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In this chapter we consider first the behaviour of a lattice-gas near the critical point and discuss 
the value of the so-called critical exponents within the mean-field theory and the Ising model. 
We show then that the existing experimental results imply that the H-H interaction must be long-
ranged. Then we illustrate by means of Monte-Carlo simulations the role of the range of the 
interaction on fluctuations. Consequences of the long-range character of the H-H interaction 
(macroscopic density modes)  are briefly discussed. 

0.2 0.4 0.6 0.8200
300

400

500

600

700

800

-1000

-500

0

500

1000

Tem
perature (K)

C
he

m
ic

al
 p

ot
en

tia
l

x

Critical point

0.2 0.4 0.6 0.8200

300

400

500
600

700

800

-200

-100

0

100

200

Tem
perature (K)

Fr
ee

 e
ne

rg
y

x

Critical
point

Fig. IV.1: Position of the critical point with respect to the isotherms of the chemical potential 
and the free energy of the lattice-gas, respectively. 
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IV.1 CRITICAL POINT BEHAVIOUR 
 
In this section we discuss the behaviour of the lattice-gas near the critical point (see Fig. IV.1) 
within the mean-field theory. As we shall see below, the critical point is determined by the 
conditions: 
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H
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 ( IV.1 

 
It is well known that near the critical point the compressibility and the specific heat diverge like 
(T-Tc)-1. The purpose of this paragraph is to investigate the behaviour of the lattice gas described 
by Eq.III.50 close to the critical point. The theoretical predictions shall be compared to 
experimental data for Pd 1, 2 and for Pd0.9Ag0.1 (Buck and Alefeld 3). 
 
To calculate the compressibility K of the lattice gas 
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we start from Maxwell’s relation (see Eq.III.7) 
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Since µH depends only on the intensive variables p, T and cH we have 
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The pressure dependence of µH is neglected because εo and ε in Eq.III.52 are treated as constants. 
For the evaluation of the partial derivatives in Eq.IV.xx we introduce the density of H atoms per 
volume 
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N
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V

cH
H H ρmi  ( IV.5 

 
The density of interstitial sites ρmi =N/V is a constant that depends only on the host lattice. Then 
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and  
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Finally 
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According to Eq.IV.6 the compressibility is thus directly related to the concentration dependence 
of the chemical potential µH. The quantity (∂µH/∂cH)T is related to the pressure of the H2-gas 
surrounding the sample through  µ µH H= 1 2

2
 which leads to 
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and is thus accessible to the experiment. From Eq.IV.6 we obtain 
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and from Eq.III.76 
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On a line of constant concentration cH=ccritical=1/2, the compressibility diverges according to  
 

K
k T Tmi c

=
−

1 1
ρ

 ( IV.12 

 
In the theory of critical phenomena it is usual to define so-called critical exponents. The critical 
exponent corresponding to K is designated by γ and defined by 
 

( )K const T Tc= − −. γ  ( IV.13 

 
A comparison of Eq.IV.12 and Eq.IV.13 shows that 
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γ = 1   ( IV.14 

 
This value is in excellent agreement with the experimental values for Pd0.9Ag0.1Hx and PdHx (see 
Table IV.1). 
Another critical exponent (β) is defined by the shape of the coexistence curve in the vicinity of 
the critical point by the relation 
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1 β   ( IV.15 

 
In our model, β may be determined from a series expansion around ccritical of Eq.III.69 writing c-
cc=δ we obtain with cc=1/2 
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and, finally, 
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Which means that here 
 

β = 1 2/  ( IV.19 

 
This value is also in good agreement with the data of De Ribaupierre and Manchester as can be 
seen from Table IV.1.  
 
We shall now comment on the data indicated in Table IV.1. First we have to define the names 
mean field theory and 3-dim Ising model.  
 
The theory which is presented above is based on the Bragg-William approximation which 
assumes that the H-H interaction can be evaluated from the average (mean-field) distribution of 
hydrogen atoms in the lattice. This theory is similar to that of the mean-magnetic-field theory of 
ferromagnets and antiferromagnets (see for example Ashcroft and Mermin4 page 715-418). 
 
The 3-dimensional Ising model is a model for a magnetic substance for which the magnetic 
moments are distributed on a regular lattice and can have only two values, spin-up or spin-down. 
As shown by Lee and Yang5 the 3-dimensional Ising model is also a model for binary alloys and 
for lattice gases. In Table IV.1, 3-dim Ising model means that the critical exponents have been 
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calculated from Eq.III.43 without approximations. Until now, nobody has succeeded in solving 
analytically the 3-dim Ising model and the values in Table IV.1, are evaluated from computer 
calculations. 
 
 

Table IV.1: Experimental and theoretical values for the critical exponent β (coexistence line) 
and γ (compressibility) for various systems. 

