
VIII CHAPTER: TRANSPORT PHENOMENA 
   

VIII.1 Diffusion: Experimental methods 1 
VIII.2 Electromigration: Experimental methods 20 
VIII.3 Thermomigration 27 
VIII.4 Thermodynamics of irreversible processes 30 
 VIII.4.1 Diffusion 38 
 VIII.4.2 Electromigration 40 
 VIII.4.3 Thermomigration 42 
VIII.5 References 43 

 
 
One of the remarkable properties of hydrogen in metals is its fast diffusion. Around room 
temperature diffusion coefficients of the order of 10-5 cm2/s are not uncommon. This corresponds 
to approximately 2 mm per hour, which is indeed a very high value for diffusion in a solid. In 
this chapter we shall give a phenomenological description of diffusion, electromigration and 
thermomigration of interstitial atoms. In diffusion, the migration of atoms is produced by a 
concentration gradient, while in electromigration their displacement is caused by an applied 
electric field. In thermomigration the driving force is a temperature gradient over the sample. 
 
We review first some experimental methods used to measure the migration of hydrogen and 
other interstitials. 
  
VIII.1 DIFFUSION: EXPERIMENTAL METHODS 
 
In almost all methods used to determine the diffusion of hydrogen in a metal one measures the 
time evolution of an initially inhomogeneous concentration distribution of hydrogen atoms. The 
most widely used methods are: 
 

• Permeation methods (D1) 
• Electrolytic methods (D2) 
• The Gorsky effect (D3) 
• Resistivity relaxation (D4) 
• Nuclear magnetic resonance (D5) 
• Quasi-elastic neutron diffraction (D6) 
• Optical method (D7) 

 
D1 Permeation methods  
 
Hydrogen is forced through a thin membrane by a pressure difference, p2 being larger than p1. 
From Fick’s first law, the current density j is given by 
 

j j= − → =
−Dgradc D c c
d

2 1   ( VIII.1 

in a stationary state.  
 

 1



 

P2 P1

H2

 
 
 
 
 
Fig. VIII.1: Configuration of a hydrogen permeation 
experiment. Hydrogen is forced through the membrane by the 
pressure difference p2-p1 . 

 
 
 
 
From Sievert’s law (see Eq.III.54) 
 

c K pi = i  ( VIII.2 

 
and thus 
 

j =
−

DK
p p

d
2 1  ( VIII.3 

 
Note that this equation is only valid for low concentrations. For higher concentrations, the full 
expression Eq.III.53 should be used. The permeation method is easy but suffers from the fact 
that the measured quantity is DK; a separate determination of the solubility isotherms is thus 
necessary. Furthermore, permeation is a complicated phenomenon consisting of i) adsorption of 
H2 at the metal surface (entry), ii) dissolution of H2 in the form of H in the metal, iii) diffusion 
through the membrane, iv) recombination of two hydrogen atoms into an H2-molecule at the exit 
surface, v) finally desorption. The permeation coefficient DK is thus an average over many 

processes. 
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Fig. VIII.2: Time dependence of the pressure p1  on the 
exit side of the membrane in a permeation experiment. 
Experiments of this type have been performed for 
example by Robertson (1973). 
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The permeation method is generally used in the form of the time-lag method for which at t=0 the 
pressure in the compartment on the left is suddenly increased from zero to a certain value p2. 
Then the pressure on the exit side is increasing according to (see Crank, Eq. 4.24a) 
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where A is the cross-sectional area of the membrane, V the volume containing the gas at 
pressure p1 and d the thickness of the membrane. In deriving Eq.VIII.4 we have assumed that the 
concentration remains essentially zero in the compartment on the right. For large times t (Dt»d2), 
Eq.VIII.4 reduces to 
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⎤
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−  ( VIII.5 

As can be seen in Fig.VIII.2, this is a straight line with intercept at t=τ 
 

τ =
d
D

2

6
 ( VIII.6 

 
D2 Electrolytic methods 
 
Instead of gases at different pressure on both sides of the membrane, it is also possible to use 
electrolytes. The membrane separates then two electrolytic solutions as shown in Fig.VIII.3. By 
means of a potential difference between the counter electrode and the sample it is possible to 
load hydrogen from, say, the left side. The integrated current gives the total charge of the protons 
which were injected into the sample. The protons are not uniformly distributed in the sample and  

 
 
 
 
 
 
 
Fig. VIII.3: Electrolytic measuring cell after 
Boes and Züchner (1976). For clarity both sides 
of the cell are shown in an unclamped position. 
The cell is constructed symmetrically to allow 
for diffusion in both senses. 
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the concentration of H’s on the left surface (entry) is higher than on the right surface (exit). The 
electrical potentials VREL-S and VRER-S (REL≡reference electrode on the left) are thus different.  
 
Without going into details let us just indicate how a potential difference V is related to the 
concentration of hydrogen in the sample. To do this let us assume that at t=0 we dip both the 
sample and the reference electrode RE in the electrolyte. The system being not in 
thermodynamical equilibrium develops a potential difference V and a current starts to flow if 
both the sample and RE are connected electrically outside the electrolyte. This current flows 
until the equilibrium is reached and V=0. The whole process cannot be described by means of 
thermodynamics. This is only possible if we connect a voltage source such that no current is 
flowing. If the voltage is slightly increased the current will flow from one electrode to the other 
say RE→sample. If the voltage is decreased the current flows from the sample to RE. In this 
process (which is reversible) the change in Gibbs free energy is given by 
 

( )δ µ µ δGH H H H= − + N  ( VIII.7 

 
in analogy to Eq.III.6. We assume here that the H+ ions of the electrolyte are dissolved into the 
metal sample. In the limit of small concentrations, we have from Eq.III.52 
 

µ εH HkT c≅ +ln 0  ( VIII.8 
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where we have written 
 

µ µ
H H

kT a+ += +0 ln
H +  ( VIII.10

  

to obtain a somewhat “elegant” relation ( “a” is called the activity). δGH is the change in the 
Gibbs free energy when δNH hydrogen atoms are dissolved in the metal. This is however only 
possible if δNH electrons flow from the RE to the sample. The work associated with this 
displacement of electrons is eVδNH. Thus 
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If we denote by VR and VL the potentials on the right and left sides of the sample and by cHR and 
cHL the corresponding surface hydrogen concentrations, then we obtain the following simple 
relation for the potential difference VR-VL is obtained 
 

∆V V V kT
e

c
cR L

HR

HL

= − = ln  ( VIII.12 
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If the concentration cHL is constant, then the solution of the diffusion equation is  
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and the concentration cHR on the right hand side of the sample increases with time according to 
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where L is the thickness of the membrane. 
 
