1+ i¢)
_ 4 / do L
N dr1 ) 2mi (az1 — 1+ i€)(axe — 1+ ie)
The reduction of ©9;; to ©1;__ is achieved via
e , — 1,69 ,
@(1)11“.@1,%2@37.”) _ T2 11..(%2,23) — 2107, (21 IE3). (D.55)
X1 — T2
Proof:
01, (w1, 2, 23) = /d—a L
T AT 2,8 2mi (az1 — 1 +ie)(awe — 1 +i€)(az1 — 1 + i€)
da ary — (azx1 — 1)

270 (oxy — 1+ ie)(axe — 1+ i€)(axy — 1 + ie)

z1 9%11...@17 T2, 333) - 6(1)1(95271’3)

and using the previous relation.
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Finally we can reduce n = 2 (for m = 0) via

1
/ dy 931(%@) = (z1 — o) @(1)11(3”0@17932)

0

Proof:
o1 1 do 1
dy O (y,22) = / dy [ 5— , _
/a:o y ©21(y;72) 20 Y] omi (ay — 1+ i€)?(ax2 — 1 + i€)
da 1 [™1 1
= — = d
2ri « /axo (ay) (ay — 14 i€)?(ax2 — 1 + i€)

and then using that

1 1 oz — o)

(axzo—1) (az1—1) (azo—1)(az1 —1)
Further reduction for n = 2 and m = 0 then is possible, giving

d

09 (1, 22) = ~dn [21 09 (21, 22)] -

21

(D.56)

(D.57)

The only integral to be calculated actually is ©Y, (z1, z2), which is easily done via a contour integration in

the complex plane. The explicit results for the simplest functions are then

O, (a1, y) = 20(=w2) = On)Olw) _ Ol = )
xr1 — T2 1 — To

©3() = é(x),

)
@?11(3317372,%) =

(z1 — z2)

x1

0 =t
@11(3)2,.733) (371 —1}2)

09 (1, z3)

(fEQ — xg) I 0(1’1) + ((Eg — xl) T2 0(1’2) + (.’El — fEQ) I3 9(1’3)

(z1 — z2) (22 — 23) (T3 — 71)

09, (x1,x :L@Ox,x —Léx,
21(1,72) @ =72 11(21, 22) @ —72) (1)
1 1
Ok (z1,29) = ——— OV (21, 29) — ———— §(x1),
21( 1 2) (Il*xz) 11( 1 2) («Ilfl’g) ( 1)
1
O1y1 (21, T2, 23) = o1 —2) (09, (w2, m3) — O, (x1, 73)]

_ (wg — 3) 0(21) + (23 — 71) O(w2) + (21 — 72) O(x3)
($1 - 5172)($2 - Is)(l“?, - Il)

We also will use the following equality for ©Y; functions, seen using a principal value prescription,

xr
/dy " (0% (y,y — =) + 6% (z,2 — y)] = 0.

The singularities in the two terms come from y 1 z (first term) and y | = (right term) respectively.

Notes on the i¢ prescription:

do 1 1

(D.58)

(D.59)
(D.60)

(D.61)

(D.62)
(D.63)
(D.64)

(D.65)

(D.66)

0%, (21, 22) = / - 6(z1) 6(—12) — 6(—1)0(x)]

2mi (awy — 14 ie)(awe — 141ie) a1 — a9
da 1 1

O, (o1,22) = [ - 0(a1) () — O(—1)0(~2)]

2mi (axy — 1 —ie) (e — 1 +i€) @1 — o9
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Including arbitrary pole positions we get

/ da. L
27 (awy — Ay +ie)(axy — As + ie)

o r1 — T2 0

- SClAQ — l‘gAl @11(1’171'2)

_ 0(@1) —0(x2) _ O(z1) O(—22) — 6(—1) O(22)
- £U1A2 — 1‘2A1 o LL’lAQ — LL‘QAl ’

da 1
/% (0[1'1 — A1 + ’iE)(CV"EQ — A2 + iG)(OL.’El — A3 + ZE)
1 To — I3
€2
xlAg — 3?2141 x2A3 — 373142

Tr1 — T3
PR e
r1As — 2344

0 (z2,23) —

@(1)1(5617933)}
_ ($2A3 — CCgAQ) T 0(331) + ($3A1 — .Z‘1A3) To 9(3?2) + (CClAQ — 1‘2141) T3 9(2123)

(£C1A2 — l’gAl)(.’EQAg — xSAQ)(dil — (E1A3)

da o}
/% (axy — Ay + ie)(axy — As +i€)(axy — Az + i€)
_ 1 A To — T3 T, — T3
Ay — 194y [ 2 T9As — 1345 ! 11 A3 — 134,
_ (w2A3 —3A2) 0(x1) + (2341 — 21A43) 0(12) + (1 A2 — 22 A1) O(23)
h (x1A9 — 29A1) (22 A3z — x3A2) (2341 — 21 43)

09 (z2,3) — A

D.7 IR and UV singularities

In a D = 0 divergent integral one can separate the singularities e.g. as follows

d?k M? 1
/ — = / d’kr { I + — ] .
kT kT (kT + M2) kT + M2
Regularized one sees that
>k M? 1
Me/ > T - M¢ / dQ—Ek_T 2 5 4 M€ / d2_€]€T 5
kT kT (kT Jr M2) kT Jr M2
—27/e 27 /e

(IR-divergence) (UV-divergence)

09, (z1, 373)]

22

(D.67)
(D.68)
(D.69)

(D.70)
(D.71)
(D.72)
(D.73)
(D.74)

(D.75)

(D.76)

(D.77)
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D.8 Transforms

D.8.1 One dimensional transform

The Fourier transform in one dimension,
k) = / du exp(—iks) F(z) (D.78)
dk : ~
F(z) = Py exp(+ikz) F(k) (D.79)
™

has as basic orthogonality relations

/ dx eF=+) / dx sin(kz) sin(k’z) = 2w d(k — k'), (D.80)
/ e~ ih(z—a’) — 4/Oo dk sin(kz) sin(kz') = 6(z — 2'). (D.81)
—o0 271' 0 2T
Some examples of Bessel transformed pairs are
F(zx) <= F(k) (D.82)
Pt — 2wé(p—k) (D.83)
1.
5(z — 20 L ikao D.84
(x —2") <= 5 € ( )
—1
0 e D.85
@™ = = (D.85)
7
O(—x) eH® D.86
(o) = (D.56)
—2ik
—wlal — D.87
e(x)e — EE ( )
—plz 2p
—*/R (71'R2)1/2 e~k /AR? (D.89)
D.8.2 Three dimensional transform
The Fourier transform for the 3-dimensional expansion
%) +L
FM
=y > L M), (D.90)
L=0 M=—L
using
exp(ik - ) Zzé (20 + 1) jo(kr) Py(k WZ Z i Go(kr) Y™ (7) Y (K), (D.91)
¢ £=0 m=—~¢
gives the Fourier transform F (k) of F(r),
E 3 1 - k) m(1.
F(k) = [ d* exp(—ik-7)F(r)=2rY Z Y™ (k). (D.92)
L=0M=

Note for functions F(r) only depending on the length r = |r| one has

F(k) = 4r / r2dr jo(kr) F(r) = 4% / rdr sin(kr) F(r). (D.93)
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The radial functions form Bessel transforms with spherical Bessel functions,
FM(k) = / dr 2kr jr,(kr) FM(r)
0
M > dk . M
Fh(r)= — 2kr jp(kr) F;" (k)
o 2m

/ dr 2kr je(kr) 2k'r jo(K'r) = 27 6(k — k'),
0

/ dk 2kr jo(kr) 2kr’ jo(kr') = 8(r —r').
0 2

Equivalently one has for the combinations relevant in three dimensions,

M 0o M
727TF]€ (k) :/0 drridr g1, (kr) LLT(T)
FM(ry /°° Ank2dk ( )277FLM(1€)

r Jo (2n)3 JLART k '

