# Science and technology of hydrogen in metals

Ronald Griessen Vrije Universiteit, Amsterdam 2008



# Energy and Power: what is that?

- Missing energy intuition because:
  - Energy is ubiquitous in the industrialized nations
  - There is a zoo of units
  - Energy and Power are mixed up
  - Energy is far too cheap




# Energy and Power: what is that?

- Missing energy intuition because:
  - Energy is ubiquitous in the industrialized nations









# Comparison of energy densities



5.6 MJ/kg

Gasoline 44.5 MJ/kg

Methane 50 MJ/kg

Hydrogen 120 MJ/kg

# How much energy do you need for a bath?









37.8 MJ





# Comparison of energy densities



Gasoline 44.5 MJ/kg



Methane 50 MJ/kg



Hydrogen 120 MJ/kg

# Energy and Power: what is that?

- Missing energy intuition because:
  - Energy is ubiquitous in the industrialized nations
  - There is a zoo of units





# General Conversion Factors for Energy

| To:   | TJ                           | Gcal            | Mtoe                        | MBtu                    | GWh                      |
|-------|------------------------------|-----------------|-----------------------------|-------------------------|--------------------------|
| From: | multiply by:                 |                 |                             |                         |                          |
| TJ    | 1                            | 238.8           | 2.388 ×<br>10 <sup>-5</sup> | 947.8                   | 0.2778                   |
| Gcal  | 4.1868 ×<br>10 <sup>-3</sup> | 1               | 10 <sup>-7</sup>            | 3.968                   | 1.163 × 10 <sup>-3</sup> |
| Mtoe  | 4.1868 ×<br>10 <sup>4</sup>  | 10 <sup>7</sup> | 1                           | 3.968 × 10 <sup>7</sup> | 11630                    |
| MBtu  | 1.0551 ×<br>10 <sup>-3</sup> | 0.252           | 2.52 ×<br>10 <sup>-8</sup>  | 1                       | 2.931 × 10 <sup>-4</sup> |
| GWh   | 3.6                          | 860             | 8.6 × 10 <sup>-5</sup>      | 3412                    | 1                        |

### For example:

1 toe to be equal to 41.868 GJ or 11.630 MWh

1 GJ=10<sup>9</sup> J giga

1 TJ=10<sup>12</sup> J tera

1 PJ=10<sup>15</sup> J peta

1 EJ=10<sup>18</sup> J eta



# General Conversion Factors for Volumes

|                              | To:   | gal<br>U.S. | gal<br>U.K. | bbl     | ft³     | I      | m³     |
|------------------------------|-------|-------------|-------------|---------|---------|--------|--------|
| From:                        |       |             |             | multip  | oly by: |        |        |
| U.S. Ga<br>(gal)             | llon  | 1           | 0.8327      | 0.02381 | 0.1337  | 3.785  | 0.0038 |
| U.K. Ga<br>(gal)             | llon  | 1.201       | 1           | 0.02859 | 0.1605  | 4.546  | 0.0045 |
| Barrel (                     | bbl)  | 42.0        | 34.97       | 1       | 5.615   | 159.0  | 0.159  |
| Cubic for (ft <sup>3</sup> ) | oot   | 7.48        | 6.229       | 0.1781  | 1       | 28.3   | 0.0283 |
| Litre (I)                    |       | 0.2642      | 0.220       | 0.0063  | 0.0353  | 1      | 0.001  |
| Cubic n<br>(m³)              | netre | 264.2       | 220.0       | 6.289   | 35.3147 | 1000.0 | 1      |

| 1 G=10 <sup>9</sup>  | giga |
|----------------------|------|
| 1 T=10 <sup>12</sup> | tera |
| 1 P=10 <sup>15</sup> | peta |
| 1 E=10 <sup>18</sup> | eta  |



# Energy and Power: what is that?

- Missing energy intuition because:
  - Energy is ubiquitous in the industrialized nations
  - There is a zoo of units
  - Energy and Power are mixed up



### What are kW and kWh?

$$1N = 1 kg \times 1 \frac{m}{s^2}$$

$$1J = 1 N \times 1 m$$

$$1W = 1 \frac{J}{s}$$

$$1kW = 1000 \frac{J}{s} = 1 \frac{kJ}{s}$$

$$1kWh = 1\frac{kJ}{s} \times 3600s = 3.6MJ$$





# Energy and Power: what is that?

- Missing energy intuition because:
  - Energy is ubiquitous in the industrialized nations
  - There is a zoo of units
  - Energy and Power are mixed up
  - Energy is far too cheap

# Energy costs in NL (2008)

### 1 kWh costs:

Continu 0.0927 €

BTW 19%

### 1 m<sup>3</sup> gas (8.8 kWh) costs:

Gas

0.25€

Transport

0.05€

BTW 19%

Average price 0.09 €

Average price

0.44 €m<sup>3</sup>







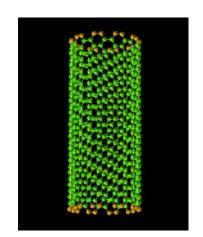
# Energy per € in NL

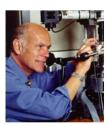
1 kWh costs: 0.09 €

1 kWh=3.6 MJ

$$\frac{3.6}{0.09} \frac{MJ}{\blacksquare} = 40 \frac{MJ}{\blacksquare}$$

1 m³ gas costs: 0.44 €


 $1 \text{ m}^3 = 35.17 \text{ MJ}$ 

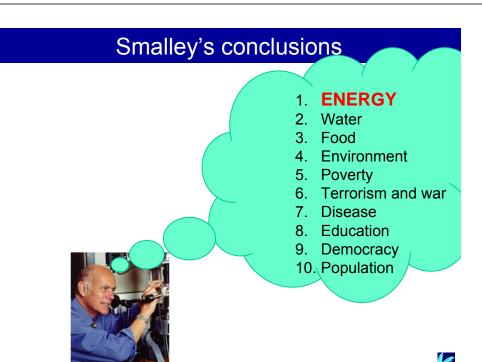

(Groningen-gas-equivalent)

$$\frac{35.17}{0.44} \frac{MJ}{\blacksquare} = 80 \frac{MJ}{\blacksquare}$$

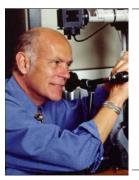


# Smalley's Nobel prize









# Why a lecture on metal-hydrogen systems?

Societal reason:

Global warming

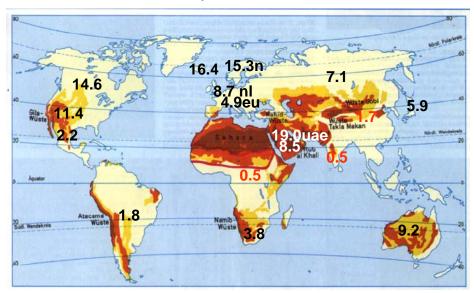


www.mrs.org/publications/bulletin
MATERIAL MATTERS

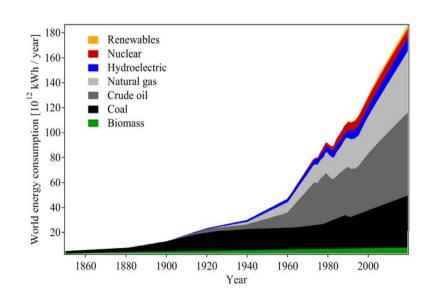


# Future Global Energy Prosperity: The 50 Terawatt Challenge

Richard E. Smalley

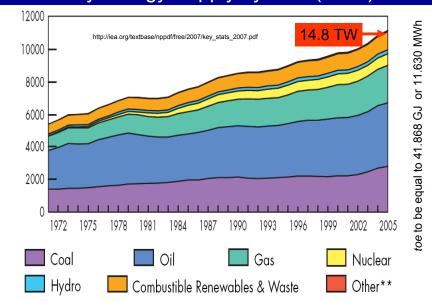

The following article is an edited transcript based on the Symposium X—Frontiers of Materials Research presentation given by Richard E. Smalley of Rice University on December 2, 2004, at the Materials Research Society Fall Meeting in Boston.

MRS Bulletin 30 (2005) 412

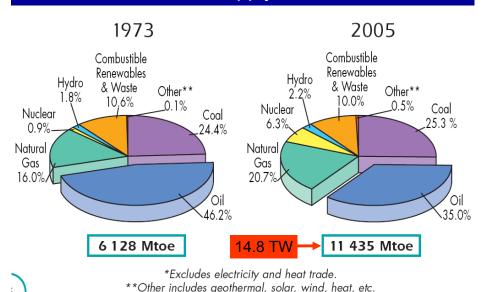



### Primary Power Consumption (kW) per Capita (2005)

World = 2.41 kW/person; for 2 billion = 0 kW




# World Energy Consumption

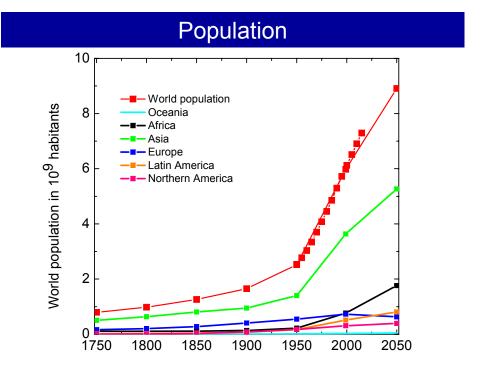




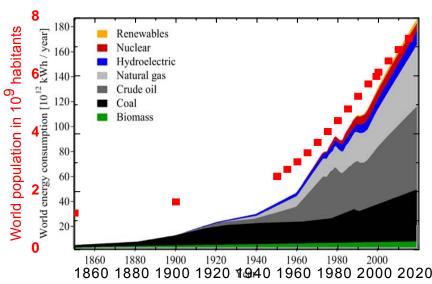

# Evolution from 1971 to 2005 of World Total Primary Energy Supply by Fuel (Mtoe)



# Fuel shares of World Total Primary Energy Supply

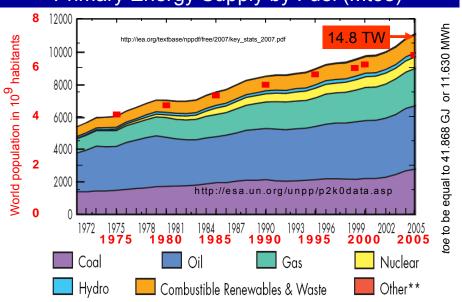



## Tonne of Oil Equivalent

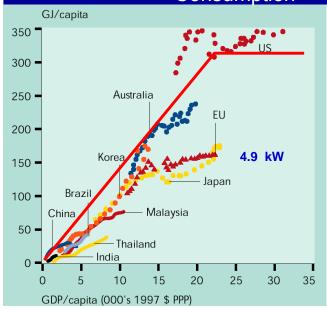

The 30 member countries of the OECD are:
Australia, Austria, Belgium,
Canada, Czech Republic,
Denmark, Finland, France,
Germany, Greece, Hungary,
Iceland, Ireland, Italy, Japan,
Korea, Luxembourg, Mexico,
the Netherlands, New Zealand,
Norway, Poland, Portugal,
Slovak Republic, Spain,
Sweden, Switzerland, Turkey,
United Kingdom, United
States.