Both τb and τi (inflexion point) can be used to determine the diffusion constant D, since 
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Other electrolytic methods are described by Boes and Züchner (1976). 
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Fig. VIII.4: Time dependence of the concentration profile during  hydrogen absorption in a sample of 
thickness L (left panel). Note that the t=0 curve coincides with the bottom x-axis and the left y-axis ; Time 
dependence of the concentration on the right face of the sample (right panel). 
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D3 The Gorsky effect 
 
Although discovered by Gorsky in 1935 this effect has only been applied in the seventieth to the 
study of metal-hydrogen systems. A typical experimental set-up is schematically shown in 
Fig.IV.5. The deflection of the sample can be measured optically or capacitively. In the latter 
case displacements down to 1 nm can de detected 
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Fig. VIII.5: Schematic represen- tation of a Gorsky 
experiment. The force F produces a bending of the metallic 
beam (with a thickness d) and forces hydrogen to migrate 
from the compressed region to the decompressed part of the 
sample. In contrast to the elastic response εe which is 
instantaneous and proportional to F, the anelastic strain εa is 
a slow process controlled by diffusion and the strain εa is 
found to reach a maximum asymptotically according to a 
relation of the type  

 
  ε τ

a
te~ /−

 
 
 

 
 
 
 
by means of a high-precision capacitance bridge (Verbruggen et al., 1984). The relation between 
τ and the diffusion constant D is easily obtained from 
 

D d
=

2

2π τ
 ( VIII.16 

where d is the thickness of the specimen. The result in Eq.VIII.16 follows directly from the 
general form of the solution of the diffusion equation  
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by the method of separation of variables, which leads to functions of the form 
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π  ( VIII.18 

 
in which the dominant time dependent factor is that with n=0. 
 
 
 
 
D4 Resistivity relaxation 
 
In this method one makes use of the fact that the resistivity of a metal-hydrogen system increases 
with hydrogen content. Experimental values obtained by Simons and Flanagan (1965) for α-
PdHx   are shown in Fig.IV.6. By means of local resistivity measurements one can then map out 
the concentration gradient. This method has been used in diffusion experiments as well as in 
electromigration (Erckman and Wipf, 1976) and thermomigration (Wipf and Alefeld, 1974). An 
example obtained in our group by Brouwer et al (1988  ) will be shown in the subsection on 
electromigration. 
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Fig. VIII.6: Relative resistivity variation R/R0 of 
α-Pd-H at various temperatures. The dots • are 
older measurements by Lindsay and Pement 
(1962). All other data are from Simons and 
Flanagan (1966)  
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D5 Nuclear magnetic resonance (NMR) 
 
It is not the purpose of this subsection to give a detailed description of nuclear magnetic 
resonance, but we shall just point out the basic concepts and some aspects of the use of NMR to 
measure diffusion constants. 
 
NMR is basically a resonance between Zeeman-splitted energy levels. To illustrate this point let 
us consider a nucleus with angular momentum hI and magnetic moment m. We have 
 

m = Iγh  ( VIII.19 

where γ is the gyromagnetic ratio. The interaction energy of m with a homogeneous magnetic 
field H  which for convenience shall be taken in the z-direction, is 
 

U int = − ⋅m H = - HγhI z  ( VIII.20 

For a proton Iz=±1/2 and the splitting of the spin-up and spin-down levels is 
 

∆E p p= =2 1
2γ γh H hH  ( VIII.21 

with 
 

γ proton s G= ⋅ − −2 68 104 1 1.  ( VIII.22 

High frequency electromagnetic radiation of angular frequency ω0 such that 
 

ω γ ω πν0 = pH ; = 2  ( VIII.23 

will be able to excite a nucleus ↑ to a state ↓. According to Eq.VIII.22, for a proton 
 

[ ] [ ] [ ]ν kHz Tesla= =4 26 4 26. .H HG 10-4  ( VIII.24 

 
In a semi-classical approximation we can write the equation of motion of m in H as follows 
 

d
dt dt
hI m m m= × → = ×H d γ H  ( VIII.25

  

On a macroscopic scale we are interested in the magnetisation M m= ∑ ii
V  (where the 

summation is taken over all nuclei in the volume V). If we neglect the interactions between 
nuclear moments we obtain immediately the following equation of motion for M 
 

d
dt
M M= ×γ H  ( VIII.26 
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At equilibrium Meq is parallel to H and in the limit of small fields and high temperatures (more 
exactly when |m|H /kBT«1) we have 
 

M eq = χH  ( VIII.27 

where χ is the susceptibility. 
 
If the system is not in thermodynamical equilibrium we have to modify Eq.VIII.25 in order to 
insure that for t→∞ M→Meq. As a result of the cylindrical symmetry of the problem we have to 
make a distinction between the cases where i) M→Meq is parallel to H and ii) M→Meq is 
perpendicular to H.  The simplest generalisation of Eq.VIII.25 is then the set of Bloch equations 
 

( ) ( )dM
dt

M M

T
z

z

eq z
= × +

−
γ M H

1

 ( VIII.28 

[ ]dM
dt

M
T

i x yi
i

i= × − =γ M H
2

,  ( VIII.29

  

where T1 is the spin-lattice relaxation time and T2 is the transverse relaxation time. The Bloch 
equations imply that Mz relaxes as e-t/T1 towards Meq and Mx (and My) as e-t/T2 towards zero. Let 
us now solve the Bloch equations for the important case where the magnetic field is  
 

( )H = hcos t,  - hsin t,  ω ω H 0     ( VIII.30
  

which corresponds to the situation where a circularly polarised field h is superimposed to a large 
static and homogeneous field H0 . Introducing Eq.VIII.30 in Eqs.VIII.28 and 29, we obtain 
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For h«H0 one expects that M will precess around H0 and 〈Mx〉=〈My〉 « Mz. In a steady state 
dMz/dt=0 (however, dMx/dt≠0, dMy/dt≠0) and thus Mz=Meq. From Eq.VIII.31 we have also 
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with ω0=γH0 and ω1=γh . 
Without solving this equation one can write in analogy with the problem of mechanical 
resonance that the resonance width is 1/T2. Thus 
 

∆ω =
1

2T
 ( VIII.34 

This equation can also be interpreted as an uncertainty relation where h∆ω is the uncertainty in 
the energy of a level. What is the origin of this uncertainty? In many cases ∆ω is caused by the 
dipole-dipole interaction of the nuclear spins with each other. 
 