 
 
System 

 
 
Experiment 

β 
Mean field  
theory 

3-dim 
Ising 
model 

 
 
Experiment 

γ 
Mean field 
theory 

3-dim  
Ising 
model 

CO2 0.35 1/2 5/16 1.26 1 5/4 
Xe 0.35   1.26   
4He 0.359   1.24   
3He 0.361   1.18   
O2 0.353   1.25   
n-pentane 0.35   1.25   
CrBr3 0.368   1.21   
Gd 0.37 1/2 5/16 1.25 1 5/4 
Ni 0.37   1.28   
YIG ≡ 
Y3Fe5O12

 
0.38 

  1.31   

Pd-H (a) 0.55 1/2 5/16 1.01 ± 0.1 1 5/4 
Pd0.9Ag0.1H(b)    1.02 ± 

0.04 
  

EuO 0.368   1.29   
a) From de Ribaupierre and Manchester (refs.1, 2) 
b) Buck and Alefeld (ref. 3) 
*)Table in part out Capocaccia et al.6 and  Stanley7  
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-kT/ε 1 0.567 

 
 

 

 

Fig. IV.2:  The specific heat of a 
square lattice gas. The exact 
solution is due to Onsager. Near 
Tc it diverges while the Bragg-
William approximation has a 
jump. 
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For a 2-dim system, however, Onsager8 did find an analytical solution. It is rather instructive to 
compare the exact solution for the specific heat of a lattice gas to the prediction of  the Bragg-
William (mean-field) theory. Fig. IV.2  shows clearly how different both solutions are. The exact 
solution has a log-singularity at the critical point and is symmetric (approximately) while the 
Bragg-William theory predicts a jump at T=Tc and does not diverge at the critical point.  
 
We have thus the very curious situation in metal-hydrides that they are better described by the 
approximate mean-field theory than by the exact theory ! Among all the other examples 
mentioned in Table IV.1, the hydrides are thus the only substance which can be described by the 
mean field theory. 
 
There are two important questions to ask here: 
 

1) Does the good agreement between experimental and theoretical critical exponents 
for hydrides prove that the Bragg-William approximation is good ? 

 
2) When is the Bragg-William approximation good for the exact problem defined by 

Eq.III.43  ? 
 
 
IV.2 CRITICAL EXPONENTS OF MEAN-FIELD THEORIES 
 
The answer to the first question is quite disappointing, as we are going to show that if the 
thermodynamical potentials do not have mathematical singularities, the critical exponents are the 
same for every model.  For this, let us consider the case of NH H-atoms “dissolved” in N 
interstitial sites. The change δU in the internal energy of the system at p=p0 and T=T0 is 
 

δ δ δ µ δU Q p V NH H= − +↓
0  ( IV.20 

 
From the second law of thermodynamics 
 

δ δS Q
T

≥
↓

0

 ( IV.21 

and thus 
 

T S U p V NH0 0δ δ Hδ µ δ≥ + −  ( IV.22 

and 
 

δ δ δ µ δU p V T S NH H+ − − ≤0 0 0  ( IV.23 

 
Thus in any naturally occurring process the quantity on the left side of Eq.IV.23 decreases and 
eventually reaches a minimum at equilibrium. This means that for little virtual excursions of the 
system 
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δ δ δ µ δU p V T S NH H+ − − ≥0 0 0  ( IV.24
  

We assume now that δU can be developed in a series (no singularity of U). Thus 
 

δ
∂
∂

δ
∂
∂

δ
∂
∂

δ

∂
∂

δ ∂
∂

δ ∂
∂

δ

∂
∂ ∂

δ δ
∂

∂ ∂
δ δ

∂
∂ ∂

δ δ

U U
S

S U
V

V U
N

N

U
S

S U
V

V U
N

N

U
S V

S V U
V N

V N U
S N

S N

H

H

H

H

H

H

H

H

= + +

+

+ +

+ + +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1
2 2 2 2

2

2

2
2

2

2
2

2

2

2 2 2

 ( IV.25 

 
Inserting Eq.IV.25 in Eq.IV.24 and realizing that 
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we obtain that the term within brackets [...] ≥0. This implies that the following conditions must 
be satisfied 
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which can be rewritten as follows by using Eq.IV.26 but dropping the index 0 for T0 and p0 
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Multiplying the two determinants by -1 and using the functional determinant notation defined as 
follows 
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we may write 
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Dividing the first condition by the second we have 
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Dividing the third condition by the second we have 
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The first condition implies also that 
 

Cv ≥ 0  ( IV.37 

All three conditions must be satisfied by our lattice gas model. We used previously the condition 
∂µH/∂cH≥0 to show that some part of the solubility isotherm was unphysical. 
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This discussion of thermodynamical inequalities is of course only correct if the second order 
term 1/2[...] in Eq.IV.25 does not vanish identically, because if [...]=0 then higher order terms 
must be included. Let us investigate what happens when the second order term vanishes. For this 
we rewrite Eq.IV.25 as 
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We have also 
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One sees thus that the second order term 1/2[...] in Eq.IV.25 vanishes identically if δp=0, δT=0 
and  
 

∂µ
∂

H

H p TN ,

= 0  ( IV.40 

From the definition of the spinodal curve (see Eq.III.87) we see that the points where 1/2[...]=0 
must lie on the spinodal. 
 
We shall now show that the condition Eq.IV.24 for thermodynamical equilibrium implies further 
conditions for µH. 
 
At constant pressure and temperature Eq.IV.24 can be written as  
 

δ µ δG NH H− 0≥  ( IV.41 

because of G=U-TS+pV. For δp=0 and δT=0 we may write 
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The condition Eq.IV.41 becomes then with ∂G/∂NH=µH  
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On the spinodal ∂µ/∂NH=0 and thus  
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This implies that 
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critical point. In the vicinity of the critical point we can write 
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By integration at T=const. 
 