The IEA/OECD define one *toe* to be equal to 41.868 GJ or 11.630 MWh.

1 t diesel = 1.01 toe 1 m³ diesel = 0.98 toe 1 t petrol = 1.05 toe 1 m³ petrol = 0.86 toe 1 t biodiesel = 0.86 toe 1 m³ biodiesel = 0.78 toe 1 t bioethanol = 0.64 toe 1 m³ bioethanol = 0.51 toe




# World Energy Consumption

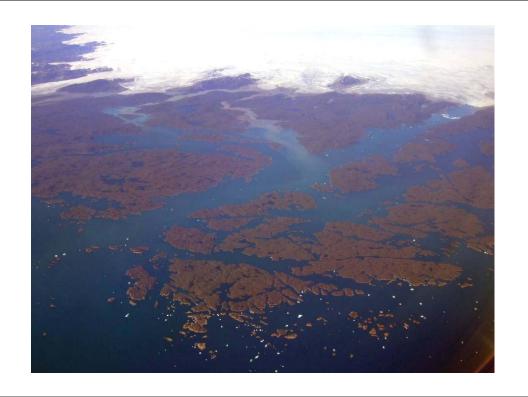




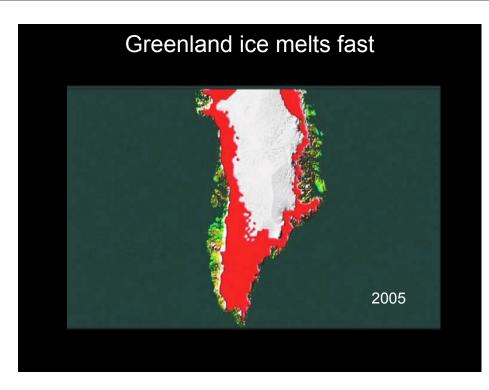

# Evolution from 1971 to 2005 of World Total Primary Energy Supply by Fuel (Mtoe)

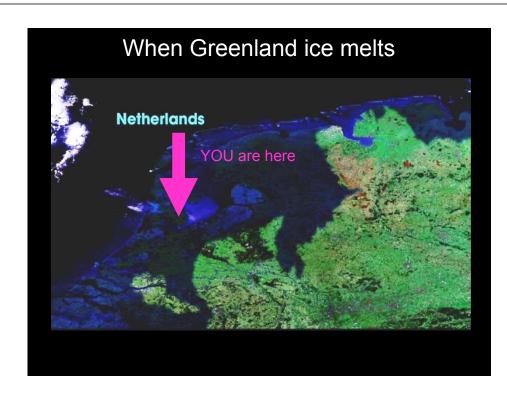


# Relation between Wealth and Energy Consumption

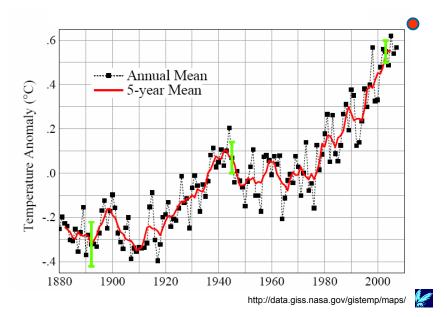



Energy consumption increases until a certain level of wealth is reached

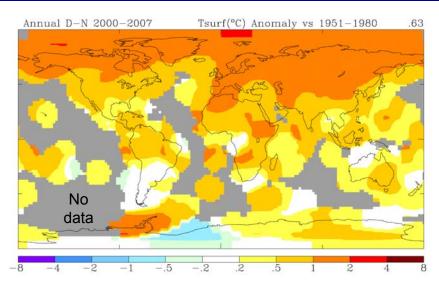

Holdren, Harvard University


# 1. ENERGY 2. Water 3. Food 4. ENVIRONMENT 5. Poverty 6. Terrorism and war 7. Disease 8. Education 9. Democracy 10. Population



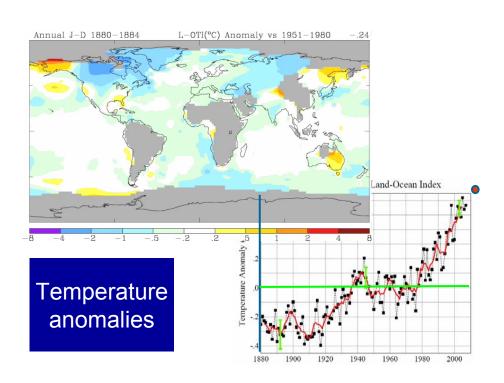




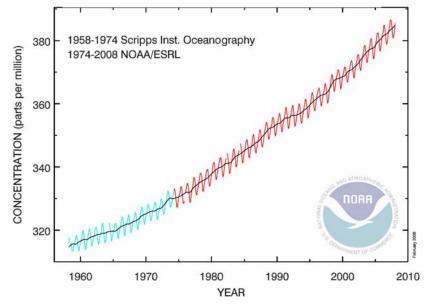






# Global Temperature (Land + Ocean)

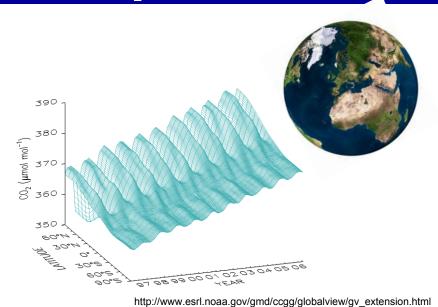



### Temperature anomaly map: Average warming 0.63 °C

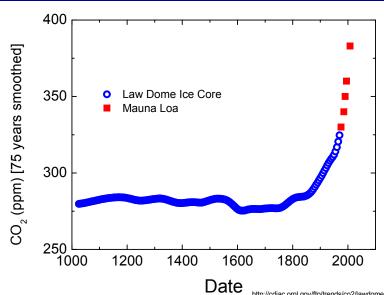



http://data.giss.nasa.gov/gistemp/maps/





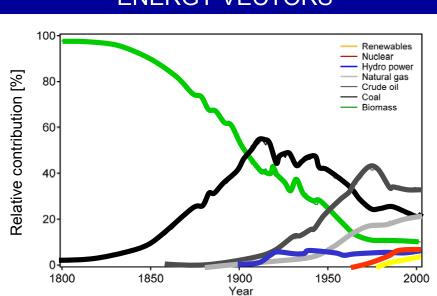

# Atmospheric CO<sub>2</sub> at Mauna Loa Observatory



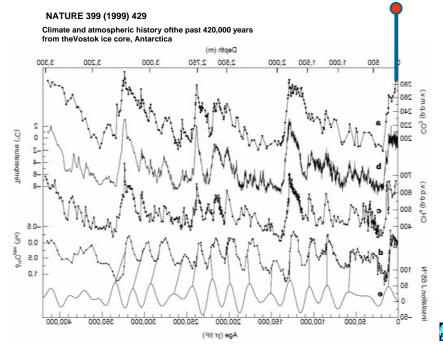



# CO<sub>2</sub> Latitude dependence



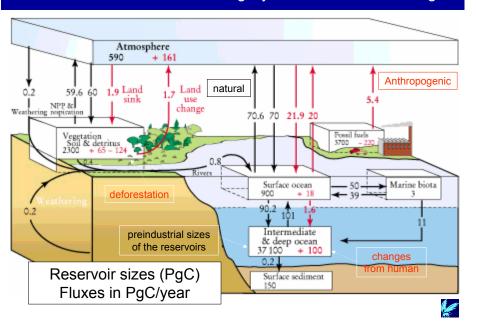

# CO<sub>2</sub> from the Law Dome Ice Cores








# **ENERGY VECTORS**










### CARBON CYCLE: Fluxes in PgC/yr Reservoir sizes in PgC



Arrows show the fluxes (in petagrams of carbon per year) between the atmosphere and its two primary sinks, the land and the ocean, averaged over the 1980s. Anthropogenic fluxes are in red: natural fluxes in black. The net flux between reservoirs is balanced for natural processes but not for the anthropogenic fluxes. Within the boxes, black numbers give the preindustrial sizes of the reservoirs and red numbers denote the changes resulting from human activities since preindustrial times. For the land sink, the first red number is an inferred terrestrial land sink whose origin is speculative; the second one is the decrease due to deforestation. Numbers are slight modifications of those published by the Intergovernmental Panel on Climate Change. NPP is net primary production.

