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III.1 PHASE DIAGRAMS AND PRESSURE-COMPOSITION ISOTHERMS 
 
One of the first measurements needed to characterise a metal-hydride system is to measure its 
solubility isotherms or pressure-composition isotherms. In these experiments one measures the 
concentration of hydrogen inside the sample (by measuring its weight, for example) as a function 
of the hydrogen gas pressure around the sample. A schematic  representation of the apparatus 
used by Feenstra et al1 to investigate the PdHx  system is shown in Fig. III.1. 
.  

 

Fig. III.1: Experimental apparatus used by Feenstra et al.1  for measurements  of  solubility 
isotherms. The sensitivity of the balance is 1 µg. The sample is placed  in a dilatometer to 
measure additionally the lattice expansion during hydrogen absorption. 

 
The  sample is usually in the form of foils in order to avoid long times to reach equilibrium 
(thickness 10 µm - 100 µm). The procedure is as follows. First, the reaction chamber is 
evacuated. Then hydrogen gas is added to reach  a pre-set pressure and maintain it until the 
concentration inside the sample has reached its equilibrium value. The pressure is increased and 
the whole procedure is repeated at constant temperature. Solubility isotherms for PdHx , NbHx , 
TaHx and VHx , are shown in Fig. III.2, Fig.III.4 and Fig. III.6. All the isotherms have 
approximately the same shape but in the case of NbHx and PdHx there exists a set of isotherms 
with a well defined plateau. As in the case of the van der Waals equation of state, these plateaux 
indicate the presence of two coexisting phases: a dilute metal-hydride MHx  phase (α-phase) and 
a concentrated phase (α’-phase). The corresponding T versus x phase diagrams are indicated in  
Fig. III.3, Fig.III.5, and Fig. III.7. 
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In the case of PdHx and NbHx it is quite evident that a two-phase region exists. For TaHx and 
VHx additional experimental information is required to draw the phase boundaries. 

 

  

 

 

 

 

 

Fig. III.2: Pressure-composition isotherms for H 
in Pd (see Frieske and Wicke2, and Gillespie and 
Galstaun3

 

 

 

 

Fig. III.3: Details of the phase diagram of PdHx  
and PdDx . In this system isotope effects are 
rather small in sharp contrast to, for example, the 
VHx system. (Frieske and Wicke2 Wicke and 
Blaurock4 , and Bond and Ross5. 
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Fig.III.4:Pressure-composition isotherms 
for H in Nb   Veleckis .  Pryde and 
Titcomb6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.III.5: Details of the phase diagram of 
NbHx. [ Schober and Wenzl ]. The full line 
is a calculation by Kuji and Oates7. 
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Fig. III.6: Pressure-composition isotherms for H in Ta (left) and for H in V (right) according to 
Veleckis8. 

 
 
 
 
 
The most commonly used methods for detecting and measuring different phases are 
 

• X-ray measurements of lattice constants. 
• Electron microscopy (TEM: Transmission Electron Microscopy) 
• Differential thermal analysis 

 
As these techniques are well known, we shall just give a few examples of the type of data which 
can be obtained from such experiments (see Fig. III.7, Fig. III.9, and Fig. III.10). 
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Fig. III.7: The TaHx phase diagram according to Schober9. α and α‘ are 
disordered BCC solutions of H in Ta. ε is a tetragonal phase and β, δ, ζ and  γ 
are orthorhombic. The α‘-β is a disorder-order transformation for the H 
atoms. 

 
 
 
 
 
A typical example of a TEM-micrograph is shown in Fig. III.9 for a PdH0.7 sample in the α-α‘ 
(α-β) mixed phase. The little islands with smooth contours  are so-called coherent precipitations 
of α-phase in the α’-matrix, while the dark and sharp regions correspond to incoherent 
precipitates  of α-phase in α’ (coherent means that the topology of the lattice is not destroyed 
while incoherent implies that abrupt changes are occurring at the boundary of the precipitates). 
The formation of coherent and incoherent precipitates shall be discussed later in connection with 
the form of phase diagrams of MHx  systems. 
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Fig. III.8: Time evolution of the X-ray scattering intensity of an yttrium film during hydrogen 
absorption at room temperature. For clarity the time axis starts at the back of the plot. Time t=0 
corresponds to the moment when hydrogen starts to be absorbed by the film. Clearly visible is the 
variation of the peak intensity as a function of hydrogen concentration. This is due to a change in 
crystal structure. From detailed X-ray measurements  one knows that YHx changes from hcp at 
low concentration, to fcc in the  dihydride  phase YH2 and back to hcp in the trihydride YH3. As 
the peaks occur at lower angles one concludes that YH3 has  larger lattice parameters than pure Y. 
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Fig. III.9: TEM micrograph of α-α‘ PdHx with x=0.6 at T= 86 K [from King and 
Manchester10]. 