24

(D.94)
(D.95)
(D.96)

(D.97)

(D.98)

(D.99)

Some examples of Bessel transformed pairs and corresponding 3-dimensional Fourier transforms are

Fourier transforms:

~ Fg(?“) — 21 ~

Bessel transforms:

Fg(’l‘) <~ Fg(kj) , ?Fg(k‘)
2prje(pr) <= 2m(k—p) 4Ar?
B 2pje(pr) < Té(k—p)
Fo(r) < Fy(k)
FQ(T) 21 ~
< fFo(ki)
“ur 2k r k
e = ,
(k2 + p?) eHT PN 4
o ik : W+ 1)
re M’ < 5 IV
(k2 + p?) SN 8 p
k2 + u2)2°
7'677‘2/21%2 R gkRg €7k2R2/2 _ 2/R2 ( 2 5/2) _Kk2R2/4
e " <~ (mR%)**=e /
D.8.3 Two dimensional transform
The Fourier transform for the 2-dimensional expansion
o FMO)
Fb)= > eiMen
M=—0c0 b
using
oo
eXp(ikT . b) — Z m Jm(ka) ei?”'b(%"b_%"k)7
gives -
- 2 . - o Fukr) o
F(ks) = | &b exp(—iks -b) F(b) =21 > (—i)M === e!Mor,
M=—c \/%

If F(b) only depends on b = |b| one has

Flky) = 2r / b Jo(krb) F(b).

The function F(b) is the Fourier transform of F(k,),

F(b) = / ((127]:;2 exp(+iky - b) F(ky).

(D.100)

(D.101)

(D.102)

(D.103)

(D.104)
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The radial functions are Bessel transforms,

FM (k) = /Oo db /kpb Jpr (keb) FM(b)

0

FM(p) = /OO dky kb Jar(keb) FM (k)

0

/ db \/Terb T (k) /R T (Kb) = Sk — k),

0

/ ey \/Terb T (kb)) /lerd T (leb) = 5(b— V).

0

Equivalently one has

o FM(k,) [ FM(b)

— - /0 27bdb Jys (krb) R

FM(b)y [ 27kpdky 2w FM (k)
7 T et T

Some examples of Bessel transformed pairs are

F™(b) = /prb Jo(prb) and  F™(ky) = 6(kr — pa),

FO(b) e mb FO(ky) 1
7 = and T = o el
FO) _costub) | FO(k) _ 6k = p)
Vb b Vi VR -
FO() _ sin(ud) o FOkr) _ O(n—kr)
Vb b Vs k2 — p?
FO(b) _ Lesz/m? and FO(kr) o e~ kT R*/2
Vb o TR Vkz

Using the tensor representation for transverse momenta,

EE™ = Em eFime

25

(D.105)
(D.106)
(D.107)

(D.108)

(D.109)

(D.110)

(D.111)

(D.112)
(D.113)
(D.114)

(D.115)

(D.116)



Appendix E
Spin

E.1 Density matrices: definition and example for spin 1/2

In many applications in quantum mechanics one does not have a pure state to begin with. An impure
state is described with a density operator

p=3l0): (il (B1)

where |i) are pure states, not necessarily orthogonal, and p; are the probabilities (e.g. a beam of spin 1/2
electrons with 50 % spin along the z-axis, 25 % spin along x-axis and 25 % spin along y-axis). We do know

0<p; <1 and Zpizl.

It is straightforward to obtain the following properties:
« Trp=Y,pi=1,
o (A) = %2, pililAli) = Tr (pA) = Tr (Ap) and Tr (p?) < 1,
e pis a positive definite, self-adjoint (p! = p) operator,

e For a pure state p? = p <= Tr(p?) = 1. In that case p is a projection operator.

E.2 Spherical tensor operators

More general, for spin s one can use the spherical tensor operators RJL\/I7 defined as
(s,m|RE |s,m') = (RLM)mm’ = V2L +1C5%:8
= (H)EVeL+1Cf:s,
(_)Sim/ Vv 2s +1 Ori—in’LM

(=)= /@5 + DEL+ 1) ( N ) (E.2)

The last expression involves the so-called 3j-symbol. The properties of these tensor operators are:
o Tr RJIQ = (28 + 1) 5LO 5]V[07
L pL Ty _
o Tr (Ry Ry, )= (2s+1)0rr S,
o RE, arereal (2s+ 1) x (2s + 1) matrices,

i kaT = (*)MREJW

26
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Expanding the density matrix p,

2s L
r= 25+ 1 Z Z P Ry = 23:—1 Z Z PJLMRk{T; (E.3)
L=0 M=—L

L=0 M=

the quantities p, are (complex) numbers satisfying
o pir = Tr (pRY;),
o ok = ()MpL,,, ie. p real (because p is self-adjoint),
e pY =1 (because Tr p = 1)
o > p o lpil? <25+ 1 (because Tr p* < 1).

E.3 Spin 1/2

Besides the tensor operators a Cartesian set is used, the Pauli matrices,

sz[?(l)],ayz[?_oi],azz[(l)_ol]. (E.4)

The explicit tensor operators and their relation to the Cartesian operators are

1 0
RO - [ Lo ] _1, (E.5)
1_ 0 —V2 _ 1 :
Rl - [ O O ] - \/5(01 + ZO’Z/)? (EG)
1_ 10 _
RO - [ 0 —1 = 0z, (E?)
0 0 1
L _ 1 .
R-, = [ N ] = \/E(UI ioy), (E.8)
The R}, are precisely the spherical components of the spin vector o. The explicit form of the density
matrix is
1 1+P, P,—1iP,
p = 5(1+0‘~P):§ (E.9)
P,+iP, 1-P,
(E.10)

L+py pLiv2

1 L P 1
= 52 Z FRE = - . (E.11)
L=0M=— —piv2 1—pp

The vector P is called the polarization vector or also the spin vector of a state. For a pure state |P| =
1, for an unpolarized state |P| = 0 corresponding with p = %1. The numbers p. are just the spherical
components of the polarization vector,

Py = 7(P +iP,), (E.12)

po = P, (E.13)
1 — i _Z

o \/Q(PI P,). (E.14)

One has Trp? = (1 4+ P?) < 1. The degree of polarization is 0 < |P| < 1.
We note that any matrix M in the spin-space can be transformed into a function depending on the
polarization vector P, which we write as

(P') = (87,57, 1) (E.15)
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Explicitly we have

M(S) = Tr (p(S) M) . (E.16)
where the density matrix is written as
L 148 Sh-isE 3t35 550
p(S) = 5 = . (E.17)
SL+iS2 1-5, —%S;r %_%SL

The equivalence is

M(S) =My, + S, M, +SL M} + 82 M2 =M, + S, M, — S M — S M] (E.18)

Mmm’ = =
~M}V2 M, — M,

i Mo+ M, M;v2 Mo+ M, M} —iM?
(E.19)

ML+iM2 M, — M,

if the matrix M is written on the basis of eigenstates of o.

The parameters in the density matrix in Eq. E.17 can be given an explicit probabilistic interpretation.
Introducing p,,, (0, ¢) as the probabilities to have spin-component m along the direction specified by 6 and
¢, we have

P, =5, =p1/2(8) —p-1/2(%) (E.20)
Py = S; = p1/2(&) — p_1/2(%) (E.21)
Py =82 =p12(§) — p-1/2(9), (E.22)

showing all these parameters to lie in the interval [—1,1].