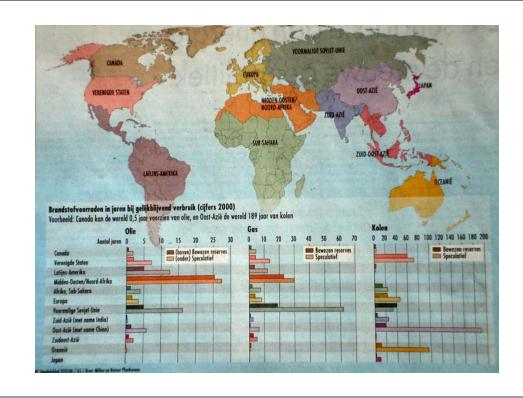


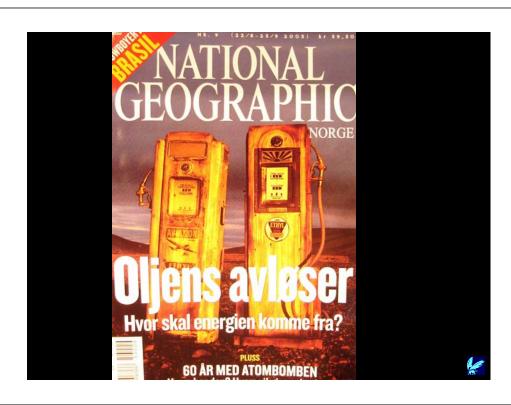
# Options to reduce 14 GtC/year BAU

- Efficient vehicles
- 2. Reduced use of vehicles
- 3. Efficient buildings
- 4. Efficient baseload coal plants
- 5. Gas baseload power for coal baseload power
- 6. Capture CO2 at baseload power plant
- 7. Capture CO2 at H2 plant
- 8. Capture CO2 at coal-to-synfuels plant
- 9. Nuclear power for coal power
- 10. Wind power for coal power
- 11. PV power for coal power
- 12. Wind H2 in fuel-cell car for gasoline in hybrid car
- 13. Biomass fuel for fossil fuel
- 14. Reduced deforestation, plus reforestation
- 15. Conservation tillage

http://www.sciencemag.org/cgi/reprint/305/5686/968.pdf



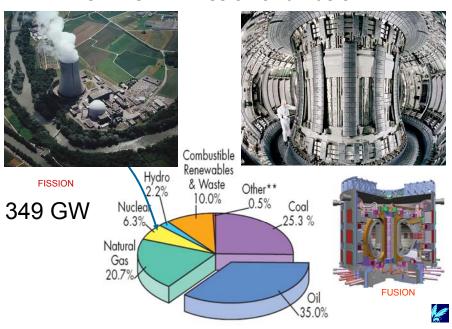

2030 2040 2050 2060


Year

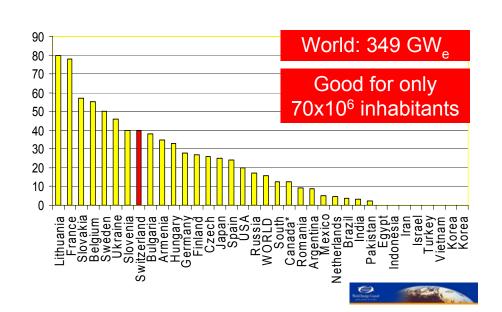
# Why a lecture on metal-hydrogen systems?

- Societal reason:
  - Global warming
  - Moral responsibility for sustainability

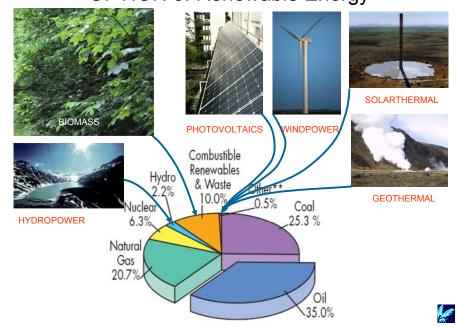
# Thousand million barrels Middle East 726.6 Asia Pacific 47.7 North America 63.6 Africa 101.8 S. & Cent. America 105.9 S. & Cent. America 105.9

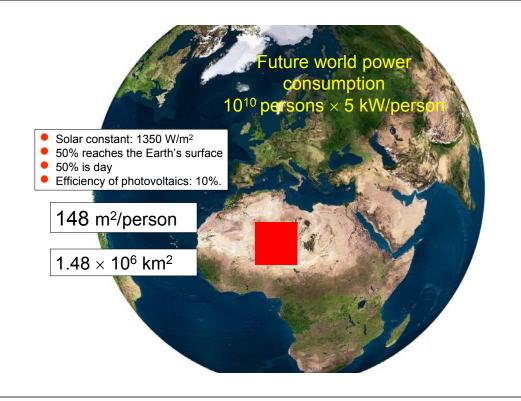








### **OPTION 2: Fission and Fusion**




### Nuclear Power in % of national electricity production



# **OPTION 3: Renewable Energy**





# Why a lecture on metal-hydrogen systems?

- Societal reason:
  - Global warming
  - Moral responsibility for sustainability
- Technological reason:
  - Clean energy sources and carriers

# Consequence

- CO<sub>2</sub> reduction
- Inherently fluctuating renewable energy sources
- Nuclear power generation



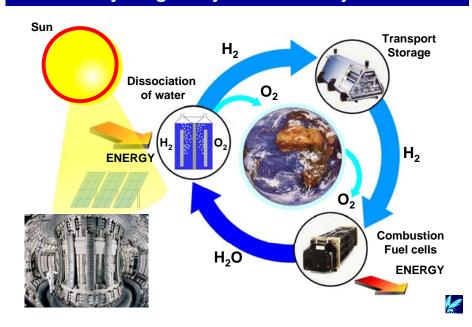
New energy carrier

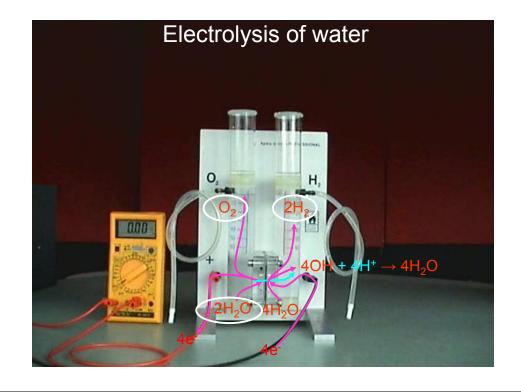


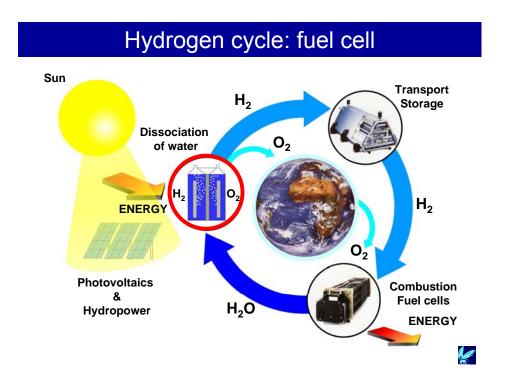
# Why a lecture on metal-hydrogen systems?

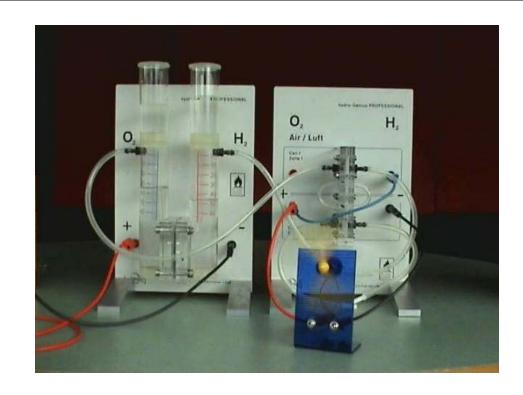
- Societal reason:
  - Global warming
  - Moral responsibility for sustainability
- Technological reason:
  - Clean energy sources and carriers
  - Hydrogen is an attractive energy carrier

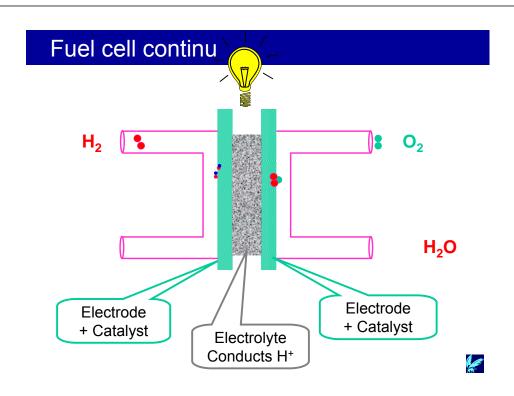
# Why hydrogen?