 
In DTA one measures the temperature difference ∆T between the sample under investigation (S) 
and a reference sample (R) in thermal contact with each other. ∆T=(TS-TR) is measured as 
function of time, with T (the temperature of the oven) scanned linearly in time. If the sample 
undergoes a phase transformation, there is a net heat flow between S and R. If the thermal 
resistivity of the heat-link is r, then the heat flow dQ/dt is  
 
  

r S 
R

  
dQ
dt

T
r

=
∆  

 
 
 
 
 
This makes it possible to measure latent heats at a phase transition. For an example see Fig. 
III.10. 
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Fig. III.10:  Differential Thermal Analysis (DTA) of TaHx with x=0.59 recorded 
during slow cooling down (0.1 K/min). The path in the phase diagram is shown in the 
right panel. [Schober and Wenzl11, see also Fig. III.7]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is a formidable task to calculate all the details of a phase diagram such as the one shown in 
Fig. III.7  for TaHx . One can nevertheless try to find an adequate description for some parts of 
the phase diagrams. Let us, therefore, come back to Fig. III.3 and Fig.III.5 and try to find some 
general characteristics. For this it is instructive to focus our attention onto Fig.III.5, the phase 
diagram of  NbHx and to compare it to the phase diagram of a normal gas-liquid-solid phase 
diagram (see Fig. III.11). One sees from Fig. III.11 that if  the T-V phase diagram is replotted as 
T-(1/V) diagram we obtain a phase diagram of the same topology as that of NbHx and PdHx. 
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Fig. III.11: Phase diagram of a substance that contracts on freezing. When the top panel is 
plotted as T versus 1/V, which is similar to a concentration, one obtains a phase diagram that is 
similar to the one shown in Fig.III.5 for NbHx. 

 10



 
 
 

P

solid
solid

liquid 

solid 

gas 

a) 
P P 

b) c) 

TTtriple=TcriticalTtriple        Tcritical Ttriple=Tcritical

 
 
 

Fig. III.12: Pressure-temperature phase diagram of a substance which expands on freezing (left), 
of a substance which expands but with a triple point equal to the critical point (middle) and a 
normal substance which contracts on freezing but with Ttriple=Tc. 

 
 
 
 
 
 
 
 
 
 
Let us now investigate the case of a substance which expands on freezing (for example ice, Ge, 
Be, Si, Ce). For such substances we have the situation shown in Fig. III.12a. A limiting case of 
the situation a) is shown in Fig. III.12b. We shall show now that an ice-like substance with Tt=Tc 
(triple point = critical point) has a phase diagram which is topologically equivalent to the two-
phase region of the phase diagrams of TaHx and VHx. For this we just need to look at Fig. III.14. 
 
 
 
 
This remarkable analogy of the phase diagram of M-H systems with those of one component 
systems has been noted by Hill12, Torrey13  and developed by Alefeld14. In section III.3 we shall 
give a “one component” description of MHx  systems and introduce the notion of  lattice gas.  
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Fig. III.14: Phase diagram of a substance which expands on freezing and for which the triple 
point coincides with the critical point, i.e. Ttriple=Tc. This is an extreme case of the phase diagram 
shown in Fig. III.13. 
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III.2 HEAT OF SOLUTION AND HEAT OF FORMATION  
 

Another fundamental characteristics of a metal-hydride system is its heat of formation ∆H, i.e. 
the amount of heat absorbed or liberated during hydrogen absorption by the metallic host. ∆H 
determines essentially the stability of metal hydrides because it is directly related to the 
dissociation pressure pdis via the van ’t Hoff relation (to be derived later) 

 
1
2 ln p H

RT
S

Rdis = −
∆ ∆  ( III.1 

  
where the entropy of formation ∆S is approximately constant for all metal-hydrogen systems as it 
arises mainly from the entropy loss of gaseous hydrogen during hydrogen uptake by the metal 
(see below). 
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Fig. III.15: Heat of solution of hydrogen in the rows of  the periodic system which 
contains the 3d, 4d and 5d elements. For references see Griessen and Riesterer15. 
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Table III.1: Heat of solution of hydrogen in the elements of the periodic system . 
 

Element Enthalpy of 
solution 
(kJ/molH) 

Enthalpy of 
solution 
(eV/atom) 

 Element Enthalpy of 
solution 
(kJ/molH) 

Enthalpy of 
solution 
(eV/atom) 