E.4 Spin 1
A Cartesian set transforming like a vector is given by the matrices
1 0 10 1 () —1 0. 1 0 0
swlin) sl ) el e

A set of tensor operators of rank two (symmetric and traceless) is the set X;; = %Z{iZj} — %6”- 1,

(-1 0 3 (-1 0 -3 (1 0 0
Sa=g| 002 0|, Sy=cf 0 2 0 [ sL=gfo 20| B2
3 0 -1 3 0 -1 0 0 1
L(0 0 i (0 10 L (0 i 0
Yey==0 0 0  Yp=—+ |1 0 -1 ],%.=—%1]147 0 i |.(E25)
21 0 o V2 o -1 o V2 o i o
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The explicit tensor operators and their relation to the Cartesian operators are

1 00
RO = 010 =1 (E.26)
0 0 1
0 -1 0
, 3
Rl — \/E[ 0 0 -1 ] _\/;(E£+i2y), (E.27)
0 0 0
1 0 0 3
Ry = 5100 o0 :\/gzz (E.28)
00 -1
00 0 3
R, = 51100 = 1(Ew_izy), (E.29)
01 0
0 01 3
R:= V3|10 0 0 =1/ (Zpx — Sy +2i24) (E.30)
4
00 0
0 —1 0
R} = 51o o 1 = —V3(Zp +i%,.) (E.31)
0 0 0
1 0 9
R% = o —20 =[5 2= (E.32)
0 1
0 0 0
R2_1 = % 1 0 0 = \/g(Zmz -1 Zyl) (E33)
0 -1 0
00 0 3
R:,= V3]0 0 0 :f(zwl—zyy—zizxy) (E.34)
10 0 4 N |

Rather than the spin-basis (states |1,1), |[1,0), and |1,1)) one can use the Cartesian basis €,, €, and €,
for the spin states, with unitary transformation

-1/vV2 0 +1/V2 -1/v2 i/vV2 0
cartesian = —-i/v2 0 —i/Vv2 spin 0 0 1 (E.35)
0 1 0 1/vV2 i/v2 0
This leads to the natural basis,
00 O 0 0 1 0 — 0
=100 =i |, X,= 0O 00, 2=|1¢ 0 0]. (E.36)
0 ¢+ 0 -t 0 0 0 0 O

Yy, =—Xs and X, + Aa. A set of tensor operators of

Note that expressed in Gell-Mann matrices, 3, = A7, =
=322 — 30,51,

rank two (symmetric and traceless) is the set ¥;;

1 -2 0 0 1 1 0 O 1 1 0 O
gz = 3 0 1 0], Xy= 3 0 -2 0 , Y, = 3 01 0 (E.37)
0 0 1 0 0 1 0 0 -2
1 0 1 0 1 0 0 1 1 0 0 O
Sey=-5 [ 10 0|, Sea==5]{0 00|, 5.=-5|001 (E.38)
0 0 0 1 0 0 0 1 0
In terms of SU(3) generators, ¥,. = \g/V3 = Y7/3, etc., while Yoy = —A1/2, Ty = —Ayg/2 and

Yy: = —X6/2. Together with the vector operators X the (five) tensor operators span the SU(3) algebra.
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The explicit form of the density matrix can be written in one of the following forms,

1 3
p = 3 ( + 5 ZiPi + 32ijTij> (E.39)
1, P | T Py—iPy | Tor—iTy: Tow—Tyy—2i Ty
3tT 5 vz T ova EE
_ PutiPy | TootiTy: 1_ PomiPy  Tua—=iTy.
= vz T 5~ I e v (E.40)
Too—Tyy+2iTey PptiPy  Tpy+iTy. 1_ P + T
2 32 V2 3 2 2
1 2 L i
I (B4
L=0M=—-L

teabB ey n/itni o B

1 ;
- 3| -AE-a Ve anfi-enfs | e
p3v3 SNER VAR VERY VD

where T is a traceless, symmetric tensor. One identifies

3 .
ol = —\/; (P, +iP,), (E.43)

3
i i, e

ol = \/i (P, —iP,), (E.45)

Py = \/i (Tww — Tyy + 20 Tiy) (E.46)
pi=—V3(Te: +iTy), (E.47)
o = \/g T.., (E.48)
P21 = V3 (T —iTys), (E.49)

3 .
PPy = \[1 (T — Tyy — 20 Tyy) (E.50)

One has Trp? = %(1 + %PiPi +3T9T%) < 1. The degree of polarization is defined as 0 < [% PP, +
3Ty ? < 1. i

Again one can establish the equivalence between a spin-dependent function M (S) and a matrix M in
spin-space. If

(P') = (87,57, 5.) (E.51)
shes.  SE s,
. 1
=2 s smas, s | (E:52)
SiT SET —25..
with §22. = —S1l and S12 = S2L. Explicitly we have

M(S) = Tr (p(S) M) . (E.53)
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where the density matrix is written as

5+35.—35  3(S7+55) 75 Str
p(S)=| —3(SF+55) 1+ S 3 (57 =852) |- (E.54)
—5SH —H(T-Sh) 3-38.-35u

Note that % Stz = 2(SH —iSl2) = 1(SIL — S22 — 2i 512). The equivalence is

M(S)= Mo+ S, M, + S, My, + St M.+ SL, M., + Sy, M}, (E.55)
Mo+ M, —+M,,  M;+M;, M2
M = —(MF + M) My + M, My — Mg, (E.56)
—MiV2 —(M} —M}) Mo — M, —5M,,

if the matrix M is written on the basis of eigenstates of ¥,.

The parameters in the density matrix in Eq. E.54 can be given an explicit probabilistic interpretation.
Introducing p,,, (0, ¢) as the probabilities to have spin-component m along the direction specified by 6 and
¢, we see from the diagonal elements

implying —1/3 < S;;, <2/3and —-1< 5, <1.

E.5 Reaction parameters

In general one can express the initial state density matrix as

1 t
Pi = 2s; + 1 Z(pi)fann ) (E59)

Lm

and obtain from that, given a transition matrix 7', the final state density matrix

7 p T S (P T B T
ST 0T Y, e T (7 R T
1 roop T
- ’ ’ E 1
2sf+le,zn;/(pf)m Rm ) ( 6 )
with
v Do) T (7R IR,
(pr)r = — (E.62)
S () T (7 BT TT)
Defining spin transfer parameters
o T (7 R, 71 RE,)
= E.
(€ m'|t,m) N (E63)
one gets
, i ¢ €/7 /g’
v T i)l (€ tm) -

e = o .0 m)
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To illustrate the reaction parameters, let us consider the reaction parameters for a process with one spin
1/2 particle in initial and one spin 1/2 particle in the final state. in that case it is actually more common
to use the Euclidean vector notation instead of the tensor operators. With the 2 x 2 scattering matrix

given by 7 and
1
pi=35 (1+0-Pi),
one finds

. IpTt I 4P T T (EB.65)
PP T N Tp T (7 T+ PL T ol T) '

or introducing the C'*J spin transfer parameters,

Oij_’IT(ﬂai?TUj) (E.66)
- T(gTh '
with arguments 4, j = 0, 1,2, 3 using also the matrix ¢ = 1 one obtains:
1
pf:§ (1+U'Pout)a
with 0 )
. C % P’ Cji
p A (E.67)

t = 00 1 Dk kO
ou C0o Pllfl Cko

(C" =1). Note that the final state density matrix ps can be used as the input density matrix for a decay
process, in this way enabling polarimetry.

E.6 Spin vectors

In situations such as deep inelastic scattering one likes to work with spin vectors in the cross sections just
as with the momenta, e.g. one considers the hadronic tensor W#¥(q, P, S), where ¢ is the virtual photon
momentum, P is the target momentum and S the spin vector. We will discuss the meaning of such spin
vectors in initial and final state.

We start with a hadron in the initial state with momentum P, which is specified by a density matriz,
for an ensemble of initial states indicated with «,

(Pag(P.S) = > (Piali)pi (ilP: )
Hregame %(5a5+aaﬁ.s) (E.68)

Note that this in a general frame generalizes to a vector S*(P) which satisfies P-S = 0 and —1 < 52 <0.