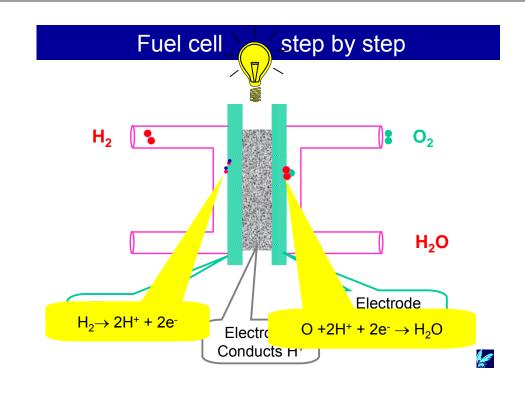

# Because hydrogen is:


- a closed loop energy carrier
- clean
- transportable over long distances
- much more easily stored than electrons
- interconvertible with electricity

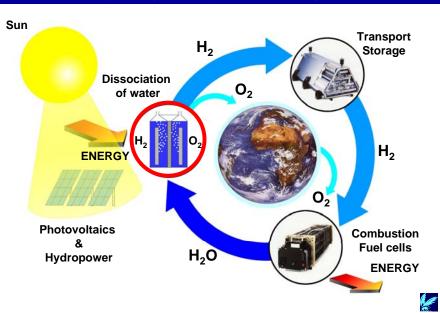


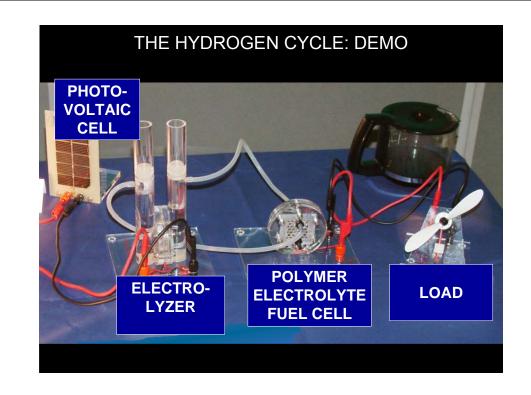





# Hydrogen cycle: electrolysis










# Hydrogen cycle: storage













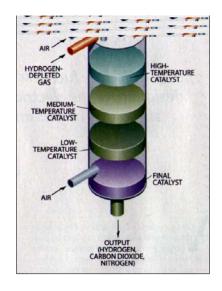


# Compressed hydrogen gas





### HYDROGEN FROM FOSSIL FUELS


$$\begin{array}{lll} -CH_{2^{-}} + H_{2}O & \longrightarrow & 2 \; H_{2} + CO \\ \Delta H = 194 \; kJ \cdot mol^{-1} & & & \\ CO + H_{2}O & \longrightarrow & H_{2} + CO_{2} \\ \Delta H = 2 \; kJ \cdot mol^{-1} & & & \\ H_{2} + 0.5 \; O_{2} & \longrightarrow & H_{2}O \\ \Delta H = -285 \; kJ \cdot mol^{-1} & & & \\ \end{array}$$



| Process             | raw material                                          | T [ºC]   | p [bar] | catalyst                                           | gas components      | •  |
|---------------------|-------------------------------------------------------|----------|---------|----------------------------------------------------|---------------------|----|
| steam reforming     | - CH <sub>2</sub> -, H <sub>2</sub> 0                 | > 850    | 25      | NiO                                                | H <sub>2</sub> , CO |    |
| plasma reforming    | <sub>3</sub> - CH <sub>2</sub> -, H <sub>2</sub> 0    | > 1350   | 3       | -                                                  | H <sub>2</sub> , CO |    |
| partial oxidation - | - CH <sub>2</sub> -, H <sub>2</sub> 0, O <sub>2</sub> | > 1200   | 10-100  | -                                                  | $H_2$ , CO          |    |
| coal gasification   | C, H <sub>2</sub> 0, O <sub>2</sub>                   | 800-1200 | 1-40    | -                                                  | $H_2$ , CO          |    |
| CO conversion       | CO, H <sub>2</sub> 0                                  | 200-500  | 3       | Fe <sub>2</sub> O <sub>3</sub> , Cr <sub>2</sub> O | $H_2$ , $CO_2$      |    |
|                     | _                                                     |          |         | 2 3 2                                              | S 2 2               | 12 |



### FOSSIL FUEL REFORMING



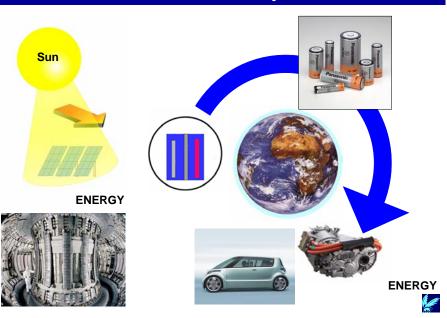


**Multifuel Processor** converts gasoline or methanol to a hydrogen-rich gas mixture for fuel cells.

$$-CH_{2^{-}} + 2 H_{2}O \longrightarrow 3 H_{2} + CO_{2}$$
  
 $\Delta H = 196 \text{ kJ} \cdot \text{mol}^{-1}$ 



# Interferal month foots before the same his handed (15) for hydrogen. I had grown as a discussation of the of the same of the s


# Why hydrogen?

# Because hydrogen is:

- a closed loop energy carrier
- clean
- transportable over long distances
- much more easily stored than electrons
- interconvertible with electricity



# The electrical cycle



# **Electrons**



Battery Toyota Prius
0.12 MJ/kg



Li-ion battery 0.84 MJ/kg



# Electrons



Battery Toyota Prius

0.12 MJ/kg



Li-ion battery

0.84 MJ/kg

# Hydrogen now



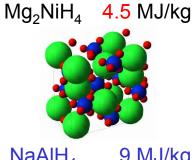


H in modified Prius "LaNi<sub>5</sub>H<sub>6</sub>" 1.9 MJ/kg



# Electrons

# Hydrogen tomorrow




Battery Toyota Prius

0.12 MJ/kg



Li-ion battery 0.84 MJ/kg



 $\begin{array}{lll} \text{NaAlH}_4 & 9 \text{ MJ/kg} \\ \text{Ti}(\text{AlH}_4)_4 & 11 \text{ MJ/kg} \\ \text{LiAlH}_4 & 12 \text{ MJ/kg} \\ \text{LiBH}_4 & 22 \text{ MJ/kg} \\ \text{Al}(\text{BH}_4)_3 & 24 \text{ MJ/kg} \end{array}$ 

# Electrons or hydrogen?





NiMH battery Prius 0.12 MJ/kg



Li-ion battery 0.84 MJ/kg





H in modified Prius "LaNi<sub>5</sub>H<sub>6</sub>" 1.9 MJ/kg



## **Electrons**



Battery Prius 0.12 MJ/kg



Li-ion battery 0.84 MJ/kg



# **Electrons**

# Hydrogen in future



Battery Prius 0.12 MJ/kg



Li-ion battery 0.84 MJ/kg









 $NaAlH_4$  9 MJ/kg  $Ti(AlH_4)_4$  11 MJ/kg  $LiAlH_4$  12 MJ/kg  $LiBH_4$  22 MJ/kg  $Al(BH_4)_3$  24 MJ/kg

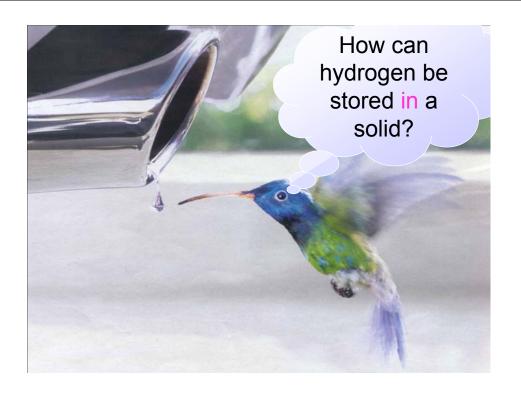


# Why a lecture on metal-hydrogen systems?

- Societal reason:
  - Global warming
  - Moral responsibility for sustainability
- Technological reason:
  - Clean energy sources and carriers
  - Hydrogen is an attractive energy carrier
  - Metal-hydrides are attractive storage systems



 $\begin{array}{ccc} \text{Mg}_2\text{NiH}_4 & \text{LaNi}_5\text{H}_6 \\ & \text{H}_2 \text{ (liquid)} \\ & & \text{H}_2 \text{ (200 bar)} \end{array}$ 






# 

# Metal-hydride storage





# Metal-hydride storage

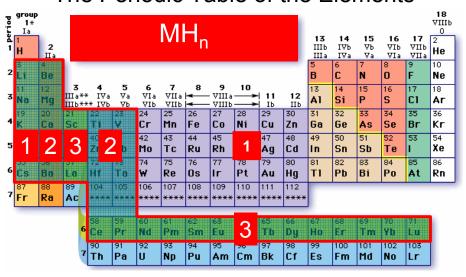


# Why a lecture on metal-hydrogen systems?

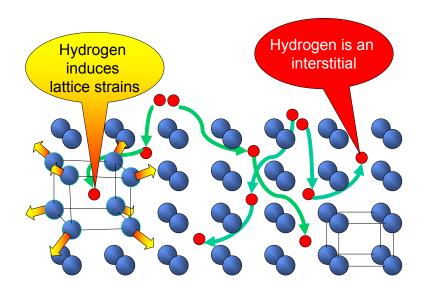
- Societal reason:
  - Global warming
  - Moral responsibility for sustainability
- Technological reason:
  - Clean energy sources and carriers
  - Hydrogen is an attractive energy carrier
  - Metal-hydrides are attractive storage systems
- Scientific reason: hydrogen in metals is fascinating
  - Experimentally and
  - Theoretically

# Properties of metal-hydrogen systems

- Large quantities of hydrogen in transition metals and intermetallic compounds
- Wide solubility range
- Easy preparation by electrolytic charging or by hydrogen gas loading
- Very high diffusion coefficient
- Largest (anomalous) isotope effects
- Switchable metal-hydride films (optical properties, metal-insulator transition)
- Switchable metal-hydrides films (ferroantiferromagnetic switching)
- Superconductivity



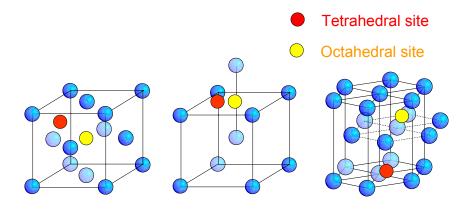

# Properties of metal-hydrogen systems


- Large quantities of hydrogen in transition metals and intermetallic compounds
- Wide solubility range
- Easy preparation by electrolytic charging or by hydrogen gas loading
- Very high diffusion coefficient
- Largest (anomalous) isotope effects
- Switchable metal-hydride films (optical properties, metal-insulator transition)
- Switchable metal-hydrides films (ferroantiferromagnetic switching)
- Superconductivity