He -- --  Ag 63 0.652 
Li -51 -0.528  Cd -94 -0.974 
Be -2 -0.02  In -- -- 
B -4 -0.041  Sn 125 1.295 
C -- --  Sb -- -- 
N -- --  Te -84 -0.87 
O -- --  I -- -- 
F -- --  Xe -- -- 
Ne -- --  Cs -56 -0.58 
Na 2 0.02  Ba -88 -0.912 
Mg 21 0.217  La -67 -0.694 
Al 60 0.621  Ce -74 -0.766 
Si 180 1.865  Pr -68 -0.704 
P -- --  Nd -50 -0.518 
S -- --  Pm -- -- 
Cl -- --  Sm -70 -0.725 
Ar -- --  Eu -- -- 
K 0 0  Gd -69 -0.715 
Ca -94 -0.974  Tb -78 -0.808 
Sc -90 -0.932  Dy -79 -0.818 
Ti -52 -0.538  Ho -- -- 
V -30 -0.31  Er -- -- 
Cr 28 0.29  Tm -- -- 
Mn 1 0.01  Yb -- -- 
Fe 25 0.259  Lu -79 -0.818 
Co 21 0.217  Hf -38 -0.393 
Ni 12 0.124  Ta -36 -0.373 
Cu 46 0.476  W 96 0.994 
Zn 15 0.155  Re -- -- 
Ga -- --  Os -- -- 
Ge 221 2.29  Ir 74 0.766 
As -- --  Pt 35 0.362 
Se 35 0.362  Au 32 0.331 
Br -- --  Hg -- -- 
Kr -- --  Tl -- -- 
Rb -54 -0.559  Pb 62 0.642 
Sr -61 -0.632  Bi -- -- 
Y -79 -0.818  Po -- -- 
Zr -58 -0.601  At -- -- 
Nb -35 -0.362  Rn -- -- 
Mo 25 0.259  Fr -- -- 
Tc -12 -0.124  Ra -- -- 
Ru 54 0.559  Ac -- -- 
Rh 27 0.279  Th -40 -0.414 
Pd -10 -0.103  Pa -- -- 
    U 7 0.072 
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The purpose of this section is to introduce the concept of heat of formation and to provide the 
reader with up-to-date data on ∆H. The treatment is phenomenological. A more microscopic 
description shall be presented in the context of the electronic structure of metal-hydrides in later 
chapters. 
 
 
As can be seen from Fig. III.15, the dissolution of hydrogen in a metal can be exothermic or 
endothermic. If δQ↓ is the amount of heat received by the system under investigation during the 
reaction 
 
  

x H M MH Qx2 2 + → + ↓δ     (III.2

  

 
then δQ↓ <0 for exothermic reactions and δQ↓>0 for endothermic reactions. 
 
 

δQ↓

 
Let us consider the following situation: A piece of metal is surrounded 
by H2-gas at constant pressure and at constant temperature 

T=T

pH p
2 0=

0. We assume that δNH hydrogen atoms are transferred from the 
gas to the metal. The heat δQ↓ absorbed by the whole system in a 
reversible process at constant T=T0 and p=p0 is  
 

HSTQ δδδ ==↓
0  ( III.3 

since 

pVUH +=  ( III.4 

The heat of formation is thus equal to the change in enthalpy δH. To calculate it we use the fact 
that at equilibrium the surrounding hydrogen is in thermodynamic equilibrium with one metal 
hydride phase MHx and consequently 
  

( ) ( )1
2 2

µ µH Hp T p T c, ,= H,  ( III.5 

 
where µ H2

 is the chemical potential of pure molecular hydrogen (which, at room temperature,  
is in the gaseous state at pressures lower than 53 kbar) and µH is the chemical potential of atomic 
hydrogen in solution in the metal. By differentiating Eq.III.5 with respect to 1/T at constant 
concentration cH ≡ [H]/[M]  we obtain 
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Using the general relations 

∂µ
∂

∂
∂ ∂

∂
∂p

G
p n

V
n

V
n T T p T, ,

= = ≡
2

 ( III.7 

 
( )
( )

∂ µ
∂

∂
∂

T
T

H
n

H
p n p T1

, ,

= ≡  ( III.8 

we can rewrite Eq.III.6 in the following form 

 

( )
Hc

HHHH T
pVVHHH

ln22 2
1

2
1

∂
∂

−=−=∆  ( III.9 

G is the Gibbs free energy of the total system, n the number of moles, H  is the partial molar 
enthalpy and V  the partial molar volume. The quantity ∆H H HH≡ − 1

2 2H  is the partial 
molar heat of solution of hydrogen in a metal per gram-atom of hydrogen. 
 
There is some experimental evidence that VH , the partial molar volume of hydrogen in a metal, 
is independent of pressure and temperature. It is therefore possible to determine ∆H from a plot 
of p versus lnT once the pressure and temperature dependence of the enthalpy HH2

 and VH2
 of 

pure hydrogen are known. Values of the thermodynamic properties in the temperature range 100 
K to 1000 K at pressures up to 1 Mbar given by Hemmes et al.16. Values for VH are given in the 
review articles of Peisl17 and Westlake18. Bouten and Miedema19  and Griessen and Feenstra20 
apply their semi-empirical models to the calculation of the partial molar volume.  
At low pressures (p < 100 bar) the partial molar volume of hydrogen gas is much larger than VH  
(which is typically 1.7 cm3/mole H) and H2 behaves approximately as an ideal gas, i.e. 

. Equation III.9 then simplifies to pV RTH2
≅

 

( )
Hc

HH T
pRHH

1
ln

2
0

2
1

2 ∂
∂

≅−  ( III.10 

 
Since is nearly independent of pressure in this regime, we have replaced by its value at 
the standard pressure of one atmosphere.  