( ) ( ) ( )( ) ( )3,, cHcHcccHHH ccBccTTATcTc −+−−=− µµ  ( IV.49
  

and from Eq.IV.6 
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and thus γ=1. Similarly, the shape of the spinodal is obtained from Eq.IV.48 by setting 
∂µH/∂cH=0 (definition of the spinodal) 
 

 10



( ) ( )( 230 cHc ccBTTA −−+−= )  ( IV.51 

 
which is exactly the same form as Eq.IV.18 and  

β =
1
2

 ( IV.52 

We arrive thus at the conclusion that critical exponents do not depend on a particular model for 
the substance under consideration as long as the thermodynamic quantities U, F, etc. are regular 
functions. We conclude furthermore that the experimental results obtained for PdHx   and 
Pd0.9Ag0.1Hx (see Table IV.1) show that the thermodynamical functions of these hydrides are 
regular functions at the critical point. Note, however, that this conclusion is only valid if one 
believes that the experiments done on these hydrides were done close enough to the critical 
point. This brings us to the second question mentioned above 
 
 
IV.3 VALIDITY OF THE BRAGG-WILLIAM  APPROXIMATION 
 
In the Bragg-William approximation we have assumed that the distribution of hydrogen’s in a 
metal was well described by the average density of hydrogen’s in the metal. In other words one 
expects the Bragg-William approximation to be good if the fluctuation of the number of 
hydrogen’s in a certain volume is small; more precisely when the fluctuation in the interaction 
energy of a given H-atom with all other hydrogen’s is small. Let us assume here that the range of 
the H-H pair interaction is b (this is a generalisation of the model given by Eq.III.42 where only 
nearest neighbour interaction was taken into account). The fluctuation in the interaction energy is 
then approximately proportional to the fluctuation ∆nH of the nH hydrogen “atoms” contained in 
a sphere of radius b. 

n b N
N

N
V

b cH
H

H mi= =
4

3
4

3

3 3π π ρ   ( IV.53 

 
For a FCC metal in which H is occupying octahedral sites (e.g. PdHx  ), ρmi=4/a3  where a is the 
lattice constant of the host metal. At the critical concentration we have thus (cc=1/2) 
 

n b
aH = ⎛

⎝⎜
⎞
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8
3

3π  ( IV.54 

To evaluate the fluctuation in nH let us proceed as follows. The equation of Boltzmann 
 

S k= lnω  ( IV.55 

relates the entropy of a system to the number of microstates ω of given total energy. This 
suggests that the probability of a fluctuation is proportional to es or e∆S/k with ∆S=S-S0 (S is the 
entropy of a closed system with a given fluctuation and S0 is the value of the entropy at 
equilibrium). To calculate ∆S let us consider a situation in which a large system L ( which 
determines the equilibrium pressure pL=p0 and temperature TL =T0) contains a small system S 
which can be brought out of equilibrium by a source E (see Fig. IV.3). 
 
The total entropy S0 is, at equilibrium 
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S S S SL S0 0 0
= + E0

+  (IV.56 

Let us assume that at first E is not connected with S and L but that S and L can exchange heat, 
particles and work. If a fluctuation brings the small system S out of equilibrium with the large 
system L then the total entropy must decrease (S0 is the maximum value of S for a closed system 
of constant internal energy U0). Graphically we have the situation shown in Fig. IV.4. This graph 
shows immediately that the same fluctuation could be realised in doing some work on the {L+S} 
system at constant entropy S. This is the reason why we chose an insulated work source in Fig. 
IV.3 
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U U
W
T

W
T

E

E

0 0
0

0

− = − =
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∆QS

∆NS

S 

E 

L 
∆

 
 
 
 
 
 
 
 

Fig. IV.3: Situation considered to 
calculate fluctuations. The entire 
system is treated as a closed 
system. 

 

 
 

 
S  

U WE Uo U 

Equilibrium 

System with 
a fluctuation 

 
 
 
 
 So  
 
 

S Fig. IV.4: A change in entropy arising 
from a fluctuation can also be realised 
by doing some work on the L+S system 
in Fig. IV.3. 

 12



 
 
 
 
The probability of having a certain fluctuation is thus given by  
 

ω ~ /e W kTE− 0  ( IV.58 

 
where WE is the work done by the source E on S to bring it out of equilibrium with L 
From the first law of thermodynamics we have, however 
 

∆ ∆ ∆ ∆U T S p V N WS L L S= − E+ + +0 0 µ  ( IV.59
  

The total system {L+S+E} being closed we have that 
 

∆ ∆ ∆S S SL S E+ + = 0  ( IV.60 

 
The source E being thermally insulated we have further ∆SE=0 and thus  
 

∆ ∆SL = − SS

E

 ( IV.61 

 
Another implication of the assumption of a closed system is that ∆V=∆VS+∆VL=0. Thus finally 
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 ( IV.63 

W G NE = −∆ ∆µ  ( IV.64 

 
Thus at p and T constant and with the notation used for metal-hydrides 
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we obtain 
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 ( IV.67 