The magnetic field at the position of a given nucleus “i” is the sum of the dipolar fields of all the 
other nuclei and the external field H. Thus 
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H H H Hi 0 0= +

⋅ −
≡ +

≠
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r r r

r

ij j ij j ij

ijj i

µ µ
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We shall now show that the diffusion constant of, say a proton (hydrogen) or deuteron 
(deuterium) can be determined by measuring ∆ω as function of temperature. For simplicity let us 
consider a linear system with all the Hi parallel to each other but with Hi=H0±∆H0  (see 
Fig.IV.7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. VIII.7: Linear model for a random distribution of nuclear fields. There are as many H0+∆H0    as H0-∆H0
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The width of the resonance is 
 
 

( )∆ω γ γ0
1

2

1

=
=

∑p N
j

N

pH H Hj - ∆= 0  ( VIII.36 

 
What does one expect if the proton under investigation is not frozen-in in the lattice but hops 
from one interstitial to the other every τ seconds, T2 being the lifetime of a nuclear moment, the 
proton will jump n=T2/τ times during its life (in fact T2 is the lifetime of the magnetisation, but 
we shall assume that it also applies to the individual nucleus). The average field 〈H 〉 seen by 
the proton is then 
 

H s=
=

∑1
1n s

n

H  ( VIII.37 

and 
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where n+ is the number of sites with H0+ ∆H0 seen by the hopping proton during his n-jump 
travel. Thus 
 

n n n= ++ −  ( VIII.39 

 
Setting n+-n-/n=x, -1≤x≤1 we can write the number of possible travels with a given number of n+ 
jumps as follows 
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Thus 
 

( )η n x e
nx

, ~
−

2

2  ( VIII.43 

 
and   

[ ]∆ ∆ω ω= 0
2 τ  ( VIII.44 

 
where ∆ω0=γ∆H  is the linewidth for a system of nuclei jumping 1/τ times per second from an 
interstitial place to another. Equation VIII.44 implies that the linewidth decreases when the jump 
frequency increases. In other words ∆ω decreases with increasing temperature. This is however 
only valid when x«1 or equivalently when τ«T2 (at 0 K). The behaviour of the linewidth 
predicted by Eq.VIII.44 is in good agreement with experimental data obtained in many different 
systems. As an example we indicate the results of early experiments by Stalinsky et al. 1961 in 
Fig. VIII.8. 
 
Despite the simplicity of the model used in deriving Eq.VIII.44 it turns out that more 
sophisticated theoretical calculations such as that of Kubo and Tomita (1954) which predict that 
 
 
 
 

Fig. VIII.8: Motional narrowing for the proton NMR line in TiHx (Stalinsky et al 
1961). 
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give essentially the same result in the limit ∆ω<∆ω0 as can be seen by linearizing Eq.VIII.45 
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 ( VIII.46

  

We are not going to consider NMR-techniques in more detail as the main purpose of this 
subsection was just to demonstrate the relation which exists between nucleus motion and NMR 
line-width. The interested reader is referred to the review paper by Cotts (1978). 
 
 
 
D6 Quasi-elastic neutron diffraction 
 
A neutron interacts mainly with the nuclei (and not with the electrons) when it’s separation from 
a given nucleus is ~10-14 m. For studies of solids one uses neutrons with energies of the order of 
0.05 eV with a wavelength of ~2Å. For most purposes one can thus assume that the neutron 
described by the incoming plane wave 
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is scattered by a point-like potential, such that 
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where hk0=mnv0 and b is the scattering length which is in general a complex number, v0 is the 
velocity of the incoming neutrons and hk is the momentum of the outcoming neutrons. In an 
elastic scattering k=k0; in quasi-elastic scattering k≈k0, i.e. the energy is only slightly modified 
by the scattering process. 
 
If we have many scattering centres (e.g. the protons in a metal-hydride alloy) then the total 
outgoing function is 
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where N is the number of interstitial sites in the crystal and Pl indicates the probability of having 
a particular site rl occupied by a proton 
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κ = −k k 0  ( VIII.50 

Let us first consider the case where Pl=1 for every interstitial site. Even in this case it is found 
that the bl are not identical because of the different nuclear spins of the scatterer. This has an 
important consequence for the differential effective cross section dσ/dΩ (number of neutrons 
scattered in directions around k in space angle dΩ per second per scatterer 
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The so-called coherent part is responsible for interference phenomena (Bragg reflections) while 
the incoherent does not show any characteristic behaviour.  
 
For inelastic scattering one finds a relation which is very similar to Eq.IV.47 for the double 
effective cross-section 
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where hω is the energy of a neutron. 
We have assumed, so far, that Pl=1 for all sites. If however Pl≠1 for certain sites then one expects 
that the functions S(κ,ω) and Ss(κ,ω) will depend both on the space and time variation of 
P1=P1(r1,t) . From the fact that κ and ω are the Fourier conjugate of r1 and t it is not surprising 
that 
  

( ) ( ) ( )S d rdt e Ps
i tκ κ, ~ ,ω ω3 ⋅ −∫∫ r r t  ( VIII.53 

We assume now that the probability P(r, t) of finding a proton at position r and time t is related 
to the probabilities P(r+sj, t) of finding a proton on nearest neighbour interstitial sites by the 
following expression 
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We shall show later that Eq.VIII.54 is in fact just the diffusion equation written in terms of 
occupation probability. n0 is the number of nearest neighbours. The time τ is to be considered as 
an empirical parameter (relaxation time). We shall show later that it is closely related to the 
diffusion constant. Let us now Fourier transform Eq.VIII.54  in two steps. we have, first 
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  ( VIII.55

  

Defining the function I(κ,t) by means of  
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( ) ( )I t d rP t eiκ κ, ,= ∫ ⋅3 r r  ( VIII.56 

we see that Eq.VIII.55 can be written in terms of I(κ, t) as follows 

( ) ( )∂
∂

I t
t n

e
I t

j

j

nκ κκ, ,
= −

⎛

⎝
⎜

⎞

⎠
⎟− ⋅

=
∑1 1

0 1

0
s

τ
 ( VIII.57 

which implies that 
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We have then 
 
   ( ) ( )S dt I ts

i tκ κ, ~ ,ω ω∫ −e

( )
( )( )

=
+

2
2 2

f

f

κ

κ

/

/

τ

ω τ
 ( VIII.59 

since 
 

dt e ei t t −

−∞

∞
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2 2  ( VIII.60 

 
This is a Lorentzian curve with a width at half height ( )∆ω = 2 f x / τ . In the limit x → 0 
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κ
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2 2
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S
 ( VIII.61

  

in the simple case where the interstitial sites form a simple-cubic structure. We have then 
 

∆ω
τ

= =2
6

22
2

2κ
s D κ  ( VIII.62

  

where the diffusion constant D is set equal to 
 

D s
=

2

6τ
 ( VIII.63 

Relation Eq.VIII.63 can be derived as follows. The diffusion equation 
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is also valid for the probability function P(r, t)  
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Similar relations are obtained for the y and z directions. Thus 
 

( ) ( )

( ) ( )