Then, let’s assume that a particle h is produced in the final state with momentum Pj,, which is analyzed
via its decay products, e.g. a A decaying into pr~. In that case the probability of finding a specific final
state configuration (f) is contained in the decay matriz

R((jeﬁc,ay)(f) o Z%”i_))\f (f) %'—Mf(f)
Af

= D (P | TN (s 01T | Pus B). (E-69)

Af

In this matrix one has summed over all final state spins or helicities (A7) in the decay channel (in the
example the proton polarizations). The decay matrix depends on the phase space (f) of the decay channel
(in the example 0;’;1). This and other examples are given below. In general we may write

h rest frame

RUG™ (P, f) = w(f) (%w +owy - Anlf ))

general frame

= (2Sh + 1) w(f) parpr (Phy An(Phs £))s (E.70)
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normalized to 3, w(f) = 1and 3 Ap(Pp, f)w(f) =0, 0r 32 Rarp (f) = darp. Note that the summation
over f is just symbolic for all kinematic variables (usually angles) appearing in the decay. Sometimes one
only integrates over a particular subset in f, in which case the righthandside is multiplied with a function
depending on the remaining variables. This defines Aj as the analyzing power of the decay channel. Note
that Aj, depends on Pj, and f, i.e. Ap(Pp, f). In general it satisfies P, - A, = 0. For a decaying particle
h with a polarization state determined by a density matrix p(Py, Sy) defined in the same way as pi,, with
Py, - Sy, = 0and —1 < 57 <0, the probability of a final state is given by

W(h = ) =T (p(P, 50) RO (P, )" = w(f) [+ S ()

general frame

L =w(f)[1 — Su(Py) - An(Pn, f)] . (E.71)

Starting with some (general) initial state, the result for a semi-inclusive measurement in which the decay
products of hadron h are detected employs the production matrix,

Ry (PiPa) = T3 (P, Pa) T (P, Pa)
= (P; BT |Py; B) (Pu; | 7| Ps ). (E.72)
The S- and Sp-dependent matrix elements can be introduced as
RSP, S5 Py) = ppa(P,S) RY;20 (P, Py), (E.73)
5 Sh1+ : RY°V(P; Py, Sh) = RO (P, Py) pprar (P, Sh), (E.74)
5 Sh1+ - RP(P,S; Py, Sn) = ppa(P.S) Rlsr (P, P) pprar (Pay Si), (E.75)

in which the spin vectors (thus) can only appear linearly. Note that because of the definition of the decay
matrix it is convenient to absorb a multiplicity factor in the final state spin-dependence. If this is not
done, it will explicitly appear in the following expressions.

The probability to produce the final state configuration f via the decay of h is

. rod deca;
W(i—h=f) = (pn)ga(P,S) BRI (P Py) RGS™ (Py, f)
= R®SY(P.S; P) RYS™ (P, f). (E.76)
Using the parametrization of R(4¢°) in terms of the analyzing power one has

W(i — h— f) = RP°Y (P, S; Py, An(Ph, f)) w(f), (E.77)

while summing (or integrating) over the decay products of h one is not able to measure the polarization
of h, and finds

S Wii—h— f)=> RESV(P,S; Py) = RPOV(P,S; P, 0). (E.78)
f o

When the production is described as the product of a distribution and fragmentation part as in the case
of the hadronic tensor in deep inelastic scattering,

R (P § Py S,) = Trp[®(P,S)* H x A(Py,Sh)|
= Trp [((I)O(P) +S- @S(P)) x H x (Ao(Ph) +Sh - (I)S;L(Ph))] (E79)

where the Trp indicates tracing (and possibly integrating) over internal space, e.g. tracing in Dirac space
and integrating over momenta for produced and fragmenting quarks including a hard part (H).

E.7 Examples of analyzing power in decays
E.7.1 A decay

The decay amplitude for A — N7 is given by

1 \
Tinoa(5.2) = |/ 5= A DD (q), (E.80)
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Explicitly,

/1
%/2_,1/2 S, Q %A+ (¢{0)] 0/2)
1

T j2——1/2(8,42) %A sin 9/2)
/1
T 1/2_&/2 S, Q 27A+ sin 0/2)
1
T_1/25-172(5,Q) = %A,(s) cos(0/2)

For a spin up or down A one then finds respectively

We0.6) = o (1AL cos?(6/2) + A sin®(6/2)

= (AP IAP) + = (1AL P ~ 1A_?) cost (E51)
Wo0,6) = o (1AL sn?(6/2) + |A_P cos’(6/2)

= (AP IAP) — (AP~ A7) cost. (.52

For more general use we calculate the so-called decay matrix (summed over the final state helicities \),

Ron S Q Z n—))\(s Q)
which is equal to
1 9 9 1 9 9 cosf  sinfe ¢
RO.6) = (AP +14- )+ = (A2 —1a ) | opf, "m0

1 1 - em
= (AP AP 1 (A4~ [AP) o5, (£.83)
appropriately normalized giving
R(0,0) = (1 +ao-p™) (E.84)

where o = 0.642 for the decay A — pm~. Thus one has
cm A rest-frame . cm
A, (Qm,) = o P (E.85)

Given a specific polarization for the decaying hadron (h = A) via a density matrix p(Sy,) one finds a
CM distribution

W(Sh;0,9) Tr [p(Sk) R(6, 0)]
1+ Sh . Ah(ea ¢)

= 1+ a(S, cos+ Sk sinf cos¢ + S2 sin 6 sin ¢). (E.86)

In covariant form (with Py = P, + Pr) one obtains for the analyzing power,

M3 — M? + M? M3+ M? — M?
APy Pr) = a > T pro 2 P T pr| (E.87)
42 [1.71 ' Pr
= 06 [70MA—938MA]

with A(M3, M; M2) = (M?\ — (M, + Mﬂ)2) (MK — (M, — Mﬂ)g) = 4M3 |p“™|?. This illustrates how
the analyzing power in the final state is determined from momenta of the decay products. For instance
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the helicity Ax , = My Ay /Py is given by

M3 — M2 + M? M3 + M2 — M?
AALa[ L2 ), (E.88)
A(MZ, M2, M2) =7 A(MR, M2, M2) #A
which takes the values A, = « for the maximal value of z,, namely (z,)max = 0.936 zx and the value
Ap, = —a for (2) i = 0.756 z5. Furthermore we have
Py
AII{T :AXJ_ _AAL F (E89)
A
E.7.2 p decay
The decay amplitude for p — 7m is given by
3 (1)*
Im(s5,Q) = o A(s) D5 (£2). (E.90)
Explicitly,
3 . 7,(25
F1(5,2) = —/— Asinfe
™
3
To(s,Q) =4/ — A cosb
T
3 . _1¢
T_1(s,2) =/ — Asinfe
T

Next we calculate the decay matrix,
Rin(8,0) x T (s,Q) Tn(s, ),

which is equal to

% sin” § —% sin20 e~ ¢ —% sin? g =219
R(0, ) AP | _ s sin 26 e* ¢ 3 cos? 0 —3_sin20e*? (E.91)
) 47_[_ 2\/5 2\/5 . .
—% sin® fe219 2%/5 sin 26 e* ® % sin? #
After normalization this gives
1
R(0,¢) = In (1+3%;; Aij) (E.92)

with the tensor ; )
m rest-frame om Acm
(Ap)ij (Q2m) 7= 3 dij — PP (E.93)

and the vector part being zero.
Given a specific polarization for the decaying hadron (h = p) via a density matrix p(Sy) one finds a
CM distribution