This is a Gaussian curve centred at nH. For a normalised Gaussian curve  
 

( )
2

2

2
x

exw
β

π
β −

=  ( IV.68 

 
and the integral  
 

x x e
x2 2 2

2

2

=
−

−∞

∞

∫
β
π

β

dx  ( IV.69 

 
is equal to 1/β. The mean value of (∆nH)2 is thus 
 

( )∆n kT

n

H
H

H p T

2 =
⎛
⎝
⎜

⎞
⎠
⎟

∂µ
∂ ,

 ( IV.70 

According to what was said above one expects the Bragg-William approximation to be valid if  
 
 

( )
( )
∆n
n

H

H

2

2 1<<  ( IV.71 

 
which implies (with Vb=4πb3/3) that 
 
 

kT

n
n

kT

c V
V c

kT

c V
cH

H
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H mi b

mi b

H

H
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H

H

2 2 2 2 21 1
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∂

ρ
ρ

∂µ
∂

ρ
∂µ
∂

⎛

⎝
⎜

⎞

⎠
⎟

= =

,

<<  ( IV.72 

 
Close to the critical point (see Eq.IV.48) 
 

( )
kT

c V A T T
c

H mi b c
2 1

ρ −
<<  ( IV.73 
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For the case of PdHx, ρmiVb=(16π/3)(b/a)3 and in the Bragg-William approximation cH=1/2 and 
A=(∂2µH/∂T∂cH)cc,Tc=4k so that Eq.IV.73 becomes  
 

T T
T

a
b

c

c

−
>> ⎛

⎝⎜
⎞
⎠⎟

3
16

3

π
 ( IV.74 

 
Both in PdHx (de Ribaupierre and Manchester) and in Pd0.9Ag0.1Hx (Buck and Alefeld) the 
mean-field theory has been found to be valid for (T-Tc)/Tc>10-3. From Eq.IV.74 we have then 
 

10 16
3

31 3− >> → >>
π a

b
b a  ( IV.75 

 
This suggests that the interaction between two hydrogen’s in a metal is a long range interaction 
with b~100-1000 Å (a≅4Å for most transition metals). Summarising, we know now that the H-H 
in a metal is  
 

• attractive (ε<0) ( IV.76 

 

• of the order of a few hundredths of eV ( IV.77 

• long-ranged, such that ( )ε λr
r

~ 1
3+ with λ>0 ( IV.78 

 
The property (Eq.IV.77) follows from the fact that if the interaction energy is written as a 
function of the distance between two hydrogen’s, the total interaction energy 
 

ε π( ) intr r
a

dr E4 2

3∫ = < ∞  ( IV.79 

 
must remain finite. In a later chapter we shall show that the elastic interaction between two 
hydrogen’s imbedded in a deformable host lattice satisfies the conditions 1 to 4. 
 
In Section  IV.4 we investigate the role of the interaction range on fluctuations quantitatively by 
means of a two-dimensional Monte-carlo simulation. After that, we will continue with the H-H 
interaction in metal-hydrogen systems. 
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IV.4 INFLUENCE OF THE INTERACTION RANGE ON FLUCTUATIONS 
 
One expects that fluctuations are suppressed when the interaction range is increasing. This can 
be nicely demonstrated by using the Monte-Carlo program called Neel. This program calculates 
the total energy of a so-called Ising model (see Eq.IV.80) for a collection of N atoms distributed 
on a Nx × Ny square lattice, with spin variables that can take only the values +1 and –1. The spins 
are assumed to interact with their nearest neighbours through an exchange interaction -J if the 
neighbour is parallel and +J if the neighbour is antiparallel. The exchange interaction is zero for 
more distant neighbours. This means that the first sum in Eq. IV.80 is taken only over all the 
pairs of nearest neighbours. The factor ½ takes care of the double counting of the interactions. A 
positive J favours a parallel alignment of spins (ferromagnetic order) while a negative J leads to 
antiferromagnetic ordering. In addition the model  incorporates a dipolar term between all spins 
with a strength D and a 1/r2 –dependence. A positive D favours the antiparallel alignment of 
spins. This model can be mapped onto the lattice gas model by taking spin +1 as an occupied 
interstitial and –1 as an empty site. Then J is a measure of a hypothetical short range H-H 
interaction and D is a measure of a hypothetical long-range H-H interaction. 
 

ji
ij

ji R
aDJH SSSS ∑∑ +−= 2

2

22
 ( IV.80 

The output of the program consists of:  
 
 

time dependence 
of the 

magnetisation

spin +1 in red 
spin –1 in white

value of the 
temperature in 

units of J 

value of D 

the average 
magnetisation and its 

mean-square deviation 

value of J 
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Fig. IV.5: Results of a Monte-Carlo simulation for J=1.64 at three temperatures: T=3 J, 3.75 J 
and 4.5 J in the absence of dipolar interaction. The magnetistion is normalised to 1. Large 
fluctuations occur close to T=3.75. From the lower panel we conclude that the magnetisation can 
even reverse sign as a function of time. The spiky structure near T=3.75 J arise from the finite 
time of the simulations. 
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Fig. IV.6: Relation between the 
magnetisation of the Ising model 
blue curve) and the coexistence 
curve of the lattice-gas model (red 
curve and red scale on the top). 