∂
∂
P
t

D
s

P P

D
s

P P

x
j

x
j

= + −
⎧
⎨
⎩

⎫
⎬
⎭

= + −
⎧
⎨
⎩

⎫
⎬
⎭

∑

∑

2

2

6

6 1
6

r s r

r s r

 ( VIII.67 

 
Equation VIII.63 follows then from Eqs.VIII.54 and 67. From Eq.VIII.62 it follows that the 
width in energy of a quasi-elastic neutron diffraction peak is a measure of the diffusion constant 
D. This result can also be viewed as a consequence of Heisenberg’s uncertainty relations for 
energy and momentum. The argument goes as follows. Let us assume that the mean residence 
time of a proton on a given interstitial site is τ. The scattering of an incoming neutron has then to 
take place in τ seconds. This leads to a energy uncertainty h∆ω≅1/τ. Furthermore we know that 
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the proton is localised in a box of dimension s×s×s. This implies that the momentum of the 
proton, κ is such that  
 

κ κ κx y zs s⋅ ≅ s⋅ ≅ ⋅1 1 1≅  ( VIII.68 

 
From Eq.IV.59 and Eq.IV.63 and the fact that x x xx y z

2 2 2 1
3

2= = = κ we obtain then 
 

h h∆ω = 2 2D κ  ( VIII.69 

 
in perfect agreement with Eq.VIII.62. The parabolic behaviour of  h∆ω at low momentum tranfer 
is nicely shown in Figs.IV.9 and IV.10 in which the quasielastic line width is plotted as a 
function of the momentum transfer κ. The fitted curves are obtained by evaluating f(x) for 
tetrahedral-tetrahedral diffusion jumps, 
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Fig. VIII.9: Linewidth for neutrons scattered quasi-elastically on hydrogen in PdH0.03 at T=623 K as 
measured by Rowe et al (1972). The left panel is for κ parallel to [100] and the right panel for κ parallel to 
[110]. The time τ is indicated in picoseconds.   
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and for octahedral-octahedral diffusion jumps 
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The fit is much better for octahedral-octahedral jumps than tetrahedral-tetrahedral jumps. This 
implies that in dilute Pd-H (α) diffusion goes via octahedral-octahedral jumps. 
 
D7 Optical methods 
 
In a recent article we demonstrated (den Broeder et al. (1998) that diffusion of hydrogen could 
be monitored visually in samples with a special configuration that allows hydrogen absorption 
locally. The samples needed for this type of  experiments are produced in the following way. 
First a typically 300 nm thick yttrium film is evaporated under UHV conditions on top of a 
transparent substrate (sapphire or silica) by means of an electron gun. Subsequently, a 30 nm 
thick palladium pattern (e.g. a disk or a set of strips) is evaporated in-situ on top of the Y. In air, 
the yttrium oxidises forming a 100 nm Y2O3-layer (as determined by Rutherford backscattering), 
which is impermeable to hydrogen atoms. However, areas covered with Pd do not oxidise, 
opening the possibility for hydrogen to permeate through the Y/Pd boundary (see top panel of 
Fig. VIII.10). 
 
 
       
 

       

 

 

Fig. VIII.10: The diffusion of hydrogen in YHx can 
be  observed visually since the optical properties of 
this hydride depend strongly on its concentration. For 
the circular geometry considered in thos experiment 
the bright red outer circle correspond to α-β phase 
boundary between dilute YHx  and the dihydride  
YH2-δ   while the white central disk correspond to the 
trihydride YH3-δ. The diameter of the Pd disk is 1 
mm. At 400 K hydrogen diffuses approximately 100 
µm per second. 
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Pd0.47Cu0.53 BCC 

Ta

Fe

V 

V 
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Fig. VIII.11: Temperature dependence of the diffusion coefficient for hydrogen (full line), deuterium 
(dashed line) and  tritium (dotted line) in FCC metals (blue curves) and in BCC metals (red curves). The 
host metals are indicated by their symbols. Note the extreme influence of the crystal structure in the case of 
the PdCu alloy. 
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In a typical experiment H2 gas (at 105 Pa) is introduced into the chamber containing the sample. 
The chamber is equipped with optical windows and a temperature control system and can be 
placed onto the positioning table of an optical microscope. Using a white lamp at the back side 
of the cell, optical transmission changes are monitored by means of a CCD colour camera. In 
contact with hydrogen gas, the yttrium underneath the palladium pattern immediately starts 
absorbing hydrogen atoms, because Pd is an excellent catalyst for H2 dissociation. Therefore, 
within a few seconds a transparent YH3-δ area is formed in the Pd covered region (see Fig. 1a). 
Further hydrogen uptake can only take place if H diffuses out laterally, i.e. into the Y underneath 
the transparent Y2O3-layer (see lower panel of Fig.IV.10). 
As a function of time radial hydrogen diffusion leads to a concentration gradient which can 
directly be observed optically. This offers a wealth of interesting possibilities.  
 
A wealth of data on the diffusion of hydrogen in metals  has been accumulated during the last 
decades. In Figs.IV.11 and 12 we indicate data for FCC and BCC metals. It is immediately 
apparent that the diffusion of hydrogen in BCC metals is in general faster than in FCC metals. 
Especially fast is the diffusion in vanadium and in iron. However, one should realise that Fe in 
contrast to V absorbs only very small amounts of hydrogen. Another interesting phenomenon is 
the reverse isotope effect observed in Pd. In this metal the heavy deuterium (D) diffuses faster 
than the light hydrogen ! 
 
ELECTROMIGRATION: EXPERIMENTAL METHODS 
In almost all methods used to determine the electromigration of hydrogen in a metal one 
measures the effect of an electrical current on an initially homogeneous concentration 
distribution of hydrogen atoms. The most widely used methods are: 
 
Flow methods (E1) 
Internal flow method (E2) 
Concentration gradient method (E3) 
Dilatometric method (E4) 
Optical method (E5) 
 
Before describing briefly these methods we indicate in Fig.IV.13 how the hydrogen 
concentration is influenced as a function of time t by an electrical current flowing through a 
sample of length L. The concentration c is constant throughout the sample before the current is 
turned on. As soon as a current is passed through the sample a depletion zone develops on the 
left while an accretion zone is formed on the right. The migration of hydrogen proceeds until a 
stationary state is reached. In the stationary state the electrical force is exactly balanced by the 
concentration gradient which drives the particle to the left. The problem is mathematically 
identical to that of the (isothermal) atmosphere in the gravitational field of the Earth.  
 
As we shall show in the theory of irreversible processes the particle (hydrogen) current J is 
directly proportional to the force acting on the particles of effective charge Z* and to the gradient 
of the chemical potential µH i.e. 
 

( )HHH gradeZL µ−= ∗EJ        (VIII.72
  
where E is the electrical field induced by the electron current and the parameter LHH is related to 
the diffusion coefficient through 
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In combination with the continuity equation for hydrogen atoms  
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Eqs.VIII.72 and 73  lead to  
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Fig.VIII.12: Time dependence of the 
hydrogen concentration profile in a sample of 
length L through which a constant electrical 
current is passed (electromigration). 