W (Sh;0,9) = Tr[p(Sn) R(0,9)]
1
= = (143 (Th)ij(An)ij (0, 9)]
= 32 25 (3cos?0 1) 5, sin20 57, sin20 si
= 373 1 (3cos0 — 1) — S; . sin26 cos ¢ — SZ,. sin 26 sin ¢

—S1L sin? @ cos 2¢ — S12 sin? 6 sin 2¢> . (E.94)
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giving

nv
Ah

36
In covariant form (with P, = P; + P,) we have
) P _ pl
Pgm:%a (E-95)
NIYPIYYE
1 [ " {npr} {1 pv} 1 v P}/;P}l{
Yyl PR S I I AU V7
2A0MF = M) o 1 it | pleprt] L
~)__pleprt [P“P” P“P”}—f‘“’
SMZ(MZ—AMZ) b h T aE—anz 1 Thzi2 T3
2(M2 — M2) 1
T avfB avf avf
oz -z el = g 19 Pl 4 SM Prabg)
p M) w ™
2(]\4;72 - Mﬁ) WPy, v P 1 PivPy PP
OO0 PP - aE E& + GuPvPa] (E.96)
p\HMp w w
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E.8 Comment on BLT sumrule

Spin sum rules

There are two spin sum rules that relate integrals over distribution functions to (local) QCD operators.
One for longitudinal spin,

1
5 = 72/ dzAq(x /da:AG( )+ LY+ LC
= 72/ dz (Aq(x) + Ag(x / dr AG(z) + L9 + LC, (E.97)

and one for transverse spin (O. Teryaev, B. Pire and J. Soffer, hep-ph/9806502; P.G. Ratcliffe, hep-
ph/9811348)

1 1 1 1
3 = 5Ej/ldxg%(ac)%—/o dmAGT(m)—quT—kLg
—~ /-
1 1 _ 1
= 35 [ delob) +ob@) + [ drnGrt) + 144 15 ©.98)
q 70 0

In fact these two sum rules are expected to have the same contributions, at least for the quark spin part,
where the equality is just the Burkhard-Cottingham sumrule. The equalities for the various terms are
a consequence of Lorentz invariance. At the operator level the transverse spin sum rule involves quark-
quark-gluon operators, exactly what one would expect since partons correspond to the quanta of good
quark and gluon fields in front form quantization.

Tensor charge

There is a sumrule for transverse spin polarization. It relates the integral over h{(z) = dq(z) = Arq(z) to
the tensor charge (local operator is 1) o#"~y5 1),

Z/ dz og(x Z/ dx (6q(z) — 6q(x)) = gr. (E.99)

Interpretation as spin densities

The leading twist distribution functions f{(z) = q(z), g1 () = Aq(x) and h!(z) = dg(x) can be interpreted
as spin densities. They are 'quadratic’ operators for good fields, ¥ (z) = Pyy(z) = %’y"’v_z/)(x) after
taking (spin) projections, Pr,;, = %(1 +v5) and Py = %(1 +~'55). These spin projectors commute with
Py. One has

q(x) = qr(@) + qr(2) = g1(x) + g, (2), (E.100)
Aq(z) = qr(z) — qr(z) (E.101)
oq(x) = qr(x) — q(=), (E.102)

Transverse spin

(a) From the interpretation one expects
1
3 / de (5q(z) + 63(x)) (E.103)
0
q

to have a meaning as ’transverse spin’. It certainly is a measure for transverse polarization of quarks
and antiquarks, but there is no local operator to which it can be equated.

One can write down an operator expression, but it is nonlocal. The starting point is 8(z) dq(x) —

(=) dq(—x)
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(b) For an ensemble of free quarks (and gluons) the quantity entering in the transverse spin sumrule is
related to transverse spin density. One has

gr(z) = Mﬂm hyi (). (E.104)



Appendix F

Kinematics in hard processes

F.1 kinematics with a hard 2 — 2 subprocess
Consider the kinematics of a hard process, Hy + Ho — hy + ho + X, including momenta
Hl(P1)+H2(P2) —>h1(K1)+h2(K2)+X. (Fl)

This is an inclusive process, for which we will use the variables,

s= (P + P)*~2P, - P, (F.2)
s = (K + Ky)? ~ 2K, - Ky, (F.3)
t=(P—K)?~-2P - K, (F.4)
t' = (Py— K3)? ~ =2 Py - Ko, (F.5)
' = (P — K3)? ~ —2P; - Ko, (F.6)
u=(P,— K|~ 2P, K, (F.7)

All these invariants are assumed to be of order s. The corrections are €(1), that means suppressed by two
orders of the hard scale, (1/s) indicated with the ~ symbol between the entries. The dot-products can be
used to expand the final state vectors K; and K5 in terms of P, and P, and orthogonal parts,

t
Klﬁ—gpl—;PQ—FKlJ_, (FS)

t’ o’
K2:_EP1_;P2+K2J_’ (F.9)

where K1, - Py =Ky, -Py=0and Ky - P, = Ky, - P, = 0. Note that K?| ~ —tu/s and K3, ~ —t'u'/s
with €'(1) corrections, and

(F.10)

39
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In practice often used is the Feynman-z, @1, = K¢ /KI™M) ~ 9 gem/ /g — ~ (+ — u)/s. Scaling also
the transverse momentum in the CM frame and using @1, = 2|KST|/y/s =~ 2/tu/s, or the CM scattering
angle 6 one has e; = 2 E{"/\/s ~ x1,/ cosfy ~ \/x7, + 27,.. In terms of the CM (pseudo)-rapidity 7; one
has x1» = x1 sinhn; and €; ~ 21, coshny. It is related to 61 via n; ~ —Intan(6,/2) or sinhn; ~ cot 6;.

One has
t 0 —2 E5% /s sin®(0,/2) ~ —% (\/x%F +a2, — x1F> = —gxlT e M, (F.11)
s s
u~ =2 ERt Vs cos? (01/2) ~ —3 ( 23, + 22, + xlF) —3 Tiret ™, (F.12)
t' ~ —2 B30 \/s cos®(0/2) ~ % ( x3, + 23, + ng) ;nge 2 (F.13)
u ~ —2 ESR /s sin®(02/2) ~ g ( x2,. + 23, — ) %mQT e ", (F.14)
(F.15)
and ,
S; = T1; Tor {cosh2 (771;772> + cos? (dﬁ;qﬁz)] . (F.16)
The final state phase space can be expressed as
3K, 1 dt 1 du
. - T PK =—— — &K
27)3 2B 2m)3 2t T @2rp 2w M
1
B 1 dtdu 1 dtdu %
T (@n)? 4s ' 1672 4s 2«
1 drypdx?. d
- 3 \/;m dzyp d|KTT[* dgy = : 2 D S 2
( ) 8E 64 x%F+x%T 2w
d¢1

Similar relations can be written down for the momentum K5 involving ', v/, 9., and xap.