 
 

 
Since there exists a one-to-one relation between the magnetisation of the Ising model and the 
coexistence curve of the lattice-gas model (see  modes)  are briefly discussed. 
Fig. IV.1) the large fluctuations near Tc in the magnetisation imply correspondingly large 
fluctuations in the concentration of particles in the lattice-gas model. The temperature 
dependence of the fluctuations are shown in  Fig. IV.7. 
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Fig. IV.7: Temperature dependence of the magnetisation and its mean square amplitude for an 
Ising model without dipolar interaction, i.e. without long range interaction. Near the critical point 
there is a sharp increase in fluctuations, as can also be seen in Fig. IV.5 

 18



0
2.0

=
−=

J
D

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
  a

nd
 1

0<
∆M

2 >

Temperature

 

 
 
 

 

 
 
 
 
 
 
 
 
 

Fig. IV.8: Temperature dependence of the magnetisation and its mean square amplitude for an 
Ising model with a dipolar interaction, i.e. with a long range interaction. Since the chosen value 
of D is negative this case corresponds to a long range attractive interaction. Near the critical 
point the fluctuations are clearly reduced with respect to the case without long range interaction 
(see Fig. IV.7).   

 
IV.5 SPINODAL DECOMPOSITION 
 
Spinodal decomposition occurs when an initially homogeneous sample at a temperature above Tc  
is rapidly cooled down to below the spinodal line. According to the phase diagram the system 
should then split into regions of dilute MHx and regions of concentrated MHx phases (see Fig. 
IV.9). As the sample cannot instantaneously change from homogeneous  to fully segregated we 
expect that composition modulations will be set up as a function of time.  
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Fig. IV.9: Path used in the Monte-Carlo 
simulation to study coarsening. The system is 
cooled down rapidly from a temperature far above 
the critical point to a well below Tc. The 
evoluation of the system is then monitored as a 
function of time. 
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This can be demonstrated with Monte-Carlo simulations. In Fig. IV.10 we show snapshots of the 
spin-distribution during a quench from infinite temperature down to a temperature T=2 when 
there is only nearest-neighbour interaction, with J=1.64 and D=0. The mean field critical 
temperature is Tc mf= 6.56 and the real Tc=0.567× 6.56=3.72. The quench temperature T=2 is 
thus well below the critical temperature. Already after one Monte-Carlo step a clear coarsening 
is clearly visible. 
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Fig. IV.10: Snapshots of the phase 
segregation occurring in a system after 
quenching from a random distribution 
corresponding to an infinite temperature (top 
panel) to a temperature T=2 for an Ising 
model with only nearest-neighbour 
interaction. The parameter J=1.64 and the 
corresponding critical temperature Tc=3.72. 
The numbers on the left indicate the Monte-
Carlo step. 
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In  Fig. IV.11  we show the results obtained for an Ising model with an attractive long range 
interaction corresponding to the second term in Eq.IV.80. This long range attractive interaction 
is also able to lead to a coarsening of the system. The obtained patterns are however clearly 
different from that in Fig. IV.10. 
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Fig. IV.11: Snapshots of the phase 
segregation occurring in a system after 
quenching from a random distribution 
corresponding to an infinite temperature (top 
panel) to a temperature T=2 for an Ising 
model with only long range interaction. The 
parameters are J=0 and D=-0.2. The 
corresponding critical temperature is again 
Tc=3.72. The numbers on the left indicate 
the Monte-Carlo step. 
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We give now a simple treatment ( Cahn9, , 10 11 ) of spinodal decomposition in which it is assumed 
that the Gibbs free energy of the total sample is given by 
 

 

G dx g c g c dc
dxH elastic H

H= + + ⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∫ ( ) ( ) α

2

 ( IV.81 

 
where 
 

g c kTN
V

c c c c N c n cH H H H H o H( ) [ ln ( ) ln( )] [ ]= + − − + +1 1
2

2ε ε H  ( IV.82 

 
is the Gibbs free energy of a homogeneous phase as calculated in Eq.III.50 but expressed per 
unit volume. The two other terms are related to inhomogeneities in the sample. The elastic term 
takes into account that if the lattice remains coherent (no cracks) stresses will be generated. The 
energy increase associated with such stresses is 
 

( ) (g c E d a
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c c c celastic H H H H H( ) ln
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−
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 ( IV.83 

 
where η is a positive parameter which is related to the Young modulus E, the Poisson ratio ν and 
the concentration dependence of the lattice constant via dlna/dc. For a cubic crystal  
 

( )(E C=
− +

−
⎛
⎝
⎜

⎞
⎠
⎟11

1 2 1
1
ν ν

ν
 ( IV.84 

 
and  
 

( )κ
ν

=
−3 1 2
E

 ( IV.85 

 
The last term is the energy cost associated with the creation of interfaces between dilute MHx 
regions and concentrated MHx  regions. The parameter α is always positive. [Note that a similar 
term is also present in the Ginzburg-Landau12 theory of type II superconductors. However, in 
these superconductors α is negative. This leads to the creation of vortices]. 
 