Fig.VIII.13: Time dependence of the 
hydrogen concentration profile in the  sample 
of Fig.VIII.12 after the electrical current has 
been reduced to zero (relaxation). 
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where the mobility M is related to the diffusion coefficient by the generalized Einstein relation  
by 
 

D Mc
c

=
∂µ
∂

 ( VIII.76 

 
At low concentration D=MkT 
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 ( VIII.77 

 
This equation is very useful to investigate the effect of an electric field on the hydrogen 
distribution in a sample at low hydrogen concentration. It is, however, not adequate for the 
description of hydrogen migration in switchable mirrors since in these MHx systems the 
hydrogen concentration varies often from x=0 to x=3. Equation VIII.76 has been used for the 
calculations shown in Fig.VIII.12. The stationary state is a simple exponential function. From 
Eq.VIII.77 one can also calculate the relaxation of the stationary state when the current is 
suddenly reduced to zero, i.e. when E=0. One obtains then the concentration profiles in 
Fig.VIII.13. Interesting is that during relaxation there is a region (around x/L=0.6) in the sample 
in which the hydrogen concentration increases first before decreasing to zero. 

E1 Flow measurements 
 
The principle of this method is shown in Fig.VIII.14. A strong current is passed through the 
sample and produces the migration of hydrogen from one side of the sample to the other. This 
transport of hydrogen increases the pressure of H2-gas on the right and displaces the oil drop, the 
velocity of which is proportional to the hydrogen flow. for small concentrations. In the situation 
shown in Fig.IV.15, gradµH=0 because H is assumed to enter freely the sample. Thus 
 
 

 ( )J =
∗e Z IA DK p

kT
ρ 0                ( VIII.78 

 
 
where (D·K) is the permeability of H in the sample under consideration (see Eq.IV.3), ρ0 is the 
electrical specific resistivity, Z∗ is the effective charge number of H in the sample, k is the 
Boltzmann constant and p1/2 comes from the use of Sievert’s law (see Eq.II.34 and Eq.IV.2). A is 
the cross-sectional area of the sample. The expression Eq.VIII.78 shows that the effective charge 
number Z∗ of a migrating ion may be determined by measuring the ion flow J and the 
permeability. Details of the apparatus used by Einziger and Huntington (1974) (which was very 
similar to that of Oriani and Gonzalez (1967) (H in Pd)) is shown in Fig.VIII.14. 
 
 
 
A similar apparatus has been used by Marêché et al (1977) to study electromigration in Nb-H, V-
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H and Ta-H. 
 
 

 

 

 
 

oil drop 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. VIII.14: Schematic (top) drawing of the apparatus 
used by Einziger and Huntington (1974) to study the 
electromigration of H in Ag. The drop is 
promonaphtalene with a low vapor pressure. Detail 
(bottom) of the hollow electrodes. Gold is used in order 
to prevent diffusion in the stainless stell 304. 
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E2 Internal flow measurements 
 
Peterson and Jensen (1977) have proposed to follow the displacement of H by means of the 
resistive method illustrated in Fig.VIII.15. The two electrodes are placed far enough from the 
region of large concentration gradient. The time dependence of the resistivity of the sample 
section A-B is a direct measure of the displacement of the interface as the specific electrical 
resistivity of the hydride is higher than that of the pure metal.      
 
 

Sample 

t>0

A B 

t=0
H concentration 

 
 
 
 
 
 
 
 

Fig. VIII.15: Method of 
Peterson and Jensen(1977). The 
sample is loaded electrolytically 
in such a way that there is a 
rather sharp interface in 
concentration at t=0. A high DC 
current displaces the hydrogen 
towards one end of the sample. 
A and B indicate the position of 
the electrodes used to messure 
the resistivity of the section A-
B. 

 
 
 
 
E3 Concentration gradient measurements 
 
This method is the same as that described in Section D4. In the framework of the 
thermodynamics of irreversible processes we shall derive the following expression for the steady 
state concentration gradient dc/dx induced by the electrical potential gradient dϕ/dx 
 

dc
dx

eZ
c

d
dx

= ⎛
⎝⎜

⎞
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∗
−∂µ

∂
ϕ

 

1

 ( VIII.79

  

 
By measuring locally the resistivity at several points on the sample one can derive dc/dx. ∂µ/∂c 
may be evaluated from pressure-composition experiments or from theoretical calculations (see 
chapter II). This method has been used by Erckman and Wipf (1976) for Nb-H, V-H and Ta-H. 
More recently, it has been applied by Brouwer et al. to study the diffusion of H in strained 
vanadium. Experimental data for a VH0.0097 sample at 312 K are shown in Fig.VIII.16. 
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Fig. VIII.16: Time dependence of the electrical resistivity measured on four sections of a VH0.0097 sample at 
312 K: a) in presence of an electrical current of 384 A/cm2 and  b) after the current has been reduced to 
zero. Note the momentary increase in hydrogen concentration in section 3 just after the current has been cut 
off. This is in agreement with the calculated concentration profiles shown in Fig.IV.14. 

 

 

 

E4 Dilatometric methods 
 
These methods exploit the fact that hydrogen produces a lattice expansion of the host metal 
lattice. By measuring the local lattice deformation one can determine the local concentration and 
map out the concentration profile. For most transition metal hydrides 
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−5 10 4  ( VIII.80

  

These length changes can be easily detected by means of capacitance dilatometric techniques or 
by X-ray scattering with narrow beams (e.g. 30 µm in diameter at the European Synchrotron 
Research Facility in Grenoble). The advantage of the dilatometric method is that the dilation 
varies often linearly with the hydrogen concentration in sharp contrast with the electrical 
resistivity which may depend in a rather complicated way on x in MHx. 
 
 
E5 Optical methods 
 
The switchable mirrors are  well suited for optical investigations of electromigration since their 
optical appearance depends in a characteristic way on the local hydrogen concentration. A nice 
example is shown in Fig.VIII.17 for an yttrium film which is simultaneously  loaded with 
hydrogen from the left and the right through Pd pads. In absence of an electrical current (top 
panel) the diffusion pattern is symmetric. In the presence of a current a clear asymmetry is 
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induced (middle panel). The asymmetry  can be increased by increasing the current (lower 
panel). These experiments show unambiguously that Z* is negative in YHx . 
 