HH2
HH2
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Fig. III.16: Van t’Hoff plots constructed from the isotherms in the right panel. The slope of the lines 
give the enthalpy of formation. The black dots are for a low hydrogen concentration H/Pd=0.01, 
while the red squares correspond to the plateau region.  

 
As indicated in Fig. III.15 and in Table III.1 the absorption of hydrogen in a metal can be 
exothermic or endothermic. For the early transition-metal hydrides, for example one finds large 
negative values for ∆H (exothermic). For the late transition metals as well as for the majority of 
the simple metals ∆H is positive (endothermic). In contrast to exothermic systems, the metals 
with ∆H > 0 absorb only small quantities of hydrogen at moderate pressures. For such systems 
one often carries out experiments at constant pressure and determines the temperature 
dependence of the solubility of hydrogen in a given metal. From these data one can derive the 
partial heat of solution in the following way.  
 
At constant pressure Eq.III.5 leads to 

 
( )

( )
− =

∂ µ
∂

∂
∂

H

H p T

H

p

H

T
c

c
T

H H
,

1
1
2 2

− H  ( III.11 

 
The first derivative in Eq.III.11 can be written as 
 

1
T

H
c

S
c

H

H p T

H

H p T

∂
∂

∂
∂, ,

−  ( III.12 
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In the limit of infinite dilution ( )∂ ∂H cH H p T,
 tends towards a constant. The entropy SH , 

however, diverges because of the contribution -R ln[cH/(1-cH) ] of the mixing entropy term (this 
expression will be derived in the chapter on the lattice gas; see Eq.III.92). We then have for cH 
→ 0 

 
( )∂ µ
∂

H

H p T H

T
c

R
c

,

→  ( III.13 

 

( )
∆H R

c
T

H

p

= −
∂
∂

ln
1

 ( III.14 

 
The partial molar heat of solution H∆ may thus be obtained from a lncH or a  lnx versus inverse 
temperature plot. 
 
Until now we have only considered the situation of a homogeneously hydrogenated metal in 
equilibrium with pure hydrogen gas. However, many metal-hydrogen systems exhibit miscibility 
gaps for which two metal-hydride phases, say α and β, coexist and are in equilibrium with the 
surrounding hydrogen gas .  Below a critical temperature the pressure-composition isotherms 
have a plateau for hydrogen concentrations between cα and cβ. The conditions for 
thermodynamic equilibrium between the α and β phases and H2 are 

 

 
( ) ( ) ( )µ µ µα

α
β

βH H Hp T c p T c p T, , , , ,= = 1
2 2

      ( III.15 

and 

 
 ( III.16 

 
( ) (µ µα

α
β

βM Mp T c p T c, , , ,= )

The atomic fractions cα  and cα are independent variables.  
 
The conditions for thermodynamical equilibrium between phases given above are derived as 
follows. We assume that we have the following three different phases in contact with each other,  
 

• Hydrogen H2 gas at pressure p 
• a low concentration (cα) metal-hydrogen phase (α) 
• a high-concentration (cβ) metal-hydrogen phase β) with cα< cβ 
 

as shown in Fig. III.17.
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Fig. III.17: A two-phase metal-hydride 
system in a hydrogen gas atmosphere. 

 
 

 
In a “chemical” language we would write the following reactions 
 

βα

β

α

HH

HH

HH

⇔

⇔

⇔

2

2

2
1
2
1

 ( III.17 

 
These  reactions can be written in the general form 

)substancesofnumber(0
1

==∑
=

nAm i

n

i
i  ( III.18 

 
At equilibrium we know that the Gibbs free energy G=U-TS+pV has a minimum, for given p 
and T. The only possible reactions are those for which δG=0, thus 
 

δ ∂
∂

δ ∂
∂

δ ∂
∂

δG G
p

p G
T

T G
N

N
i

i
i= + + ∑ 0=  ( III.19 

At p and T constant 
 

δ µ δG Ni
i

i= =∑ 0  ( III.20 

where we have used the definition of the chemical potential  
 

µ ∂
∂i

i p T N

G
N

j i

=
≠, ,

 ( III.21 

 
 Dividing Eq.III.20 by, say δN1, gives 
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µ µ
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2 1

0+
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∑ j
j

jN
N

=  ( III.22 

 
Equation III.18 implies, however, that 
 

11 m
m

N
N jj −=

δ
δ

 ( III.23 

 
and thus, the condition for equilibrium is  
 

0
1

=∑
=

i

n

i
i mµ  ( III.24 

For the three reactions given in Eq.III.17 we have thus 

metal for the  ),(),(

hydrogenfor       ),(),(
2
1

hydrogenfor       ),(),(
2
1

2

2
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β
β

α
α

µµµµ

µµµ

µµµ

MMMM

HHH

HHH

TcTc

TcTp

TcTp

=⇒=

≡=

≡=

 ( III.25 

The corresponding Gibbs-Duhem equations are, at constant p and T,  

 

c
c c

H M
α

α

α

α

α

∂µ
∂

∂µ
∂

+ = 0  ( III.26 

and 

 

c
c c

H M
β

β

β

β

β

∂µ
∂

∂µ
∂

+ = 0 ( III.27 

Consider now the following derivative taken along the coexistence line defined by the 
equilibrium conditions (Eqs.III.15 and 16) given above, 