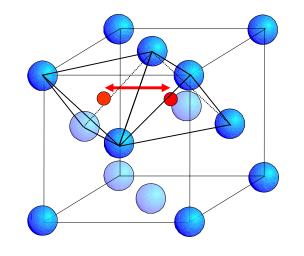


### The Periodic Table of the Elements




# Absorption of hydrogen by a metal

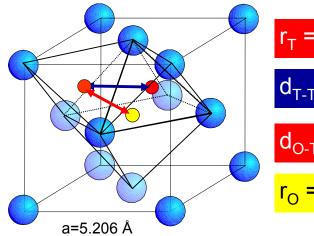







# Interstitial sites in FCC, BCC and HCP lattices




## Westlake's criteria



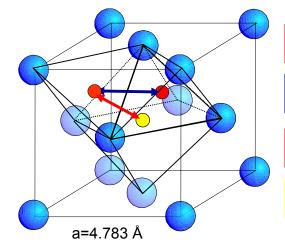
 $r_{H} > 0.4 \text{ Å}$ 

d<sub>H-H</sub> > 2.1 Å

# YH<sub>2</sub> and YH<sub>3</sub>



 $r_{T} = 0.41 \text{ Å}$ 


d<sub>T-T</sub> = 2.60 Å

d<sub>O-T</sub> = 2.25 Å

 $r_{\rm O} = 0.76 \, \text{Å}$ 



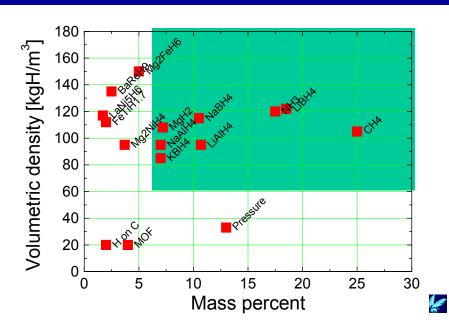
# ScH<sub>2</sub> and NO ScH<sub>3</sub>



 $r_{T} = 0.38 \text{ Å}$ 

 $d_{T-T} = 2.39 \text{ Å}$ 

 $d_{O-T} = 2.07 \text{ Å}$ 


 $r_{\rm O} = 0.70 \text{ Å}$ 

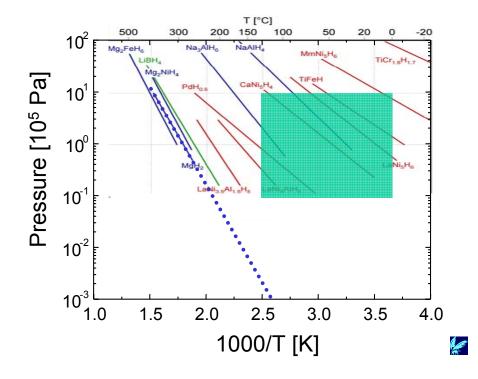


| Substance                                                | ρ<br>[kg m <sup>-3</sup> ] | N <sub>H</sub><br>[10 <sup>28</sup> m <sup>-3</sup> ] | More    | H atoms               |
|----------------------------------------------------------|----------------------------|-------------------------------------------------------|---------|-----------------------|
|                                                          | [1:0 ]                     |                                                       |         |                       |
| H <sub>2</sub> O                                         | 1000                       | 6.                                                    | per m   | <sup>3</sup> than ir  |
| H <sub>2</sub> SO <sub>4</sub>                           | 1841                       | 2.2                                                   | pure li | quid H                |
| liq CH <sub>4</sub>                                      | 425                        | 6.3                                                   | paro ii | quiu i i <sub>2</sub> |
| liq H <sub>2</sub>                                       | 71                         | 4.2                                                   | 7 _     |                       |
| TiH <sub>2</sub>                                         | 3800                       | 9.2                                                   | .0      | 153                   |
| ZrH <sub>2</sub>                                         | 5610                       | 7.3                                                   | 2.1     | 122                   |
| YH <sub>2</sub>                                          | 3958                       | 5.7                                                   | 2.2     | 95                    |
| LaH <sub>2</sub>                                         | 5120                       | 4.4                                                   | 1.4     | 73                    |
| LaH <sub>3</sub>                                         | 5350                       | 6.5                                                   | 2.1     | 108                   |
| LaNi <sub>5</sub> H <sub>6</sub>                         | 6225                       | 5.3                                                   | 1.4     | 88                    |
| TiFeH <sub>1.95</sub>                                    | 5470                       | 6.2                                                   | 1.9     | 101                   |
| Mg <sub>0. 97</sub> Ni <sub>0.03</sub> H <sub>1.85</sub> | 1800                       | 7.9                                                   | 7.3     | 132                   |
| NbH <sub>2</sub>                                         | 8400                       | 10.9                                                  | 2.2     | 181                   |
| VH <sub>2</sub>                                          | 6100                       | 14.4                                                  | 4.0     | 240                   |
| PdH                                                      | 12000                      | 6.8                                                   | 0.9     | 113                   |
|                                                          |                            |                                                       |         |                       |

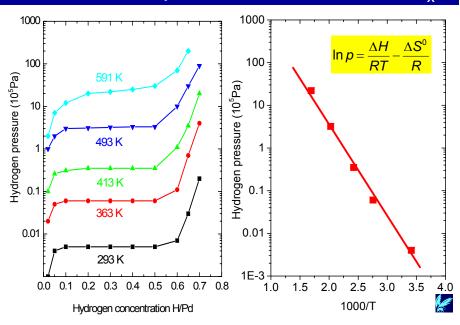


# Hydrogen content of complex metal-hydrides

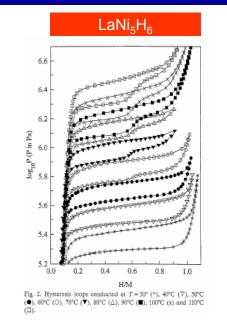








# Properties of metal-hydrogen systems

- Large quantities of hydrogen in transition metals and intermetallic compounds
- Wide solubility range
- Easy preparation by electrolytic charging or by hydrogen gas loading
- Very high diffusion coefficient
- Largest (anomalous) isotope effects
- Switchable metal-hydride films (optical properties, metal-insulator transition)
- Switchable metal-hydrides films (ferroantiferromagnetic switching)
- Superconductivity



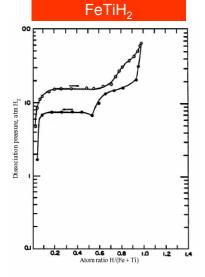


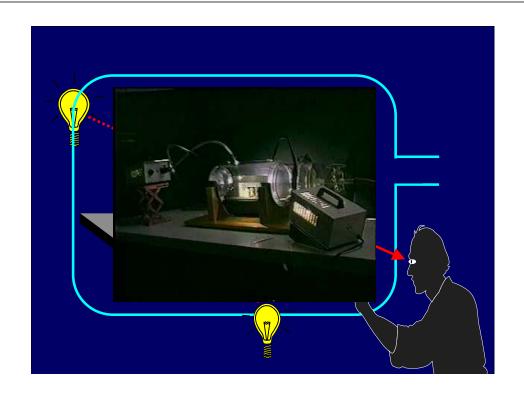

# Pressure-composition isotherms of PdH<sub>x</sub>

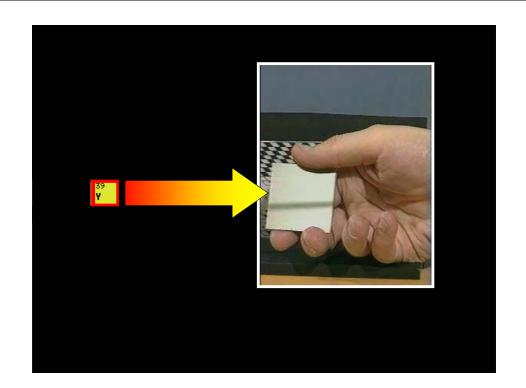


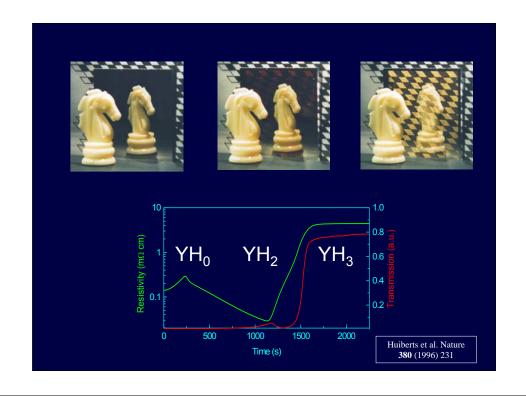
## The standard metal-hydride storage materials



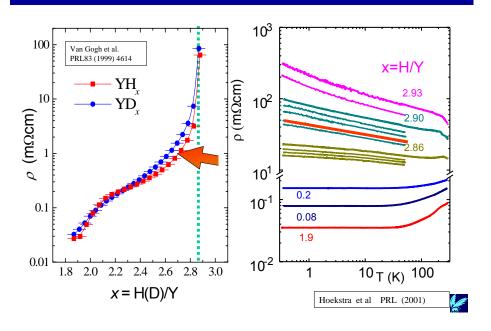




Figure 11
Hydrogen absorption—desorption loop at 40 °C for TiFe—H.