The incoming hadrons produce two partons with momenta p; and p,, the outcoming hadrons are
assumed to originate from partons ki and ks, in which case we assume approximate collinearity, implying
p? ~ p; - P, ~ P? = M?. These partons participate in a hard process in which the momenta satisfy
p1 + p2 = k1 + ko. For the subprocess we use

8= (p1+p2)® = (k1 +k2)® ~2p1 - p2 =~ 2k1 - ko, (F.18)
b= (p1—k1)* = (p2 = k2)? = —2p1 - k1 = —2py - ko, (F.19)
= (p1—ko)?=(p2—k1)® =~ —2p1 ko = —2ps - ky, (F.20)

adding up to zero, 3 + ¢ + @ ~ 0. For the initial/final state partons, we write

Pi = i Py 4 pir + 03 05, (F.21)
K;

ki = — + kir + oy, (F.22)
zi

where the only condition on the vector n; is that P;-n; ~ K;-n; ~ /s. The fraction x; = p; -n;/P;-n; is a
lightcone fraction. The quantity multiplying the vector n; is the lightcone component conjugate to p; - n;
and is given by

2z; P -n; Piong
(and similar expressions for K;), quantities which are of order 1/4/s. Note that we have the exact relations
p2. = (pi — z; P;)? and p; - pir = p7,.. The integration over parton momenta is

d*p; = dw; d*pir d(p; - P;). (F.24)
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If we only consider the (large) momenta, defining

K .
g =x1 P — =1 with qf ~ Et ~t, (F.25)
21 Z1
K R
o =m3 Py — =2 with  ¢5 ~ 2y~ i (F.26)
22 Z2
their sum is of (1) and given by
q1 + G2 = —qr, (F.27)
where
qr = pir + P2r — k1 — kar. (F28)

When we use the ~ symbol the expression gets corrections one order suppressed in the hard scale. The

small (1) momentum
K K
pyo= kg 22 (F.29)
Z1 z9

is actually just the projection of the (small) transverse momenta in the perpendicular plane, r; ~ ¢r,
but it requires knowledge of z; and z3. It is convenient to introduce the transverse energy k. , defined as
k) = k11| =~ |keo| = |Ka1|/22 =~ |K11|/z1 and its scaled version z; =2k, /+/s.

F.2 parton momentum fractions
In the next step we want to see how to obtain the parton momentum fractions from the external momenta

using as basis the momentum conservation in the hard subprocess. By taking the product of the constraint
p1 + p2 — k1 — ko = 0 we get (omitting & (1) corrections) the constraints

2P; - (p1 +P2*k1*k2):021’25+it+;12u/+2p1~qm (F.30)
2P - (p1 +p2—/€1—/€2)=02$13+iu+z—12t’+2P2~qT, (F.31)
2K1'(p1+p2—k1—k2):02—x1t—x2u—z—128'—|—2K1-qT, (F.32)
2K, - (p1 +p2—k‘1—k‘z)ZOZ—xlu’—th’—Z—lls/+2K2-qT, (F.33)

Instead of the latter two conditions we get for the | -components

9 | K112 oKL Koy

2K11 - (p1+p2— ki —k2) =0 2 +2K11 - qr,
Z1 )
tu 4+ uu — ss’
~ 2—+—— 412Ky, -qr, (F.34)
zZ18 zZ98

t'y !+ uu — ss'
+ ——— + 2Ky qr, (F.35)

2K21_'(p1+p2—k1—k2):0 ~ 2
zZ98 zZ18

At leading order, the Mandelstam variables for the subprocess (3, £ and @) are related to variables in the
full process through

! _ —
S~ xS ™ lez2 ~ 4k {cosh2 <7712772> + cos® (¢1 ) ¢2)] , (F.36)
i~ 1 t T2 '~ _Qki e~ (m—m2)/2 . oh <771 _ 772) , (F.37)
21 22 2

i D T2y —2 k2 et/ g <’71—’72> 7 (F.38)
22 21 2
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or

5

55 = |22 (F.39)
T1T2
= )22 (F.40)
X192
- |22, (F.41)
T1T2

which are relations with &'(1/s) corrections. Looking only at the leading parts (~ s) in the above con-
straints, we obtain

I
;

s~ (VIT + m)Q, (F.42)

and
1 41 !
s't s’ u
T1 29 & and  x121 ~ [ —, (F.43)
s su
! a,! !
s'u s't
T 29 & and w321~/ —;, (F.44)
su s

21 tu
P ~ ”t’ = (F.45)

We note that in an analysis of the hadrons in the final state jets one can determine z; and z also when
the jet momentum is assumed to be known. In that case

K- Ky
~~ F.46
21 kl -}(2 ’ ( )
Ky K,
~ . F.47
o (F.47)

F.3 kinematics in the transverse plane

The approximations above (coming from the constraint p; + pa — k1 — ko = 0) lead to Eq. F.42, which
implies that for a two to two hard subprocess

K1, - Koy = Vitt'uu'/s, (F.48)
i.e. the vectors K1, and K5 are almost parallel. Hence, the directions

_ Ki S _ Ky S
el = T ~ EKﬁ and e, = o] o~ WKSL (F.49)

are opposite in leading order, e;; ~ —es, . In the following we will keep the small part, thus using Eq. F.10

instead of Eq. F.48, or ey - eg) ~ —(tt' + uu' — ss’)/2vtt'un’, with corrections that are of &(1/s), The
vectors

1
eLEi(eu_—ng_). and pNE(€1J_+€2J_), (F50>

are orthogonal ones. The small vector py has invariant length squared

2 _ (ers +en)) (Vtt' + Vuu')? — ss’ 5 ss’
= (e e ~— R —
Py =161l T ezl Nog trun
where the last step again makes use of Eq. F.42.
We can define other (spacelike) vector in the transverse plane via

(VI + vVl = s57) . (F.51)

eP1P2Kap 2
veoo— ~ _ Pi1PyKy p F.52
eN = - € ’ ( . )
Py - Py K| stu
6P1P2K2# 2

eby = — ~ — hfeKep F.53
2N PPy | Ky | vV st'u! ( )
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and ey = (e1y — ean)/2. We again note that ey and egn are approximately opposite.

Connecting the vectors to the angles, we have using the angle
0¢p = ¢po — ¢p1 — m in the frame shown

61L=(1, 0) 61N:(0 1)

y e = —(cosdg, sindg) ean = (sindg, —cosdg)
er =3 (e1L —e21) = cos (30¢) (cos (360),sin (350))
en = 5 (e1v — ean) = cos (30¢) (—sin (30¢) , cos (509))

PN =e11 +ea1 =2sin (%5(;5) (sin (%5(;5) , —COS (%5@5))
= —2 tan (%&b) ey = —ddep,

and from the expression for ey -es),

6¢2%4Sin2<62¢>%2\/tt, ,(\ﬁ—&-\/i \/Q)

The vector r; = k1, + koy (including the lengths) can have any direction in the transverse plane. One

has
1 Jtu 1/t
Tie ko] = ko] = —/— — —\/—, (F.54)
Z1 S z9 S
1

riy~ —ky 0 (F.55)

where k/’J_ = |K21_|/2’2 ~ |K1J_|/Zl.
An interesting quantity is the volume spanned by the four vectors P, P, Ky and Ks. From the above
definition of vectors one immediately sees that

1
€ ~ 2 K1 ||Kay| sind¢ ~ = Vit'uw sindo. F.56
Py Py Ky K2 5 ‘ 5
We can also calculate
1
(eM P> Ka K2)2 ~ = (2ss'tt! + 255t + 2tt'wn — s* s — 217 —u® u'?)

K
|

= (Va4 VI 4 V) (Vs 4 VI~ V)
x(\/Q—x/t?Jr\/W)(@Jr\/t?JrM). (F.57)

Since the first of these terms is explicitly €'(1/s) one can use the leading expressions for the other terms
to obtain

(n sy = st (VIT 4Vl s ) ~ il 667 (F.58)

The normal direction can be expanded as

2 PPK
stu
2 21

Vstu T T2

Finally we give the results for the delta-function expressing momentum conservation for the partons using

Q

“w
e1N

Q

[_€p1p2k1 B 6P1TP2k1 B eplpszl By 6p1pzkn~lt] (F.59)

§4(R) ~ gé(R-l%)é(R~I§)6(R-ell)d(R-elN), (F.60)
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(similarly with eo; and esny or e; and ey) using for R = p; + ps — k1 — k. We find

K
R-e, ~ J Z2L| eil -ez] +eil - qr, (F.61)
2
K
R-ey ~ _‘ Zu| €1l ezl + ezl - qr, (F.62)
1
K K t'u’ t
R.ey ~ Hoil 1Kl 1” w_ 1/ (F.63)
z9 Al S
K.
R-ejny ~ K. | sindg + e1n - qr, (F.64)
2
K
R~62N2*@ sindg + ean - qr, (F.65)
21
1 t 1 t'u!
R-ey~en-qr+ — —usin&b%e]\;-qT—l-f —usinéqb (F.66)
Z1 S 29 S