 
( )
( )

( )
( )

( )
( )

( )
( )

d T

d T

T

T

T

p
p
T

T

c
c

T
j j j jµ ∂ µ

∂

∂ µ

∂
∂

∂

∂ µ

∂
∂

∂

ν ν ν ν

ν

ν

1 1 1
= + +

1
 ( III.28 

 
Using the standard relations (Eqs.III.7 and 8) we obtain 
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where ν = α or β and j = H or M. 
 
Along the coexistence line we have, as a direct consequence of Eqs.III.15 and 16 

 
( )
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( )

( )
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d T

d T
d T

d T

d T

d T
H H Hµ µ µα β

1 1 1
1
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and 
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d T
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M Mµ µα β

1 1
=  ( III.31 

 
Multiplying Eq.III.29 for ν = α and j = H by cα and adding it to Eq.III.29 for  ν = α and j = M we 
obtain  
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H M
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µ µ
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with 

 
H c H HHα α

α≡ + M
α  ( III.33

  

and 

V c V VHα α
α≡ + M

α  ( III.34
  

For the β-phase we have similarly 
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c
d T

d T
d T

d T
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V
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d T

H M
β

β β
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βµ µ

1 1
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1
 ( III.35 

 
Subtraction of Eq.III.32 from Eq.III.35 leads, in combination with Eq.III.30 to 

 

( )
( )

( ) ( )
dp

Td T

H H c c H

c c V V V
H

H1

1
2

1
2

2

2

=
− − −

− − −
β α β α

β α β α

 ( III.36 

 
This is a general expression which is also valid under high pressure conditions. It can be 
simplified by using the fact that V  depends only weakly on the hydrogen concentrations and 
that  V . We then obtain 

H
ν

VM
β ≅ M

α
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( )
Td

dpVVH HH ln22
1−≅∆ →βα  ( III.37 

 
where ∆Hα→β  is the enthalpy of formation (expressed per mole H) of the hydride MHxβ  
from the hydrogen saturated metal solid solution of composition MHxα , i.e.  
 

∆H
H H
c c

HHα β
β α

β α
→ =

−

−
− 1

2 2
 ( III.38 

 

or equivalently ∆Hα→β   is the heat of reaction of the process 

 
( )MH c c H MHcα β α+ − →1

2 2 cβ
 ( III.39 

 
As for the case of a single hydride phase Eq.III.37 leads to  
 

( )T
pRH

1
ln

2 ∂
∂

βα ≅∆ →     ( III.40 

 

A Van t’Hoff plot constructed from the plateaux in the isotherms in the right panel of Fig. III.16. 
is slightly steeper than at infinite dilution. In other words the partial molar enthalpy of formation 
is concentration dependent21.  
 
The general thermodynamic relations derived here make it possible to determine thermodynamic 
quantities from experimental values. In order to develop a certain “feeling” for these quantities it 
is, however, necessary to use a model. In the next sections we consider the so-called lattice-gas 
model. 
 
 
 
III.3 MEAN-FIELD THEORY OF THE LATTICE-GAS  
 
The thermodynamical relations derived so far are general but do not provide the reader with 
much intuition. For this we consider one of the simplest models for an interstitial alloy consisting 
of a rigid lattice of metal atoms and mobile interstitial hydrogen atoms. 
 
From the similarity between M-H phase diagrams and solid-liquid-gas phase diagrams one is 
tempted to conclude that H in a metal behaves almost like a gas at low concentrations and 
exhibits condensation phenomena analogous to a gas-liquid system. However, because of the 
presence of the host metal lattice one cannot identify H in M with a free gas of H  atoms (note  
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Tetrahedral site

Octahedral site

 
 
 

Fig. III.18: Transition metal hydrides are a realisation of the lattice-gas model in statistical 
physics since it occupies interstitial sites in the host metallic lattice. From left to right we show 
an octahedral and an tetrahedral interstitial site of the fcc, bcc and hcp lattice. 