The problem is now to find a hydrogen concentration modulation which minimises the total 
energy of the sample, i.e. under the condition  
 

( )c c dxH H−∫ 0 0=  ( IV.86 
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For this we define the new function 
 

(M g c g c dc
dx

c cH elastic H
H

H H= + + ⎛
⎝⎜

⎞
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− −( ) ( ) ~α µ
2

0 )  ( IV.87 

 
and request that the variation vanishes 
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The Euler-Lagrange differential equation corresponding to this variational problem is  
 
 

dM
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d
dx

dM

d dc
dx

H H
−

⎛
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which leads to 
 

( )dg
dc

c c d c
dxH

H H
H+ − − − =2 20

2

2η α ~ 0µ  ( IV.90 

 
The Lagrange multiplicator µ plays the role of the chemical potential for hydrogen in the 
inhomogeneous sample. 
 

( )~µ η α= + − −
dg
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c c d c
dxH

H H
H2 20

2

2  ( IV.91 

 
The diffusion of hydrogen atoms induced by a gradient in this chemical potential is 
 

j L
xH = −

∂µ
∂

~
 ( IV.92 

 
which can be re-written as a strain dependent diffusion equation 
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by using the continuity equation for hydrogen, 
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We look now for a solution of this diffusion equation  in the form of a one- dimensional 
modulation whose amplitude is allowed to vary with time. Inserting the Ansatz 
 

c Ce eH

i x
t= λ  Ω  ( IV.95 

 
into Eq.IV.93 we find that to lowest order the growth rate parameter Ω is given by 
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Fig. IV.12: Schematic representation of 
the dependence of the growth rate on 
the wavelength of the hydrogen 
concentration modulation. Since there is 
a maximum one expects that patterns 
with a wavelength comparable to the 
wavelength at the maximum will 
develop. 
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Several interesting conclusion can be drawn from this result: 
 

• the growth rate is positive for sufficiently long wavelengths if 
d g
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• the spinodal curve corresponding to a coherent situation (i.e. without 

dislocations) is lowered with respect to the incoherent one. 
 
 
This last point follows directly from the definition of the spinodal region 
 

d
dcH

µ
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which for the lattice gas model reduces to  
 

( )
kT

c c
n

H H1
2

−
+ + =ε η 0  ( IV.98 

 
for the wave length with the largest growth rate (see b) above). This is a parabola with a 
maximum at Tmax given by 
 

kT n
max =

− −ε η2
4

 ( IV.99 

This temperature is lower than Tc since η is positive. This implies that the coherent spinodal 
temperature is always lower than the incoherent one. 
 
In the next section we will show that beside spinodal decomposition which does not depend on 
the shape of the sample ther eare also macroscopic density modes that depend essentially on the 
shape and the boundary conditions imposed to a sample. 
 
 
IV.6 THE ELASTIC H-H INTERACTION 
 
From our analysis of  various aspects of the isotherms of MHx systems we concluded that the 
interaction term εn in the lattice gas model was attractive and long ranged. At first sight the 
result in Eq.IV.74 does not look important, however, when one realises that the lattice spacing is 
typically 0.4 nm it means that the range of the H-H interaction must be much larger than 1.2 nm. 
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In a metal this is a large distance since electrons are very effective in screening charges. A 
simple estimate of the electronic screening length in metals is given by the Thomas-Fermi 
approximation. In this approximation the electrostatic Coulomb field produced by an ion of  
charge eZ embedded in a free electron gas is screened and becomes 
 

( )V r Ze e
r

r
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0

2

=

−

 ( IV.100 
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where rTF is the so-called Thomas-Fermi screening length, EF the Fermi energy and N* the 
density of electrons. The screened potential in Eq.IV.100 decreases much faster than the 
unscreened Ze2/r potential of the free ion. For a good metal such as copper, the electron density 
is 8.5 ×1022 cm-3 and the Thomas-Fermi screening length is 0.055 nm. This is much shorter than 
the lower bound of 1.2 nm derived for the H-H interaction range from measurements near the 
critical point of the isotherms of PdHx  . For most metals the screening length is of the order of 
0.1 nm since rTF depends on the electron density only weakly through a square root function. 
Even for yttrium, a metal with a relatively low free electron density, N*≈3×1022 cm-3

, the 
screening length is still short, R rTF ≈0.08 nm. 
From these considerations one may safely conclude that the long- ranged H-H interaction cannot 
be of electronic origin. There is, however, another possibility: an elastic interaction. The idea is 
as follows: when a hydrogen atom is dissolved in a metal it induces a lattice distortion. In PdHx   
the relative change in volume is about  19 % when x increases from 0 to 1. This volume change 
is due to a local distortion of the crystal lattice and a infinite ranged strain field. This implies that 
everywhere in the sample the lattice is also dilated, and consequently, more favourable for 
additional hydrogen atoms. To get some insight in this problem we consider the simple situation  
of a spherical sample of radius R in which a dilation centre has been created at its origin. The 
strength of this dilatation centre is the so-called dipole force tensor, which our simple case 
reduces to a 3×3 diagonal matrix with elements P. One finds that the relative volume increase of 
the sphere is  
 

∆ ∆V
V

R
R

P
Vtotal

= =3 κ  ( IV.102 

 
while the local lattice dilation produced by the insertion of the dilation centre at  chosen place in 
the matrix is 

∆V
V

P
V Cmatrix

= −
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⎠
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11

 ( IV.103 

where κ is the isothermal compressibility, V the volume of the sphere and C11 one of the elastic 
compliances which relate strains εj to stresses σi through 
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σ i ij
j

C= ∑ ε j  ( IV.104 

from which follows directly that the compressibility can be written as 

κ =
+
3
211 12C C

 ( IV.105 

and the Poisson ratio ν (which is defined as the ratio of perpendicular strain divided by 
longitudinal strain in an uniaxial deformation) as 

ν =
+

C
C C

12

11 12

 ( IV.106 

The result given in Eq.IV.102 is interesting in many respects: 
 

• For an infinitely large sphere the local dilation of the matrix 
vanishes identically 

 
• For a finite sphere made of an incompressible  material, i.e. a 

material with a Poisson ratio equal to 1/2 the expression between 
brackets vanishes identically since then C11=C12 

 
• In any case the local dilation does not depend on the position 

chosen for the volume element in the sphere. 
 