 
 

 

H H

+_ 

Y Pd 
 
Al2O3

 
 
 
 

Fig. VIII.17: Electromigration of hydrogen in a 200 nm thick yttrium film at room temperature. As shown 
in the top figure the yttrium film is covered on both ends with a Pd pad through which hydrogen can be 
introduced into the film. The photographs are obtained by illuminating the film from the back. Three 
different situations are investigated: i) in absence of electric current hydrogen penetrates symmetrically into 
the film, ii) in presence of a current (20 mA) a clear asymmetry is observed as hydrogen is attracted by the 
positive electrode (on the right in the figure), iii) the asymmetry is even stronger when the current is 
increased to 40 mA (lower photograph). ( van der Molen et al (1998) and den Broeder et al. 1998). 
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Some experimental data, obtained by means of the methods described before, are  given  in 
Table VIII.1 and in Fig.VIII.18. Table VIII.1 shows that in most of the transition metals 
hydrogen is behaving as a positively charged ion, while for elements at the beginning  
 
 

Table VIII.1: Effective charge number Z* of hydrogen in various metals as determined from 
electromigration experiments. In most cases the hydrogen concentration is small. An exception is YHx 
where x can be as high as 3. 

 
Metal Z* T[K] Reference 
Y -1 

-1 
350  
1025 

van der Molen et al. (1999) 
Carlson et al.(1966) 

V 1.54-1.33 276-527 Verbruggen et al. (1986) 
Nb 2.04-1.30 276-522 Verbruggen et al. (1986) 
Ta 0.38-0.61 377-518 Verbruggen et al. (1986) 
Mo 0.29-1.05 289-767  
Fe    
Ni    
Pd 0.80 373 Pietrzak (1991) 
Ag    
Cu -20   

 

VIII.2 THERMOMIGRATION 
 
The methods used in studies of thermomigration are very similar to those described above for 
diffusion and electromigration. In thermomigration a concentration gradient in the distribution of 
hydrogen is produced by a temperature gradient. One defines the heat of transport Q∗ in such a 
way that 
 

d
dx

Q
dT
dx
T

ρ
∂µ
∂ρ

= −
∗

  ( VIII.81
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and at the end of a series (4d) it behaves in 
the same way as a negative ion. This point  
illustrates the complexity of the problem of 
electromigration. Fig.IV.18 shows the data 
of Verbruggen et al.  for the effective 
charge number of hydrogen in the group 
VA  metal. The data are plotted as a 
function of the inverse resistivity ρ as one 
expects theoretically that  
 

Z Z K
d

∗ = +
ρ

                ( VIII.82 

 
The positive intercept obtained by linear 
extrapolation to infinit resistivity has been 
interpreted as an evidence for the existence 
of a finite direct force valence of H in 
these metals. 
 
 
 
 
Fig. VIII.18: Depencence on electrical resistivity of 
the effective valence Z* of hydrogen in V, Nb and 
Ta determined from electromigration experiments 
as a function of temperature. The change in 
resistivity occurs because of electron-phonon 
scattering. The high temperature data correspond to 
the points on the left since ρ is highest there. 

 
 

 
 
 
 
 
 
 
 
 
 
In Table VIII.2 we give the heat of transport of hydrogen in several metals. Until now 
thermomigration has received much less theoretical attention than diffusion and 
electromigration. In the following section we shall apply the thermodynamics of irreversible 
processes to the transport phenomena discussed previously. 
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Table VIII.2: Heat of transport of hydrogen in various metals as determined from thermomigration 
experiments. In most cases the hydrogen concentration is small. 

 
Metal Q* [eV] T [K] Reference 
V 0.017 300 Heller and Wipf (1976) 
Nb 0.12 300 Wipf and Alefeld (1974) 
Fe -0.25 850 Gonzalès and Oriani (1965) 
Ni -0.036 850 Gonzalès and Oriani (1965) 
Pd 0.065 750 Oates and Shaw (1970) 
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VIII.3 THERMODYNAMICS OF IRREVERSIBLE PROCESSES  
 
From the experimental methods described so far to measure diffusion, electromigration and 
thermomigration, we have seen that a migration of particles can be induced by a concentration, 
an electrical potential or a temperature gradient. Furthermore, especially in the case of 
electromigration one is dealing with more than one type of particles (charged impurities: H+, D+, 
O-2,...and conduction electrons). In general, one can say that particle currents Ji are produced by 
forces (the gradient of T, ϕk, etc.) Xk and write, in the spirit of linear response theory, that 
 

J L X ii ik k
k

n

= ≤
=

∑ 1
1

n≤

B

   ( VIII.83

  

The Lik are sometimes called the phenomenological coefficients (see for example S.R. de Groot 
1960). Onsager showed, if the currents Ji and the forces Xk are chosen in an appropiate way that 
the matrix of the phenomenological coefficients Lik is symmetric, i.e. 
 

L Lik ki=  ( VIII.84
  

In presence of a magnetic field B this is generalized to 
 

( ) ( )L Lik kiB = −  ( VIII.85
  

which implies in particular that 
 

( ) ( )L Lii iiB B= − , i.e.  ( VIII.86 

( )L L Bii ii= 2  ( VIII.87
  

We have now to define what is meant by an appropiate way. For this, let us consider a volume 
element Ω of a system which is not in thermodynamical equilibrium. The variation of the 
entropy dS/dt of this volume element is made up of two contributions dSext/dt and dSint/dt, so that 
 

dS
dt

dS
dt

dS
dt

ext= + int  ( VIII.88

  

where dSext is the entropy supplied by the rest of the system to the elment Ω and dSint is the 
entropy production inside Ω, which is necessary to reach equilibrium. dSint is thus a source of 
entropy while dSext is associated with an entropy current. It will be possible, therefore, to write a 
continuity equation for the entropy density in the following form 
 

∂
∂

σs
t

div s+ =J   ( VIII.89
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where s=S/Ω 
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 ( VIII.90

  

and 
 

dS
dt

dVint = ∫σ
Ω

 ( VIII.91

  

where σ is the entropy source density (entropy per cm3 per sec). With these defenitions we can 
now reformulate Onsager’s theorem, more precisely as follows. 
 

If the entropy source σ is given by 
 

σ = ∑ J Xi i
i

 ( VIII.92 

then the matrix L of the coefficient Lik relating the  
currents Ji to the forces Xk is symmetric. 

 
This theorem is a consequence of the time reversal invariance of the equation of motion of 
particles. A demonstration may be found in de Groot and Mazur (1962).  
 
From Eq.VIII.92 one can see that the entropy source plays a fundamental role in the 
thermodynamics of non-equilibrium phenomena and we shall now indicate a way of calculating 
σ. 
 
The idea is as follows. We postulate that the entropy S of the volume element Ω is a function of  
 

i) the internal energy U (of the volume element) 
ii) the volume Ω 
iii) the number of particles Nk (k indicates the type of particles: ions, electrons, etc.) 