 
 
 
 
 
 
that a H2 molecule are probably too large to be accommodated at interstitial sites in a metal). In 
what follows we shall postulate that H in metals can be described by means of the so-called 
lattice gas model. This model is precisely defined by Lee and Yang22  as follows: 
 
A lattice gas is a monatomic gas with the interaction 
 

U U i j
i j

= −∑ (| |)
,

R R  ( III.41 

where Ri indicates the position of the i-th atom and 
 

a) the atoms have a finite impenetrable core of diameter a, so that U(r)= ∞ for r<a 
b) the interaction has a finite range, so that U(r)=0 for r>b 
c) U(r) is nowhere -∞ 

 
For our problem of hydrogen in a metal this means that two hydrogen atoms cannot occupy the 
same interstitial site and that there is some sort of interaction between two H dissolved in a 
metal. Without going into detail about the nature of this interaction, we shall assume, following 
Lacher’s early treatment23, that the energy of hydrogen atoms dissolved in a metal is given by 
the following expression 
 

E N NH o HH= +ε ε   ( III.42 
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Fig. III.19 :Potential seen by one H atom in a metal. The minima correspond to interstitial sites. 

 
where NHH is the number of nearest neighbour H-pairs and ε is the H-H pair interaction. We take 
the zero of energy at the energy of a single H-atom outside the metal.  
If N is the total number of sites then NH<N. To determine the thermodynamical properties of the 
metal-hydrogen system, let us calculate the free energy F=U-TS by means of the relation  

 

F kT
N N

kT
H o HH= − −

+⎡

⎣⎢
⎤

⎦⎥
∑ln exp

ε ε
 ( III.43 

 
where the sum (the partition function) is taken over all configurations of NH atoms distributed 
over N sites. To evaluate F we need thus to calculate the number NHH of H-H pairs for each 
distribution of the NH atoms. This problem is completely equivalent (formally) to the Ising 
model  and has not been solved analytically yet for a three dimensional gas (system). This means 
that we have to look for an appropriate approximation. The simplest one was formulated by 
Bragg and William24 and assumes that there is no short range order around hydrogen atoms. This 
is of course only true in the limit of weak interaction between two H atoms. The use of the 
Bragg-William approximation leads to 
 

N N n N
NHH H

H= 1
2    ( III.44  

 
with n, the number of nearest neighbours interstitial sites (for example, n=12 for octahedral sites 

in a FCC lattice), and N
N H   the probability of finding a nearest neighbour around a given H. 

The factor 1/2 avoids counting the H-H pairs twice. We have thus 
 

E N n
N
No H

H= +ε ε
2

2

 ( III.45 
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The energy E of a configuration depends thus only on NH, which is of course the same for all 
pairs. This implies that 
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2

εε  ( III.46 

 
Using Stirling’s formula 
 

ln ! lnN N N N≅ −  ( III.47 

 
we obtain 
 

F kT N N N N N N N N

N N
N

n N
N

kT

H H H H

H
o

H

= − − − − −

− + ⎛
⎝⎜

⎞
⎠⎟

 [ ln ln ( ) ln( )

( ) / ]ε ε
2

2  ( III.48 

 
Introducing the concentration cH 
 

c N
NH

H=  ( III.49 

we have 
 

]
2

[)]1ln()1(ln[ 2
HHoHHHHH cncNcccckTNF εε ++−−+=  ( III.50 

Note that cH is not necessarily equal to x in a hydride MHx as for certain structures N, the 
number of interstitial sites of a certain type may be different from the number of atoms. There 
are, for example, two tetrahedral sites per metal atom in a FCC structure. This is the case for 
YH2 which crystallises in the so-called calcium fluorite structure. 
 
The chemical potential µH of hydrogen in a metal is  
 

µ ∂
∂

∂
∂H H

H T V H T V

c T F
N N

F
c

( , )
, ,

= =
1  ( III.51 
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µ εH
H

H
o HkT c

c
nc=

−
+ +ln

1
ε  ( III.52 

 
We show now that it is possible to determine µH by measuring solubility isotherms (see          
Fig. III.2, Fig.III.4, and Fig. III.6). For this type of measurements the M-H sample is surrounded 
by H2 gas in equilibrium with a certain H/M value. At thermodynamical equilibrium the 
chemical potentials of the two phases are equal and we obtain from Eqs. III.52 and II.78  
 

1
2 10

0ε εb
H

H
HkT p

p T
kT

c
c

nc+
⎛
⎝
⎜

⎞
⎠
⎟ =

−
+ +ln

( )
ln ε  ( III.53 

 
This equation describes the solubility isotherms in the one phase region. In the limit of small 
hydrogen gas pressure we have simply 
 

1
2

0 0
0

kT p
p T

kT c

p c

H

H

ln
( )

ln≅

→ →
 ( III.54 

 
which is known as Sievert’s law: 
 

“The equilibrium concentration of hydrogen dissolved in a metal 
is proportional to the square root of the H2 pressure”. 

 
It can be seen that Sievert’s law is relatively well obeyed in Fig. III.20 (for PdHx) and Fig.III.21  
(for NbHx ). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. III.20: Solubility isotherms for PdH in the α-
phase (see phase diagram in Fig.II.6). The kink in 
the curves correspond to the onset of the mixed-
phase region. (Note the pressure scale, which is p1/2). 
Wicke and Nernst . 
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Fig.III.21: Solubility 
isotherms for VHx  in a 
double-log representation to 
emphasize the low hydrogen 
concentration regime. The 
temperatures are given in 
degrees Kelvin. The slope 
dlnc/dlnpH2 of the low 
concentration straight lines is 
equal to 1/2 as expected from 
Sievert’s law. [Schober et al.] 