 
The last point is especially important for energy considerations. Assume that we add another 
dilation centre in the sphere. Then it will interact with the strain field set up by the first dilation 
centre. Its energy will be lowered by an amount 
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 ( IV.107 

 
which is always negative since κ-1/C11 is always positive. In this way we find that two hydrogen 
atoms in an elastic medium attract each other independently of the distance which separate them. 
The conclusions drawn from the simple situation considered here have been shown by Wagner 
and Horner to hold qualitatively in a general case. In particular, Eqs.IV.102,103 and 107 can also 
be used to demonstrate that the boundary conditions have a very large effect on the magnitude 
and sign of the H-H interaction. To understand this point let us consider the  at the problem of a 
sphere clamped so rigidly that the insertion of an hydrogen atom at its centre cannot modify its 
total volume (see Fig. IV.13). Since the dilation centre expands locally the material at the centre 
of the sphere the surrounding matrix must shrink, i.e. 
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Fig. IV.13: Illustration of the effect of boundary 
conditions on the H-H interaction in a sphere13. The tile 
pattern symbolises the lattice of the matrix material in the 
undistorted case (a). When the dilation centre is 
introduced into a sphere of finite size with a free 
boundary both the total volume of the sphere and of the 
lattice of the matrix increase by ∆Vtotal and ∆Vmatrix , 
respectively (see b)). In the case where the sphere is 
rigidly clamped at its boundary (dark ring in c)), the 
dilation centre causes a compression of the matrix and 
consequently ∆Vmatrix is negative. In this case the H-H 
interaction is repulsive while it is attractive in case b). 

c) 

 
 
 

 
 
 
and the H-H interaction energy is now positive 

∆ε 0

2

11

1
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P
V C

        ( IV.109                 

 
We arrive thus at the remarkable conclusion that two hydrogen atoms feel an attractive 
interaction in a finite system with free surfaces while they feel a repulsive interaction in a 
perfectly clamped sample ! 
 
 
 
Since the H-H interaction is strongly influenced by boundary conditions one can expect that the 
thermodynamics of MHx  systems will depend on the shape of the samples. This is beautifully 
shown by Zabel and Peisl14 in niobium samples of various shapes. In order to prove the validity 
of the elastic H-H interaction model they loaded samples of niobium with hydrogen at a 
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concentration  close to the critical concentration (cc=0.31)  at a temperature clearly above that of 
the critical point (Tc=444 K). Then, after a quench to below the critical temperature they 
followed the separation into two phases as a function of time by means of X-ray scattering. In 
this way they discovered that macroscopic hydrogen density modes where set up in the 
samples. In  Fig. IV.14 we give an impression of these modes as a function of the sample shape. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. IV.14: Sample shape dependence of 
macroscopic hydrogen density modes according 
to Zabel and Peisl . In a disc with thickness L  to 
diameter D ratio D/L=40 the lower face contains 
more hydrogen than the top face and the disk 
deforms spherically. When the ratio is 20 there is 
a symmetric situation. The hydrogen-rich layer in 
the equatorial plane generates so much stresses 
that the disc splits into two halves, each being 
then comparable to the situation in the D/L=40 
sample. In a thick cylinder with D/L=1 the top 
and bottom regions behave as in the thin samples 
but the central part contains probably more 
complex density modes. 
 
 
 
 
 

 
 
 
IV.7 LOWERING OF TC IN THIN FILMS 
 
In thin films the clamping due to the substrate can weaken the attractive H-H interaction. This 
represents a case intermediate between a sample with free boundaries and a sample with fully  
constrained boundaries in which the H-H interaction is positive (see Fig. IV.13). Feenstra et al.15 
found that the critical temperature of a 122 nm thick PdHx film is 460 K  compared to 565 K in 
bulk PdHx  and that the critical pressure is only 3 bar compared to 20 bar in bulk. As shown in    
there is also a clear narrowing of the plateau region in the film. 
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Fig. IV.15: The α-β coexistence curve of a 122 nm thick 
PdHx  film (full line) and bulk PdHx (dashed line) 

 
 

 
 
IV.8 LOWERING OF TC IN AMORPHOUS MATERIALS 
 
Amorphous materials can also absorb large amounts of hydrogen  at moderate pressures. 
However, the pressure-composition isotherms of hydrogen  in amorphous materials do not 
exhibit plateaus. This is a striking result as for some of the amorphous hydrogen  absorbing 
materials it is known that their crystalline counterpart do exhibit plateaux. A nice example is 
shown in Fig for the case of Ni50Zr50. At 374 K the isotherm measured by Libowitz et al on 
crystalline Ni50Zr50 has clearly a plateau while the isotherms of th the amorphous substance are 
very steep. This behaviour can easily be understood in terms of a model that incorporates both 
disorder and H-H interaction. 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig.IV.16: Pressure-composition isotherms 
for H in crystalline (full line) and 
amorphous (dashed line) Ni50Zr50 (from 
Libowitz16