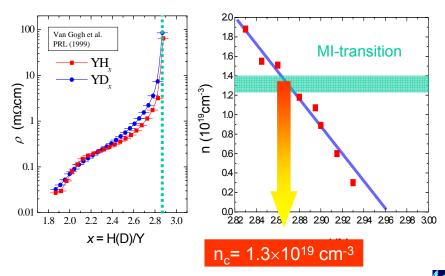




# Properties of metal-hydrogen systems

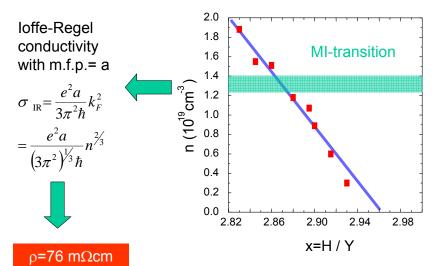
- Large quantities of hydrogen in transition metals and intermetallic compounds
- Wide solubility range
- Easy preparation by electrolytic charging or by hydrogen gas loading
- Very high diffusion coefficient
- Largest (anomalous) isotope effects
- Switchable metal-hydride films (optical properties, metal-insulator transition)
- Switchable metal-hydrides films (ferroantiferromagnetic switching)
- Superconductivity





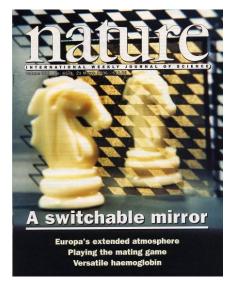







# Where does the MI transition occur?



# Critical charge carrier concentration




# loffe-Regel minimum conductivity





## Two VU discoveries: switchable mirrors

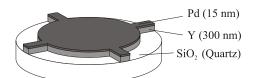











# Properties of metal-hydrogen systems

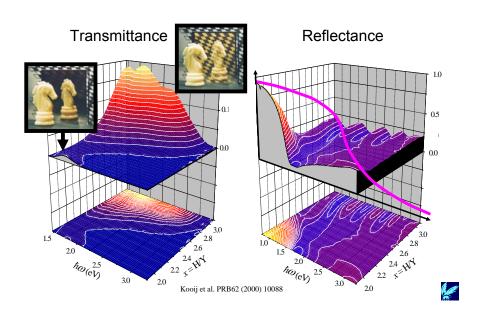
- Large quantities of hydrogen in transition metals and intermetallic compounds
- Wide solubility range
- Easy preparation by electrolytic charging or by hydrogen gas loading
- Very high diffusion coefficient
- Largest (anomalous) isotope effects
- Switchable metal-hydride films (optical properties, metal-insulator transition)
- Switchable metal-hydrides films (ferroantiferromagnetic switching)

x=H/Y

Superconductivity

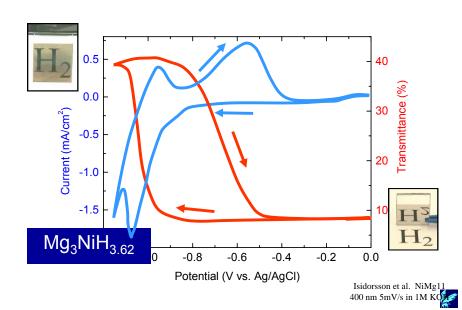









# Pressure-composition isotherm of $YH_x$ at T=293 K 10 10 $P_{H2} (10^5 \, Pa)$ 1.0 1.5

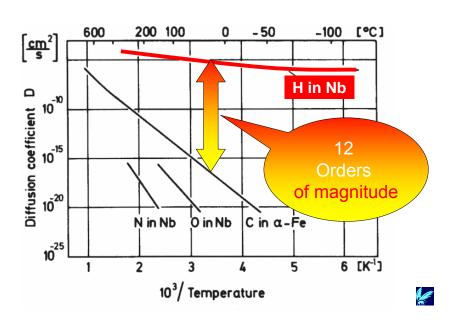


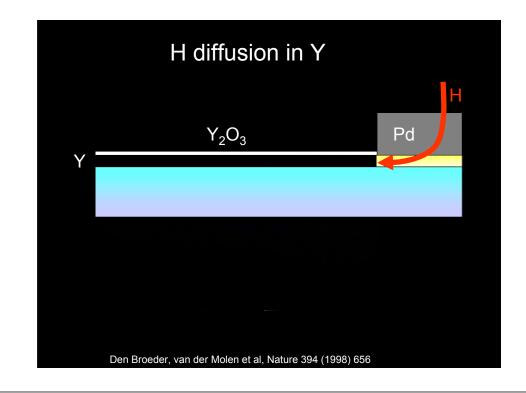

# The optical switching occurs in the visible



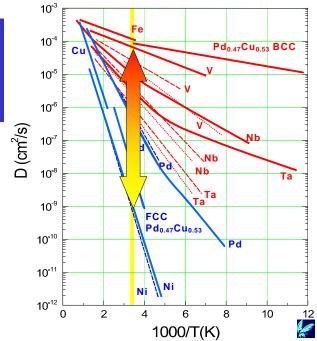


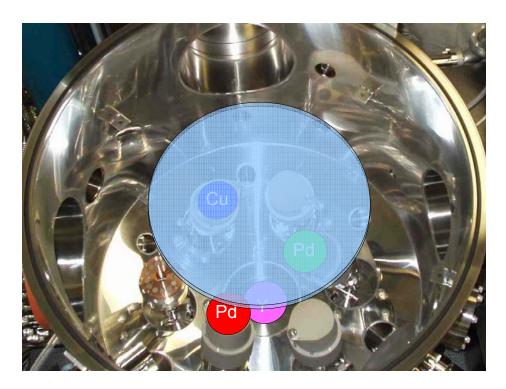
# Cyclic voltammetry of 54 nm Mg3NiHx + 2 nm Pd

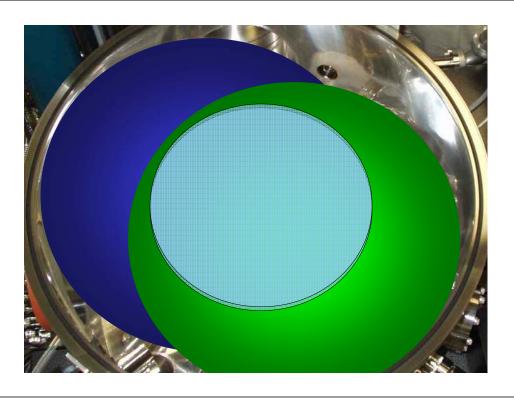


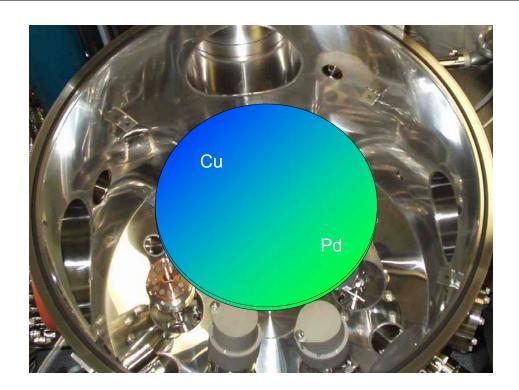


# Properties of metal-hydrogen systems

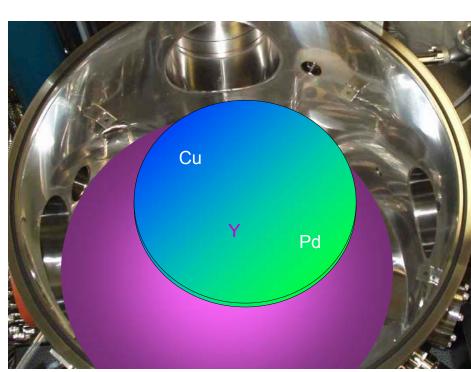
- Large quantities of hydrogen in transition metals and intermetallic compounds
- Wide solubility range
- Easy preparation by electrolytic charging or by hydrogen gas loading
- Very high diffusion coefficient
- Largest (anomalous) isotope effects
- Switchable metal-hydride films (optical properties, metal-insulator transition)
- Switchable metal-hydrides films (ferroantiferromagnetic switching)
- Superconductivity