The parton momentum conservation delta-function thus can be written as

1 1 1
(54(p1+p2—k1—k2) = 2s§<$25+t+u> 5<$1S+Zlu+t’>

22

1 1ol 1 oyl
xd(y/tu \/tu) (eN-qT—I—\/tusin&ﬁ) (F.67)
z9 S Z9 S
T (RS U ECA T (R O
B Vstu e 29 st 2 29 su

1 1 Iyl 1
xé(— tu) 5<6N-qT+Htusin<5¢> (F.68)
21 29 tu Z1 S

X5(1w> 5<6N.qT+\fM sin5¢)>, (F.70)

) _
_ (m+m2)/2 oogh =2
Ve GRE o (™

X 0 (xz — gz e MmHm2)/2 cogh (771;772))

) (1 _ m_) 5 <€N qr + ?mj_ Sin5¢> , (F.71)

where z; = 2k, /+/s. Note that the transverse energy can be easily brought into the phase space integra-
tion which involves

1 1 1 1 1
—dzy ! d,z2 dxip drar 6 ( - M) = dzf1 dz{1 dx | dxip dxor 6 ( - M) 1) ( - am_)
Lir Z1  Zir T1r Tor 21 T1r 2o  Tor
(F.72)

which makes the kinematics nicely symmetric.

F.4 Explicit frame dependence and n-dependence

In order to illustrate the n-dependence we start with looking at the momenta in a two-to-two hard scattering
process, p1 + p2 = k1 + k2. In the CM system we have
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The Mandelstam variables for the (assumed massless) par-

A, X tons are:
Lol § 2p1 - po,
9 z —t = 2k -p=ésin®(30),
/ —0 = 2k -ps=3§cos’(16),
k1
P] ) For the scattering angle in the parton CM system one has:
@, |
P4
2 cosf) = — u,
k, 5
, 2/1i
sinf = ——.
8
The explicit parton momenta are
1 1 1 1
~1 0 ~ 0 ~| sind ~| —sind
plz%\/; 0 bl pQZ%\/; O ’ kl_% 0 9’ kQZ% S 0 i (F73)
1 -1 cos @ —cosf
or in lightcone coordinates, [p~, p*,p1],
0 1 —t/3 /3
511 510 5| —a/3 3 —t/5
= — y = —_ s k = \/7 < A , k = - A . F.74
L=y 1o P2=V5 o L=V | Vaiays 2= Va2 | —vaiass (F.74)
0 0 0 0

For the momenta Py and P, we have (using m?, = 2?2 M? — p?.),

m2,./8 21/

1 s 1 1 s ms, /3
P=—y/2 I I R oS F.75
! 1V 2 _pr\/ﬁ/\/g 2 To V 2 _pgT\/i/\/; ( )

_pﬁT \/i/\/g —PgT \/i/\/g

Using (pY, p*, p¥, p*) coordinates, one has for P; and the (over an angle #) rotated momentum K (fraction
T — ]./Zl),

(5+m2,)/s ] (84 mhar)/8 ,
1VE | —2p2,/V3 Vi | 2via(s —m2,,) /52 — 2 — kT, /35
Plzfi r = 5 Klzzl— T y = 5 (F76)
1 2 _2]?11/T/\/g 2 -2 le/\/g
(8 —mi,)/3 (t —a)(8 —m2,,) /8% + WVTa ks, )33
where m?,, = 2,2 M2, — k?,.. In lightcone coordinates we get for K; and Ko,
—t/3 = 2Via kT /55 —am?,, /82
- PO T a Ja)E  faen2 a2
K, = 21\/; = /5 i|— QVE]?M/S\/E tmh}T/S ) (F.77)
2 | V2ta)s — (f —a)k{V2/5V3E — V2tim?,, /5

_kzl/T\/i/\/g
—a/§ — Vi ks, /5% — tm2,, /52
B —t/5 4+ 2VT0 ks, /3V5 — am?,, /32
Ky = =z \/> _ ] 27 h2r . F.78
? V2 | —vata/s — (F— a)ksv2/5VE + Votam?,, /52 (E-78)
_kgTﬁ/\/g

We note that with n ~ py one finds exactly 1 = p; - n/Py - n = p; - po/P; - p2, while one has

2

T (F.79)
r1 S

p1 =21 Py +pir +
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with p1 = p%,& +p},.9. Note that the coefficient of p, is given by 01/(3/2) = m?,/z1 = p1 - P1. Similarly
with n ~ ko one finds exactly 1/21 = k1 - n/Ky -n = ky - ko /K7 - ko, while one has

2
mp

]fl = Zl_l K1 + le + 21 LT kQ, (F80)

with ki, = kf;i’ + kY_9. Without reference to ko one could have chosen n ~ p; +ps — k1 = pem — k1 or in
a multiparton 2-to-many process, with p; and po the initial state parton momenta and & one of the final
state parton momenta, one can use (with ¢t = 2k - p; and @ = 2k - po),

k=2 f pcm—k=w(p1+p2)—k=— 3

cm

(p1 +p2) — k, (F81)

which in the CM system is just the space-inverted vector. Note that the vector 1 P + z2 P> can mostly
be used instead of pep,, since the difference is O(o0).

To see what is happening for a different n, we start with the hadronic vector K in the jet with
momentum k, given in the form as above

k2 sinf/v/2 0
z 2 z’
K=zk—=z —kr /sm@/\/? fz—mf”kk:zkfz Fr cyos@ ,
k% cosf § l/cT
K —k% sind

where 2z and k; correspond with choice n = I;/k k. Using the choice n = ps for K one finds

’

K -ps kY fom? kE m?
= = 1424/ L+ —bT ) =z (1+2tan(§) ~& +tan® (§), 2L
=, + ﬂ\/§+1l 5 21+ an(z)\/g—i— an’ (%) <
ke K
~ z|14+2 "L ) =z(14+2tan (%) 22 |, F.82
i va ( (2) (F.82)

which differs at O(1/+/3) from z but causes O(1) corrections to the z-, z- and time-component of k... We
get
k' tan(0/2)
Kz
k7
—k% tan(6/2)

The transverse momentum vector acquires a piece along k, but its length does not change.

K~Zk—2z

F.5 Limiting cases

Limiting cases are:
o Hi(P1)+ Ha(P) — hi(Ky) + j(k2) + X:
Z9 = 1, kQT =0 (kg = K2) (F83)

o Hy(Py)+ Ha(Ps) — t1(k1) 4 £2(k2) + X (Drell-Yan like process):

z1=22=1, kir = kor =0, (F.84)
q=ki+ ko, (F.85)
qr = q—x1 P1 — 22 P> = pir + par, (F.86)

o (1(p1) + f2(p2) = hi(K1) + ha(K2) + X (Annihilation type of process):

r1 =x2 =1, p1r = p2r =0, (F.87)

q = p1+pa2, (F.88)
K K

qr = 42 q = —kir — kar, (F.89)
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o /p1)+ H(P)— ¢(k1) + h(K) + X (Leptoproduction type of process):

r1=21=1, 1o=1x, 20 = 2, p1r = k1 =0, (F.90)

q=p1— k1, (F.91)
K

qT:?—xP—q:pT—kT. (F.92)

F.6 kinematics of jet-jet production
Consider the kinematics of the hard process, H; + Hy — j1 + j2 + X, including momenta
Hi(P1) + Ha(P2) = ji(k1) + ja(ke) + X. (F.93)

This is an inclusive process, for which we will use the same variables as in the general case. The n-vectors
to expand internal momenta will be choosen from P; and P», so the internal transverse momenta could
also be labeled by L-indices. We will maintain r-indices for the partons in hadrons H; and Hy (which are
order 1 rather than the O(y/s) momenta ki, and ko .