 
 

 
 
 
Equation III.53 may, however, be unphysical at low temperatures (by low we mean in fact T<Tc 
where Tc is the critical point of the MHx  system under consideration). This can be seen as 
follows. From Eq.III.53 we have  
 

1
2

2
0

0ε ε εb Hn kT p
p T

f c− + −
⎛
⎝
⎜

⎞
⎠
⎟ =ln

( )
( )   ( III.55 

where 
 

f c kT c
c

n cH
H

H
H( ) ln ( )=

−
+ −

1
1
2

ε  ( III.56 

 
The function y=f(cH) is antisymmetric with respect to the point cH =1/2 and y=0. The solubility 
isotherms can therefore have the following shape (see Fig. III.22).  
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Fig. III.22: The function f(cH) for four values 
of the parameter εn/kT, i.e. 0, -1,-4, -10. In 
the right panel, a 3D representation of the 
chemical potential of a lattice-gas. The violet 
curve corresponds to the locus of the maxima 
and minima. We shall see later that this 
defines the so-called spinodal curve. 

 
 
 
 

We shall see that a necessary condition for thermodynamic equilibrium is that 
 

∂ µ
∂

H

H p T
c

,

≥ 0   ( III.57 

As   

∂ µ
∂

∂
∂

H

H p T Hc
f

c
,

=  ( III.58 

 
the states between B and C are unphysical. In terms of free energy, it means that FH has a shape 
as indicated in Fig. III.23.  
 
This figure represents the free energy of a MHx  system in a single phase. We shall show now, 
for cα ≤cH≤ cα’ , where the concentrations cα  and cα’ are determined by the so-called “common  
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Fig. III.23: The function f(cH) and its integral F(cH) for εn/kT=-7. The dashed red line 
corresponds to the common tangent construction implied by Eq.III.66. In the right panels, we 
show 3D representations of the chemical potential and the free energy and the Maxwell 
construction to determine the coexistence curve corresponding to the red curve in the lower-right 
panel. 
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tangent” construction, that the free energy of the system can be minimized by assuming a mixed-
phase such that 
 

c x c x cHα α α α+ =' '  ( III.59 

 
where xα is the fraction of the sample in the α-phase with N N cH

α α
α= and 

 

x xα α+ =' 1 ( III.60 

 
From Eq.III.50 for F follows for the Gibbs free energy (neglecting pressure effects) that 
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For a minimum of Gtot at given p and T we need 
 
 

∂
∂ α α

 G
x

c cH ,

= 0     and   ∂
∂ α α

G
c

c xH ,

= 0  ( III.62 

 
if xα and cα are chosen as independent variables. 
 
 

1
1

1
0

0

0

N
G
c

x kT c
c

nc

x kT c
c

nc dc
dc

c x

c x

H

H

∂
∂

ε ε

ε ε

α

α
α

α

α

α
α

α

α
α

α

α

α

 

,

'
'

'

'
'

,

ln

ln

=
−

+ +
⎡

⎣
⎢

⎤

⎦
⎥

+
−

+ +
⎡

⎣
⎢

⎤

⎦
⎥ =

 ( III.63

  

 
 
This implies that the two expressions in the square brackets must be equal. This is nothing else 
than the equality of the chemical potentials µα=µα‘ 
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Thus  ∂
∂ α α

 G
x

c cH ,

= 0  implies that, 
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In a more compact form  
 

G c G c c c G
c

( ) ( ) ( )' '
'

α α α α
α

∂
∂

− + −
 0=  ( III.66 

 
which means that cα and cα‘ are given by the common tangent construction indicated in Fig. 
III.23 as ∂G/∂cα’=∂G/∂cα  from Eq.III.64. To determine cα and cα‘ analytically let us express 
Eq.III.66 in terms of the function f defined in Eq.III.56 and its integral F. We obtain,  
 

F F(c (c c c' 'α α α α) ) ( )− + − =f 0  ( III.67 

 
F is a symmetric function with respect to a vertical  axis at c=1/2 and the solution of Eq.III.66 is 
given by  

0)( =αcf  ( III.68 

 
which is equivalent to F(cα)=F(cα‘). Thus if cα=1/2-δ then cα‘=1/2+δ   
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The two coexisting phases have concentrations cα and cα‘ given by 
 

kT c
c

n ci

i
iln ( )

1
01

2−
+ − =ε  ( III.69 

 
and the corresponding pressure, the dissociation pressure pdis is given by Eq.III.55 
 
 

kT
p

p T
ndis

bln
( )0

02= + −ε ε ε  ( III.70 

 
We shall now discuss implications of Eq.III.53, Eq.III.69  and III.70. 
 