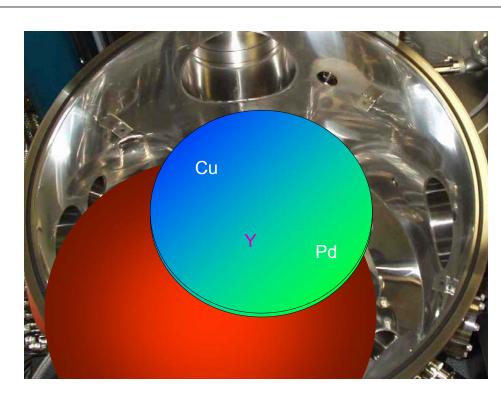


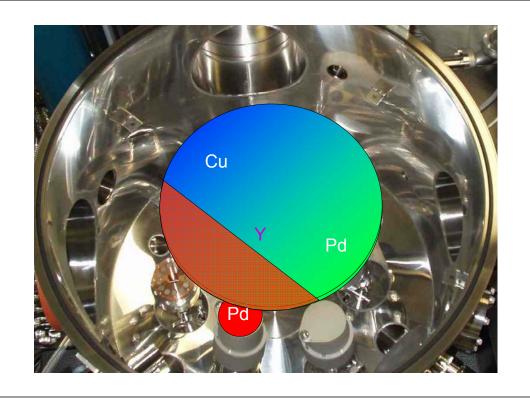


# Diffusion coefficients of various interstitials





Diffusion coefficients of various interstitials

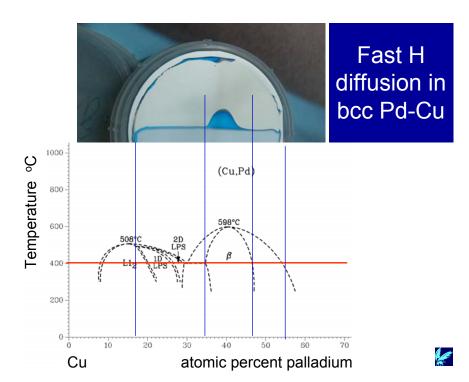




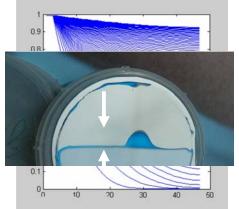








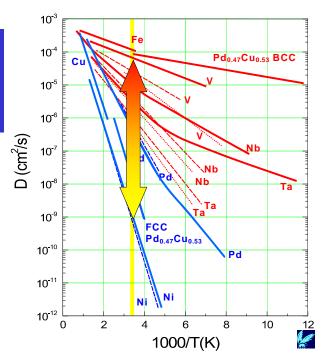


Fast H diffusion in bcc Pd-Cu

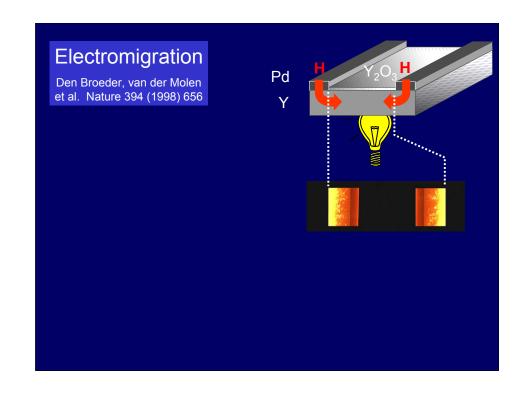


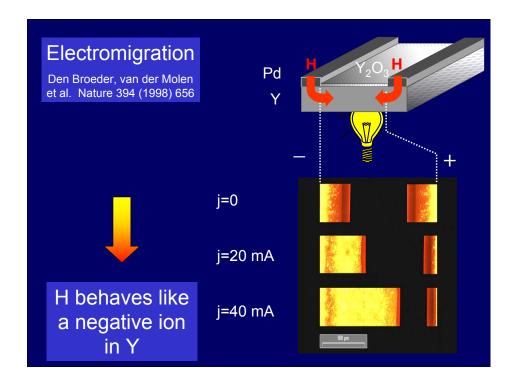


# Diffusion length

$$D\frac{\partial^2 c}{\partial x^2} - \frac{\partial c}{\partial t} = 0 \text{ with } c(0, t) = 1 \qquad c = 1 - erf\left(\frac{x}{2\sqrt{Dt}}\right)$$





In  $10^4$  s we have  $x \approx 1$  cm Thus  $D=10^{-4}$  cm<sup>2</sup>/s



Diffusion coefficients of various interstitials

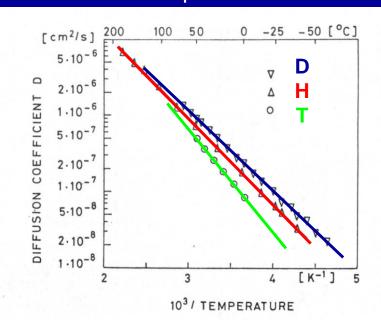






# Effective charge of H from electromigration

| Metal | Z*       | T[K]   | Reference                   |
|-------|----------|--------|-----------------------------|
| Υ     | -1       | 350    | van der Molen et al. (1999) |
|       | -1       | 1025   | Carlson et al.(1966)        |
| V     | 1.541.33 | 276527 | Verbruggen et al. (1986)    |
| Nb    | 2.041.30 | 276522 | Verbruggen et al. (1986)    |
| Ta    | 0.380.61 | 377518 | Verbruggen et al. (1986)    |
| Мо    | 0.291.05 | 289767 |                             |
| Pd    | 0.80     | 373    | Pietrzak (1991)             |
| Cu    | -20      |        |                             |



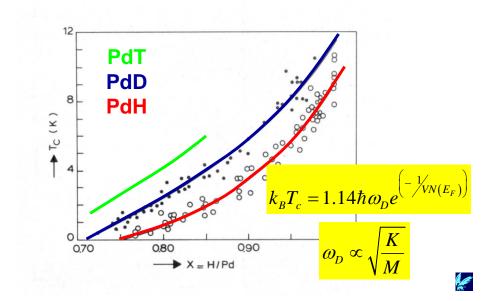

# Properties of metal-hydrogen systems

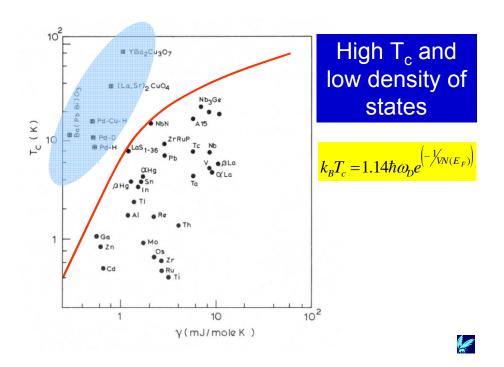
- Large quantities of hydrogen in transition metals and intermetallic compounds
- Wide solubility range
- Easy preparation by electrolytic charging or by hydrogen gas loading
- Very high diffusion coefficient
- Largest (anomalous) isotope effects
- Switchable metal-hydride films (optical properties, metal-insulator transition)
- Switchable metal-hydrides films (ferroantiferromagnetic switching)
- Superconductivity



# Anomalous isotope effect in diffusion





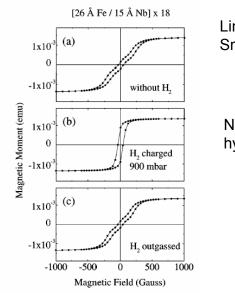


# Properties of metal-hydrogen systems

- Large quantities of hydrogen in transition metals and intermetallic compounds
- Wide solubility range
- Easy preparation by electrolytic charging or by hydrogen gas loading
- Very high diffusion coefficient
- Largest (anomalous) isotope effects
- Switchable metal-hydride films (optical properties, metal-insulator transition)
- Switchable metal-hydrides films (ferroantiferromagnetic switching)
- Superconductivity

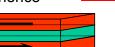


# Superconductivity PdH, PdD, PdT





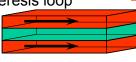

# Properties of metal-hydrogen systems


- Large quantities of hydrogen in transition metals and intermetallic compounds
- Wide solubility range
- Easy preparation by electrolytic charging or by hydrogen gas loading
- Very high diffusion coefficient
- Largest (anomalous) isotope effects
- Switchable metal-hydride films (optical properties, metal-insulator transition)
- Switchable metal-hydrides films (ferroantiferromagnetic switching)
- Superconductivity



# Reversible change in magnetic coupling




Linear slope Small remanence



Nearly "square" hysteresis loop



**Antiferro** 



F. Klose et al. PRL78 (1997)1150



# Properties of metal-hydrogen systems

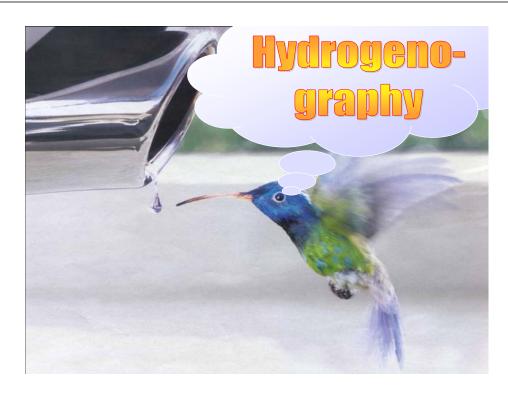
- Large quantities of hydrogen in transition metals and intermetallic compo
- Wide solubility range

  Easy preparation by electors in charging or by hydrogen gas load
- Very high diffusion of ficient
- Largest (anon (S)) isotope effects
- Switchable all-hydride films (optical proper insulator transition)
- Swife metal-hydrides films (ferroant romagnetic switching)
- Superconductivity








 ${\rm Mg_2NiH_4}$ 

?

LaNi<sub>5</sub>H<sub>6</sub>

 $H_2$  (liquid)  $H_2$  (200 bar)





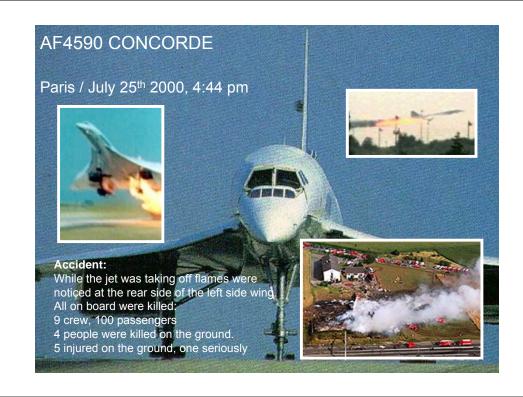

# Tentative schedule 2008

| Date                      | Subject                                               | Lecturer |
|---------------------------|-------------------------------------------------------|----------|
|                           |                                                       |          |
| February 12, 2006 Tuesday | Introduction: Energy, Environment & Sustainability    |          |
| February 15, 2006 Friday  | Review of H, H2, Van der Waals gasses                 | Griessen |
| February 19, 2006 Tuesday | Thermodynamics (self-study and werkcollege)           | Griessen |
| February 22, 2006 Friday  | Thermodynamics                                        | Griessen |
| February 26, 2006 Tuesday | Critical behaviour and H-H interaction                | Griessen |
| February 29, 2006 Friday  | Elasticity                                            | Griessen |
| March 4, 2006 Friday      | Band structure of transition metals/ effect of H on   | Griessen |
|                           | electronic states                                     |          |
| March 7, 2006 Tuesday     | Band structure of complex hydrides                    | Griessen |
| March 11, 2006 Friday     | Practicum: Fuel cell, Electrolyser, Photovoltaic cell | Heeck    |
| March 18, 2006 Tuesday    | Hydrogen storage in various systems (metals,          | Zuettel  |
|                           | borohydrides, MOF's, graphite,)                       |          |
| March 21, 2006 Friday     | Complex hydrides/ Sustainability and safety /         | Zuettel  |
| March 25, 2006 Tuesday    | Transport properties (diffusion, electromigration)    | Griessen |
| March 28, 2006 Friday     | Correlation effects; Outlook                          | Griessen |