 
In other words we postulate that 
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for an observator moving with the centre of gravity of the volume element. The symbol d/dt is 
the substantial derivative which is related to the local time derivative ∂/∂t by means of the 
following relation 
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grad⋅
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v  ( VIII.94

  

where v is the velocity of the center op gravity. We are now going to evaluate dU/dt and dNk/dt 
in order to find dS/dt. Then by means of Eq.VIII.94 we will obtain a relation of the form of the 
continuity equation (see Eq.VIII.89) to identify an entropy source term and a divergence of a 
current term. All these steps are necessary because the first law of thermodynamics cannot be 
used for our volume element in the form 
 

dU
dt

dQ
dt

p d
dt

dN
dtk

k

k= − +
↓

∑Ω µ  ( VIII.95

  

because Ω is in contact with the rest of the system. As an example consider the case where a heat 
dQ↓ is given to the volume element. dU≠dQ↓ because of heat conduction out of Ω. What we 
need is thus a reformulation of the first law for our volume element.  
 
For this we are going to use the following laws of conservation and equation of motion: 
 
I. Conservation of the number of particles of type k. We do not allow for chemical reactions 
 

∂

∂

N

t
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k

k
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Ω
Ω

⎛
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+ ⎛
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⎞
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=v 0  ( VIII.96

  

II. Conservation of the total energy: E=Ekin+Epot+U 
 

( )∂

∂

E

t
div e

Ω + =J 0  ( VIII.97

  

III.The equation of motion of the centre of gravity of the volume element 
 

m d
dt

N gradpk
k

k

v f= −∑ Ω
 ( VIII.98

  

with 
 

m
N mk k

k=
∑

Ω
 ( VIII.99 

 
where mk is the mass of one particle of type k, and fk is the force on one particle of type k which 
is equal to -gradϕk (where ϕk is the potential) and p is the pressure. 
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To make contact with Eq.VIII.97 let us calculate ∂ekin/∂t (ekin is equal to Ekin/Ω) 
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2
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2
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2
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grad mv
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k
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v v v
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 ( VIII.100 

 
From the conservation of the total number of particles follows that 
 

∂
∂
m
t

div m+ v 0=  ( VIII.101

  

and noting that 
 

( ) ( ) ( )div mv v div m m grad v1
2

2 1
2

2 1
2

2v v v= + ⋅  ( VIII.102
  

we obtain finally 
 

( )[ ]∂
∂
e
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div mv gradp nkin
k k= − − ⋅ + ⋅∑1

2
2 v v v f  ( VIII.103

  

since vp is an energy current density (due to the mechanical work performed by the pressure) 
one can rewrite Eq.VIII.103 in the form 
 

( )[ ]∂
∂
e
t

div mv p pdiv nkin
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2
2 v v v v f  ( VIII.104

  

Let us now evaluate the potential energy contribution to Eq.VIII.97, ∂ekin/∂t, 
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The last equation  follows from the assumption that the forces fk and thus the potentials ϕk do not 
depend on time. From the continuity equation Eq.VIII.96, we have 
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ϕ
e
t

div npot

k k
k

= −∑ v k
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 ( VIII.106

  

As we want, eventually, to calculate dS/dt, i.e. a quantity seen by an observator moving with the 
centre of gravity of the volume element, it is now meaningful to define currents of particles for a 
reference frame attached to the centre of gravity of Ω. Doing this by the following relation 
 

(J vk k kn= −  ( VIII.107
  

we rewrite Eq.VIII.106 as follows, 
 

∂
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ϕ ϕ
e
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div divnpot

k k k k
kk

= − − ∑∑ J v  ( VIII.108

  

The potential energy density is nk k
k

ϕ∑ . The corresponding convective-potential-energy-current-

density is v nk k
k

ϕ∑ . This is why we write 

 

ϕ ϕ

ϕ

k k
k

k k
k

k k
k

k k
k

k k
k

div n div n n grad

div n n

v v v

v v f

∑ ∑ ∑

∑ ∑

= ⎛
⎝⎜

⎞
⎠⎟ − ⋅

= ⎛
⎝⎜

⎞
⎠⎟ − ⋅

ϕ
 ( VIII.109

  

Simirlarly, as ϕkJk represent also a potential-energy-current-density, we write, 
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For the sum of potential and kinetic energy we have from Eqs.VIII.104, 108 and 110, 
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or introducing a mechanical-energy-current-density JM 
 

( ) ∑+++=
k

kkpotkinM pee JvvJ ϕ  ( VIII.112
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and a mechnical-energy-density-source σM 
 

( )∂
∂

σ
e e

t
divkin pot

M

+
+ =J M  ( VIII.113

  

The sum of kinetic and potential energy is not conserved, only the total energy! (see Eq.VIII.97). 
JM does not include any heat flow and we define now a heat-current-density JQ in such a way 
that 
 

J J J ve M Q U≡ + +  ( VIII.114
  

We obtain then from Eqs.VIII.109 and 112 a continuity equation for the internal energy density 
U, 
 

( ) ∑ ⋅+−=++
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t
u fJvJv

∂
∂  ( VIII.115

  

Using the relation between d/dt and ∂/∂t (Eq.VIII.94) we have 
 

( )du
dt

div u pdiv gradu

div udiv pdiv

Q k k
k

Q k k
k

= − + − + ⋅ + ⋅

= − − − + ⋅

∑

∑

v J v J f v

J v v J f
 ( VIII.116

  

Noting that div d
dt

v =
Ω

Ω
 we find that 
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and by inserting this result into Eq.VIII.93 we obtain the following expression for the entropy 
change 
 

T dS
dt

div dN
dtQ k k

k
k

k

k

= − + ⋅ −∑ ∑Ω ΩJ J f µ  ( VIII.118

  

The last step is now to express dNk/dt in terms of the particle-current-densities Jk. From 
Eq.VIII.93 and 95 we obtain 
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or equivalently 
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We have thus 
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For a unit volume element 
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We want now to cast this expression in the form of the equation of continuity for the entropy 
(see Eq.VIII.89) 
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However, 
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Thus 
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The entropy source is thus 
 

σ µ
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and by comparison with Eq.VIII.98 we have 
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Very often mechanical equilibrium is reached much faster than thermodynamical equilibrium. 
To good approximation one can assume that dv/dt=0 in Eq.IV.92 and thus 
 

gradp nk k
k

= ∑ f  ( VIII.129

  

This relation assumes a particularly simple form in the case of isothermal processes, where 
gradT=0. Then 
 

XQ = 0  ( VIII.130
  

and 
 

(X fk kT
grad= −

1 µ )k  ( VIII.131

  

We shall show now that Eq.VIII.129 implies that 
 

nk k
k

X∑ = 0  ( VIII.132

  

for isothermal processes in mechanical equilibrium. For the proof we just have to remember that 
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G k k
k

= ∑ Nµ  ( VIII.133

  

and 
 

G U TS pV= − +  ( VIII.134
  

For an isothermal process 
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Thus 
 

Ωdp N dk k
k

= ∑ µ  ( VIII.136

  

or 
 

gradp n gradk
k

= ∑ kµ  ( VIII.137

  

Introducing this relation into Eq.VIII.129 we obtain 
 

(n f gradk k k
k

r
−∑ µ 0) =  ( VIII.138

  

We have now all the ingredients to discuss diffusion, electromigration and thermomigration of 
interstitials ( such as H, D, T, C, O, N, B) in metals. 
 