The incoming hadrons produce two partons with momenta p; and ps, the outcoming jets are identified
with partons k; and k;. These partons participate in a hard process in which the momenta satisfy
p1 + p2 = k1 + k2. We now have

gr =k1 +ka— 21 PL — 22 P> = p1r + Dar. (F.94)

or
qr =kiL thar =r1. (F.95)

This is a O(1) vector and it is convenient to introduce the transverse energy k, (order Q) given by
k) = |k11| = |ko.| and its scaled version x; = 2k, /+/s, although one might also have to consider the
difference in azimuthal asymmetries.

The relations with parton momenta simplify. By taking the product of the constraint p;+ps—k1—ke =0
we get (omitting €(1) corrections) the constraints

2P - (p1 + p2 — k) =0~x9s+t+u +2P - qr, (F.96)
2P2’(p1+p2 2):0 15+u+t +2P2'qT, (F97)
2ky - (p1 +p2 — 2)20 —z1t—zau—58 +2k - qr, (F.98)
2ks - (p1 + p2 — ko) =0~ —zyu —xot' — 8 +2ky - qr, (F.99)
Instead of the latter two conditions we get for the L -components
2k1s - (pr+p2—k1— ko) =0 =~ 2[k [ —2ki1 -koy + 2k11 - qr,
tu tt +uu — ss
~ 2 ? + — S + lel_ qdr, (F100>
'yt 4+ uu — ss’
2k21 - (p1+p2—Fk1 —ka)=0 =~ 2 + —— +2k2s - qr, (F.101)

S S

At leading order, the Mandelstam variables for the subprocess (3, t and @) are now related to variables in
the full process through

s airas~s ~4k% {cosh2 (771 5 772> + cos® (¢1 5 ¢2>] , (F.102)

~oayt R agt A —2k2 em(MmTm2)/2 cogh (771;772) , (F.103)

>

G~z v~ rgur —2k2 etm=m2)/2 cogh (771;772> , (F.104)
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or
oS F.105
58 — (F.105)
¢
=, (F.106)
wl = ——o (F.107)

,/.’,Elil,‘Q’

which are relations with &'(1/s) corrections. At leading order it of course again follows Eq. F.42. and we

now have
/ tl
(F.108)
/s s't
it (F.109)

~ 1. (F.110)

ZZ

ZZ

t/ !

As before let us consider the kinematics in the transverse plane. The approximations above (coming from
the constraint p; + ps — k1 — ko = 0) lead to Eq. F.42, which implies that

kil ko =1 (F.111)

i.e. the vectors k1, and ko, are almost parallel and opposite, k1, ~ —ko, and similarly its directions
e11 =~ —eg . While the directions e;; and e;; make a small angle §¢,

6¢2%2\/tt, ,(\ﬁ—&-\/i \/Q)

and their sum vector is in the direction N, the sum vector r; = g = k11 + ko, can have any direction.

In the figure the jet direction ¢; = (¢1+¢2 —7)/2 has been chosen
to the right (j- or a-direction with orthogonal N- or y-direction).

rie = (k] —Ikar]) cos (500)

~ (1 — sz‘[ \/E \/W (F.112)
riy = (ko] +[k2u]) sin (509)

~ —kl&b:—ml%éd) (F.113)

where k| = (‘ku_| + |k2j_|)/2 =T \/§/2

Finally we give again the results for the delta-function expressing momentum conservation for the partons
using

§4(R) ~ gé(R-Pl)é(R~P2)62(RL), (F.114)
and R = p; + pa — k1 — ko. We find (note that g = r)

64(]91 + p2 —ky _k2> :235(1'23+t+ul) 6($15+U+tl) (52 (plT +p2T_I€1J_ _kQJ_) (F115)
2 1 /st 1 /s’
= 0 (371 - ;2 ) 0 <$2 - ) 5 (plT + por — QT) (F116)

Vvstu st 2oV su

2
= - §(x1— w1 €™ — w2 €M) 0 (22 — w1pe” ™ — zap e ) 62 (p1r + par — qr)(F.117)
stu

T
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We note that in the phase-space integration in the transverse plane, we have variables 14, 27, ¢1 and
¢2 or 1, ¢j, ¢r and Qr = |gr|. We have the relations

235 cos(¢r — ¢j) = (170 — T2r) CcOS (%&b) , (F.118)
2\6/25 sin(¢r — ¢;) = (214 + @2r) sin (30¢) , (F.119)
from which we get (up to mass corrections exact)
4Q%/s = (w17 — T2p)? cos® (%(Mﬁ) + (217 + T27)? sin? (%6(]5) , (F.120)
Q7 cos (2(¢r — ¢;)) = Q7 —8Kk1 sin® (309), (F.121)

Q1 cos (4(dr — ¢5)) = Q1 —32Q2 k1 sin® (300) + 128k sin* (350)
= Q- 16Q2 k2 +16Q% k> cos(59)
+48KT — 64k cos (0¢) + 16k cos (20¢) (F.122)

F.6.1 Kinematics for GPD’s

Consider the amplitude for v*(¢) + P — v(¢') + P’ and the handbag diagram underlying this process,
i.e. with v*(q) + parton(k) — ~(¢’) + parton’(k’). A convenient parametrization of momenta satisfying
P? = P2 = M? and using

A=P—-P with A?=1<0, (F.123)
P=(P+P)/2 with P =0 =M>—1t>M> (F.124)

Introducing lightlike vectors p and n satisfying p - n = 1 we write

t— A2 _
A=2%p+ 4£Ln+AL:2§p—§(M2—it)n—i—AJ_:pr—fMZn—%-AJ_ (F.125)
M? — 1A2 1 M1
P=(1 AL b A =(1 1-&)—n+=A F.12
(1+&p+ S0+ n+5AL (1+8p+(1-¢) 5 AL (F.126)
M2-1AT 7|
/o . 4= = _ _ _ -
P =1 £)p+72(1_€) n—581=01-gp+{A+&—n- AL, (F.127)
—_—2
- M M? — 1t M? - 1A2
D= o= T4, I S F.12
P+ 5 T p+ 5 n=p+ 20— €2 n ( 8)

The latter equation implies that A% = #(1 — £2) + 4M?¢? which has been used to rewrite the first three

expressions. A slightly different way of writing is —A?% + 4M2§2 = —t. It implies that for —¢ — 0 one
must have £ — 0 and —A? — 0, while for small ¢ one has —t ~ —A2 + 4M?2¢2.
Turning to the kinematics for ¢ and ¢’ we can make the choice that ¢, = 0, implying

q:—2§<1+A2§)p+Q22n ~ —2§p+Q—2n, (F.129)
Q 16 (1+ ) 4
f:ﬁi?ﬁim 4;n+AL. (F.130)
Furthermore, one has (with {Mz, M2 A2t} < Q%)
£~ 92 ___ @ — (F.131)

v _
~ P-—— q~P F.132
p 254" ( )
2 26P
no~ Ly @& patX (F.133)
P.-q 2(P-q)? P-q



October 2007 50

The parton momenta and photon momenta, satisfying A = ¢’ — ¢ = k — k" are choosen

_ (1 +38.)° 1
ki+1a,)? 1

where x is simply one of the partonic momentum integration variables, as is the transverse momentum £k, .
One has for the spectator and struck partons the momenta

Pk=P - K=0-2)p+(.)n, (F.136)
) ) ,

Ic—i—qm(:c—ﬁ)p—k%n and }éj—;é:;x—?+ie’ (F.137)
) . .

klfqz(erf)pf%n and }é’z—qu—&—?—ie' (F.138)

The two possibilities for the struck parton correspond to the two diagrams (handbag and crossed handbag).
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