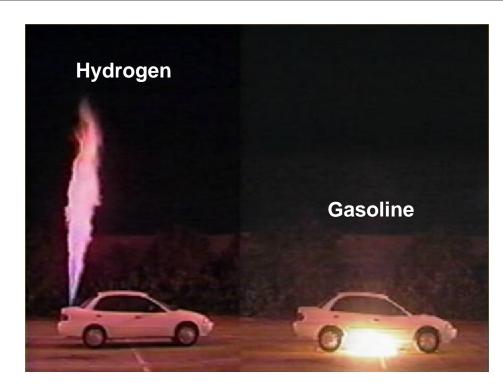




|    |                                                                                                                                                | Α                   | В                   | С                   | D                   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|---------------------|---------------------|
|    | How many 1 GW nuclear power plant are required to produce the energy corresponding                                                             | 1                   | 2                   | 5                   | 22                  |
|    | to all the kerosene used by the planes landing/departing from Schiphol. To answer this                                                         | power               | power               | power               | power               |
|    | question you need :                                                                                                                            | plant               | plants              | plants              | plants              |
|    | o The energy content of kerosene                                                                                                               |                     |                     |                     |                     |
|    | The amount of kerosene used at Schiphol per day or per year                                                                                    |                     |                     |                     |                     |
|    | Which area of the Earth is needed to produce photovoltaically the same power as the one                                                        | Area of             | Area of             | Whole               | 3 times             |
|    | used presently on a world scale ? To answer this question you need :                                                                           | NL                  | France              | Earth               | the area            |
|    | o The efficiency of a standard photovoltaic cell                                                                                               |                     |                     |                     | Farth               |
|    | o The world energy consumption o The solar energy reaching the ground                                                                          |                     |                     |                     | Earth               |
|    | o The solar energy reaching the ground What are the efficiencies of the following devices:                                                     | 10%                 | 25%                 | 35%                 | 42%                 |
|    | a) A diesel engine                                                                                                                             | 10%                 | 25%                 | 35%                 | 42%                 |
|    | a) A diesei engine                                                                                                                             |                     |                     |                     |                     |
|    | b) An electric engine                                                                                                                          | 50%                 | 75%                 | 86%                 | 98%                 |
|    | c) A thermal solar collector (producing warm water)                                                                                            | 30%                 | 40%                 | 50%                 | 65%                 |
|    | d) Name a device with an efficiency higher than 100% and explain how this is possible.                                                         |                     |                     |                     |                     |
|    | Photovoltaic and thermal solar collectors panels are becoming increasingly popular.                                                            | 1 GW                | 6 GW                | 33 GW               | 120 GW              |
|    | a) How large was the total installed photovoltaic power in 2006?                                                                               | 3 GW                | 25 GW               | 100 GW              | 155 GW              |
|    | b) How much thermal solar power was available in the same year?  Some information can be found in the Sarasin report matthias.fawer@sarasin.ch | 3 GW                | 25 GW               | 100 GW              | 155 GW              |
|    |                                                                                                                                                | 2 41                | E Almana            | / Ai                | 10 4:               |
|    | In 2020 one expects that 10% of the total energy demand will be supplied by                                                                    | 3 times             | 5 times             | 6 times             | 10 times            |
|    | photovoltaic solar energy. What does this imply for the amount of <b>silicon</b> to be produced?                                               | present<br>world    | present<br>world    | present<br>world    | present<br>world    |
|    | (                                                                                                                                              | producti            | producti            | producti            | producti            |
|    |                                                                                                                                                | on                  | on                  | on                  | on                  |
|    | What does this imply for the amount of silver to be produced?                                                                                  | 3 times             | 5 times             | 6 times             | 10 times            |
|    | For this you need to know                                                                                                                      | present             | present             | present             | present             |
|    | a) the solar cell efficiency with respect to its peak output                                                                                   | world               | world               | world               | world               |
|    | b) the amount of silver and silicon used in a 100 Wp system.                                                                                   | producti            | producti            | producti            | producti            |
|    | by the amount of sirver and sincer assa in a 100 Wp system.                                                                                    | on                  | on                  | on                  | on                  |
| 6) | Estimate the CO <sub>2</sub> emission budget per person in 2050 if we want to limit the CO <sub>2</sub>                                        | 800 kg              | 1200 kg             | 1600 kg             | 2500 kg             |
|    | atmospheric content to 500 ppm and compare this with the present emissions in the                                                              | CO <sub>2</sub> per | CO <sub>2</sub> per | CO <sub>2</sub> per | CO <sub>2</sub> per |
|    | Western countries, Asia, Africa. The requested data can be found in the Stern report.                                                          | person              | person              | person              | person              |
|    | , , , , , , , , , , , , , , , , , , , ,                                                                                                        | per year            | per year            | per year            | per year            |




| 1) | On the internet you can find many companies that offer to compensate your $CO_2$ emission by planting trees for a certain amount of money. For example www.treesfortravel.nl plants 125 trees to compensate the emission per person for a flight to the USA at a cost of $\varepsilon$ 34. How much surface area needs to be covered with trees per year to compensate the yearly increase (not the total yearly production) of the energy related $CO_2$ emission. | Area of<br>Australia | Area of<br>NL               | Area of<br>France              | Whole<br>Earth |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|--------------------------------|----------------|
| 2) | The efficiency of an electric power plant is defined as the ratio between "the amount of electric power produced per second" (in Watt = J/s) and "the energy content of the fuel consumed by the power plant per second". For a power plant running on fossil fuels the latter number is the combustion energy of that fuel consumed per second.  a) What is the efficiency of a (state-of-the art) gas fired electric power plant?                                 | 33 %                 | 42%                         | 50%                            | 60%            |
|    | b) Idem: a coal fired electric power plant?                                                                                                                                                                                                                                                                                                                                                                                                                         | 30%                  | 40%                         | 52%                            | 66%            |
|    | c) What is the efficiency of an average gasoline car (tank-to-wheel)?                                                                                                                                                                                                                                                                                                                                                                                               | 15%                  | 25%                         | 33%                            | 40%            |
|    | d) Calculate the well-to-wheel efficiency of a gasoline car.                                                                                                                                                                                                                                                                                                                                                                                                        | 15%                  | 20%                         | 30%                            | 45%            |
| 3) | CO $_2$ sequestration (i.e. storage of CO $_2$ outside the atmosphere) offers a route to keep using fossil fuels for the time required to transform society's energy system into a more sustainable one. How long does one at least have to store CO $_2$ to minimize the effect on the climate?                                                                                                                                                                    | 25 years             | 100<br>years                | 200<br>years                   | >200<br>years  |
| 4) | Apart from CO <sub>2</sub> also water is a product from the combustion of fossil fuels. Why does water play only a minor role in current climate change discussion?                                                                                                                                                                                                                                                                                                 |                      | s water ever                | ,                              |                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C. Water of          | ools the atr                | nosphere                       |                |
| 5) | Assume that the currently estimated total world oil reserve of one tera barrels of oil is<br>burned all at once. Give an estimate of the effect of this process on the total world<br>atmospheric oxygen mass. More specifically can oxygen requiring organisms like animals<br>and humans survive such a massive oil fire?<br>Neglect likely dust particle production and its possible effects.                                                                    | They will<br>survive | They will<br>NOT<br>survive | They will<br>barely<br>survive |                |
| 6) | Give an estimate of the "virtual power" (in W =J/sec) going through your hands when you fil: a) the gasoline tank of a regular car at a regular gas station?                                                                                                                                                                                                                                                                                                        | 11 MW                | 33 MW                       | 44 MW                          | 65 MW          |
|    | b) a tank of a Formula 1 racing car in the pit street during a Grand Prix race?                                                                                                                                                                                                                                                                                                                                                                                     | 33 MW                | 170 MW                      | 250 MW                         | 420 MW         |




Is hydrogen a safe energy carrier?









### **FUEL LEAK SIMULATION**

### Before ignition t = 0 s



Hydrogen powered vehicle on the left.

Gasoline powered vehicle on the right.

### Ignition t = 3 s



Ignition of both fuels occur. Hydrogen flow rate 2100 SCFM (0.18 m³/min.) Gasoline flow rate 680 cm³/min.

Ref.: Michael R. Swain, University of Miami, Coral Cables, FL 33124, USA



### **FUEL LEAK SIMULATION**

t = 60 s





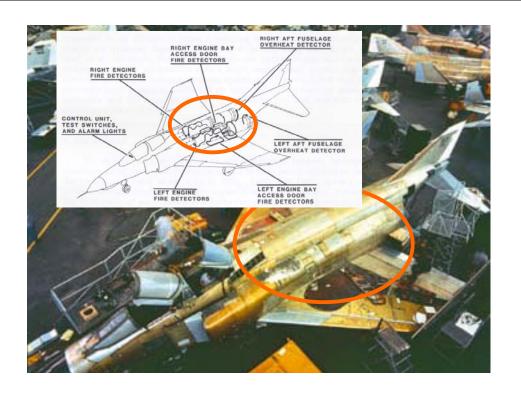
Hydrogen flow is subsiding, view of gasoline vehicle begins to enlarge

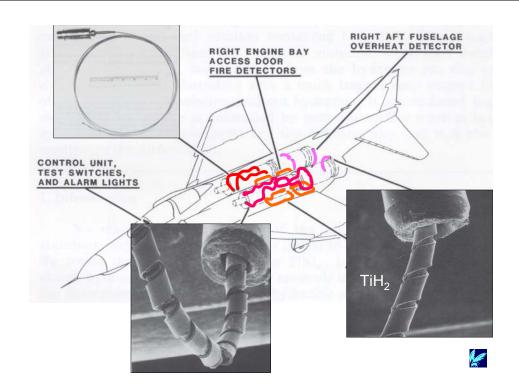


Hydrogen flow almost finished. View of gasoline powered vehicle has been expanded to nearly full screen.

Ref.: Michael R. Swain, University of Miami, Coral Cables, FL 33124, USA




# NECAR 4 (1999): Zero Emission Vehicle














Hydrogen in transition metals: a general impression

Ronald Griessen Vrije Universiteit, Amsterdam ExxonMobil 2007