 
 

 30



As a consequence of configurational disorder in an amorphous substance the energy ε of 
hydrogen at interstitial sites that can be occupied varies from site to site. The probability to find a 
site with energy ε between ε and ε+dε is given by g(ε)dε, where g(ε) is the density of sites 
function of the amorphous material under consideration.  
By definition 
 

( ) 1=∫
∞

∞−

εε dg  ( IV.110

  

which implies that there is on average one interstitial site per host metal atom. The concentration 
c of hydrogen  in the alloy is then given by the implicit relation 
 

( ) cdcTxg H =∫
∞

∞−

εµεε ),,,(  ( IV.111

  

where x(ε, µH, T, c) is the partial concentration of hydrogen  occupying sites of energy ε at 
temperature  T when the sample is in contact with hydrogen gas with a chemical potential µH2 so 
that µH= ½ µH2. This is the continuum limit of the situation encountered for crystalline alloys 
with a finite number of types of interstitial sites (see Section III.4). The distribution function x is 
taken as  

 
1

1
),(0

+
= −+

kT
TcfH H

e
c µε  ( IV.112 

 
where the H-H interaction term depends on the total concentration of hydrogen  in the sample. 
This is reasonable since the H-H interaction has an infinite range and depends to first oreder not 
on the exact value of the site energy. For simplicity, we assume now that f(c, T) is temperature 
independent and depends linearly on concentration, 
 

acTcf =),(  ( IV.113 

Then Eq.IV.112   becomes 
 

( ) cd
e

g
kT
ac H

=
+

∫
∞

∞−
−+ εε µε

1

1
0

 ( IV.114 

 
The two conditions defining the critical point (see Eq.IV.1) lead then to the following implicit 
relations, 
 

( ) εε d
z

g
k

aT
c

c ∫
∞

∞− +
−=

1cosh
1

2
 ( IV.115 

 31



and 

( )
( )

εε d
z

z
g

c

c∫
∞

∞− +
= 21cosh

sinh
0  ( IV.116 

with 

( )
c

H
c kT

acz µε −+
=  ( IV.117 

For a distribution of sites function, which is symmetric with respect to a certain energy εm , the 
integral in Eq.IV.116   can only vanish if  
 

0=−+ Hm ac µε  ( IV.118 

 
Inserting this into Eq.IV.115  gives 
 

( ) ( ) ε
εε

ε d

kT

g
k

aT

c

m
c ∫

∞

∞− +⎟
⎠
⎞

⎜
⎝
⎛ −

−=
1cosh

1
2

 ( IV.119 

 
 
This relation leads immediately to the following implications: 
 

1. The critical temperature of a disordered or amorphous system is always smaller than 
that of a crystalline system with the same H-H interaction. This is a direct 
consequence of the fact that the cosh-function is always larger than 1, so that  

 

 
k

aTT ecrystallincamorphousc 4,, −=≤  ( IV.120 

 
2. In the limit of small Tc the cosh-containing term tends towards a δ-function. We 

conclude that a positive Tc is only possible when 
 

 1)( ≥− εag  ( IV.121 

 
 This condition is analogous to the Stoner criterion for the occurrence of 

ferromagnetism. The attractive H-H interaction parameter for hydrogen  in a metal 
corresponds to the exchange interaction parameter I in the Stoner theory of band 
ferromagnetism. 

 
 
3. For a simple square-shaped density o f sites function, which is zero everywhere 

except between -∆ and ∆ where it equals 1/2∆ (in order to be normalized) we have 
 

 32



 ε
ε

d

kT
k

aT

c
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∆
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1cosh
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2
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 ( IV.122 

 
 which implies that  
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⎠

⎞
⎜⎜
⎝

⎛
−
+

=

y
y

ykTc

1
1ln

2
1   ( IV.123 

 with 
a

y ∆
=

2 . 

 
 As expected from point 2, the critical temperature vanishes when 1)( =mag ε  since in 

our case εm=0 and ∆= 2/1)( mg ε . 
 

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.00

0.05

0.10

0.15

0.20

0.25

0.30

y=2∆/(-a)

kT
c/(

-a
)

Fig. IV.17: Critical temperature of a disordered metal-hydride system characterised 
by a square-shaped distribution of sites function of width 2∆. The strength of the 
attractive H-H interaction is a. In the limit y→ 0,  i.e. when the distribution function 

tends towards a δ-function, 
B

c k
aT 4−→ , which is the result for a crystalline 

solid (see Eq.III.76). 
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We end this Chapter by mentioning that the idea of density of sites function has been extensively 
used by Kirchheim and co-workers for the description in a wide class of materials and materials 
with specific defects. Some relevant examples are given in  
Fig. IV.18. 
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Fig. IV.18: Distribution of sites function for various types of materials (Kirchheim17). The n(E) in the figure is the 
same as our g(ε). 
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