VIII.3.1 DIFFUSION 
 
We have just one component and no external forces. Thus as T=const. 
 

Xd T
grad= −

1 µ H  ( VIII.139

  

and 
 

J Xd d d
d

HL L
T

grad= = − µ  ( VIII.140

  

Fick’s first law is, however, given in terms of a concentration gradient, 
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J d H H
HDgrad N number of H per unit volume= − = =ρ ρ

Ω
 ( VIII.141 

Thus 

D L
T H T

=
∂µ
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 ( VIII.142

  

Using the same notation as previously 
 

TD
L Kd

=
1

2ρ
 ( VIII.143

  

and thus, on a line of constant concentrations cH=ccritical we obtain that 

 

Tracer diffusion 

Macroscopic 
diffusion

Fig. VIII.19: Macroscopic diffusion coefficient and 
tracer diffusion coefficient for H in a Nb wire and a 
Nb foil. For concentrations close to the critical 
concentration (c=0.34) D tends to zero and we have a 
regime of critical slowing down. Note that the so-
called tracer diffusion coefficient measured by means 
of neutron scattering does not suffer from critical 
slowing down. As a result of the long range elastic 
interaction the macroscopic diffusion coefficient is 
influenced by the shape of the sample (see Fig.II.37). 

 

Fig. VIII.20: Concentration dependence of the tracer 
diffusion coefficient for deuterium (D) in Nb. The 
tracer diffusion coefficient does not depend on the 
thermodynamic factor (the concentration dependence 
of the chemical potential in Eq.IV.134. Völkl and 
Alefeld (1979). 
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Such a behaviour (critical slowing down) is nicely shown in Fig.VIII.19 for the diffusion of H in 
Nb.  
 
 
In the limit of low concentrations, we have  
 

lim
c

H

H H

H

H H
H c

kT
c

kT
→

= → =
0

∂µ
∂

∂µ
∂ρ ρ

 ( VIII.145

  

and thus 
 

D L
T

kT kLd

H

d

H

= =
ρ ρ

 ( VIII.146

  

This shows that Ld~ρH in order to have a finite diffusion constant at a low concentration. This 
reminds us that the Lik parameters in Eq.VIII.81 are just phenomenological parameters which 
may depend on T, ρ, p, ... but not on the external force or gradient of thermodynamical 
quantities. The concentration dependence of D for H in Nb is shown in Fig.VIII.20.  A review on 
the microscopic theory for the diffusion of hydrogen in metals may be found in the book by 
Fukai (1993). 
 

VIII.3.2 ELECTROMIGRATION 
Until now we have always considered currents in the centre of gravity reference frame. In 
electromigration it is more natural to attach the frame of reference to the host metal lattice. As 
shown by Prigogine, the expression for the entropy production remains the same in the two 
lattices. This follows directly from the fact that 
 

nk k
n

X∑ = 0  ( VIII.147

  

In the centre of gravity we have defined particle current densities 
 

(J vk k kn= − )v  ( VIII.148
  

Let us define new fluxes 
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(J vk k kn'= − )v'  ( VIII.149
  

And calculate  
 

( )σ ' ' 'T nk k k k k k k
kkkk

= ⋅ = ⋅ + k− ⋅ = ⋅∑∑∑∑ J X J X v v X J X  ( VIII.150

  

The last equality in Eq.VIII.150 follows directly from  of Eq.VIII.132. This implies that in the 
frame of reference attached to the lattice Onsager’s theorem is also valid and we can write the 
following relation for the electron currents Je’and migrating interstitials JI, 
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for a situation without gradients in chemical potentials.. ZI is the charge of the unscreened ion 
and Ze=-1 for the electron. Thus 
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and the effective charge number Z* of the migrating ion is 
 

Z Z L
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Ie

II

∗ = −
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  ( VIII.153

  

and the total force acting on the ion is 
 

F E E E= = −∗e Z e Z
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 ( VIII.154

  

The existence of a direct force has been a very controversial matter until 1990. We believe that 
the articles of Das (1976), Das and Peierls (1973) and Sorbello (1977) has unambiguously 
demonstrated that the direct force exists. 
 
There are however still theorists in favor of a zero direct force (see Bosvieux and Friedel 
(1962)), Gerl (1971), Turban et al (1976) and Hesketh (1978). They would argue here that ZI=0 
because the migrating ion is completely shielded. There are however some experimental 
eveidences that ZI≠0. For this, let us go back to Fig.IV.16 which shows that at low temperatures 
Z* assumes values between 0.5 and 3.5 for the VA metals, while at high temperatures the values 
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are within 0.8 and 1.6. How can we understand this convergence of the Z* values at high 
temperatures? 
 
Let us assume that hydrogen migrates under the influence of the electric field by hopping from 
one interstitial site to another. Such a hopping migration is strongly facilitated by high 
temperatures as is seen in the temperature variation of the diffusion coefficient. One expects thus 
LII’ increases with temperature (if we had neglected the non-diagonal terms LIe’=LeI’=0, then we 
would have LII’=DρH/k). On the other hand LeI’ is expected to decrease with increasing 
temperature, as the electrical conductivity of a metal does. This means then that at high 
temperatures the electron wind term may be neglected and we have just the direct force term. 
With this interpretation in mind, the data shown in Fig.VIII.18 would imply that the charge of 
the unscreened hydrogen ion is essentially one (as expected for a proton). 
 
Before leaving the phenomenological theory of electromigration, let us just make a comment 
regarding Eq.VIII.72, where we have treated the migration of an interstitial as a one component 
system, the migrating ions, and wrote essentially 
 

(J EI I

L
T

eZ grad' '
= −∗ µ )I  ( VIII.155

  

More correctly we should have written 
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We have neglected gradµe≅gradEF=0 as in a metal a gradient in Fermi energy would lead to huge 
electrostatic fields. Then 
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In agreement with Eq.VIII.155 thus also with Eq.VIII.72. 
 

VIII.3.3 THERMOMIGRATION 
 
In order to derive Eq.VIII.79 let us consider a situation where fk=0 (no external forces). Then 
from Eq.VIII.128 we write 
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We consider now a situation where JQ≠0 but J1=0. Then Eq.VIII.158 reduces to 
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For a one-dimensional system follows then that 
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Q
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which leads to Eq.VIII.79. For small concentrations 
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with  
 

Q kT c
L k

DH
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H

∗ = − +ln
ρ

 ( VIII.164

  

If Q∗ remains finite for cH→0 then LIQ→0. This follows from Eq.VIII.164 by multiplying by ρH 
and noting that ρHlncH→0 for cH→0. 
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