 

III.3.1 PLATEAU DISSOCIATION PRESSURES 
 
 
From Eq.III.70 follows that 
 

ln ln ( )p p T
n

kTdis
b= +

+ −
0

02ε ε ε
 ( III.71 

 
However, in the temperature range 20 oC - 300 oC for which lnp0 ~ constant, this equations 
reduces to 
 

ln ( ) .p T const
n

kTdis
b≅ +

+ −2 0ε ε ε
  ( III.72 

 
in very good agreement with the results shown in Fig. III.16 for PdHx. The slope of the lnp vs. 
1/T curves shown for example in Fig. III.16 gives (2ε0+εn-εb)/k. The binding energy εb of two H 
atoms in a H2 molecule is εb=-4.46 eV. Thus 
 

2 4
8 62 10

0
5

46
1

ε ε+ = ⋅ −

= ⋅ −

n slope k eV
with k eV K

.
. −

 ( III.73 

 
For PdHx one finds 2ε0+εn ≅ -4.9 eV. For most metal-hydrides, 2ε0+εn is lower than -5 eV and 
can reach approximately -6.4 eV for LaHx. Van t’Hoff plots for representative metal-hydride 
systems are indicated in Fig. III.24. 
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Fig. III.24: Plateau dissociation pressure for various hydrides 25. Note that these curves should end at 
the critical point of the indicated systems as Eq. II.51 is only valid for T<Tc ,i.e. when two phases 
coexist. 

 
 

III.3.2 DETERMINATION OF THE H-H INTERACTION  PARAMETER 
 
The values of ε0 and εn may be determined separately by plotting isotherms for one-phase 
systems. From Eq.III.53 we have then 
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− +ε ε ε H  ( III.74 

 
A typical example is given in Fig. III.25 for the α-phase of PdHx  . 
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Fig. III.25: Solubility isotherms for α-PdHx  
plotted according to Eq. II.55. At 30oC εn=-0.5 
eV and ε0=-2.3 eV.[see Wicke and Nernst26]. 
Similar values have been found by Veleckis 
(1960) εn=-0.35 eV and ε0=-2.58 eV for NbHx . 

 
 

 
 

III.3.3 COEXISTENCE CURVE 
 
The coexistence curve, which defines the portion of the T-cH diagram where two phases coexist 
is given by Eq.III.69. It is a curve which is symmetric relative to cH=1/2 with a maximum at 
T=Tc. The critical temperature Tc is obtained from the maximum of the T(cH) function. By 
differentiating Eq.III.69, we obtain 
 

k dT
dc

c
c

kT
c c

n
T T

c

c
c

c cc= −
+

−
+ =ln

( )1
1

1
0ε   ( III.75 

 
Because of the symmetry of the T(c) curve, the maximum T=Tc corresponds to a critical 
concentration cc=1/2. Thus 
 

T n
kc = −

ε
4

 ( III.76 

 
Physically, this equation means just that order (=separation into two phases) can only exist up to 
a certain temperature which is of the order of the H-H interaction energy. From Eq.III.76 we 
obtain 
 

PdHx    εn=-0.20 eV       Tc=566 K ( III.77 

 

NbHx    εn=-0.16 eV      Tc=443 K ( III.78 
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These values are significantly smaller than the values found by Wicke and Nernst and Veleckis. 
They are also smaller than the values derived from the fitted equation of Simons and Flanagan27  
who found 
 

[ ]ln . . lnp atm
T T

x x
x

= − − +
−

1304 2327 11110 2
1

 ( III.79 

 
which is exactly of the same form as Eq.III.53. Thus, 
 

2 11110εn
kT

c
T

xH = −  ( III.80 

 
from which 
 
   ε αn eV phase Co o= − − −0 48 0 90. ( , PdHx )
 
In an experiment de Ribaupierre and Manchester28 found that between 485 K and 619 K  
 

εn = −0 28. eV  ( III.81 

 
for  α-PdHx   
 
One major reason for the scatter in experimental values for εn is due to the different 
interpretations of the quantity cH=NH/N which enters Eq.III.53. There are essentially two points 
of views: 

 
a)  One can assume that all the interstitial sites (the octahedral sites for example in Pd) may 

be occupied by H. Then cH is equal to H/Pd and the theory predicts a critical 
concentration of 50 % H in Pd. This is in disagreement with the experimental phase 
diagrams ( for which cc ~30 %). One is then forced to assume that Eq.III.53 is only 
valid in the limit of low concentrations. This is the view adopted by Wicke and Nernst 
Simons and Flanagan). De Ribaupierre and Manchester28, 29, assume however implicitly 
that Eq.III.53 is valid over a much wider range (up to 40 % H in Pd). In this 
interpretation it is not meaningful to use Eq.III.76 for an evaluation of εn. 

 
b)  One can postulate that only a certain fraction of the interstitial sites are available for H. 

In order to reproduce the phase diagrams of Pd-H one takes then N=0.6 NPd where NPd 
is the umber of Palladium atoms. With this choice it is possible to reproduce  quite 
accurately the measured solubility isotherms over the whole range of H/Pd as shown by 
Lacher) (see Fig. III.26). The value of this approach is more mathematical than physical 
since it predicts diverging isotherms at 0.6 in contradiction with the experiment 
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Fig. III.26: Isotherms of PdHx  
compared to the predictions of the 
Lacher model.  

 
 

 
 
 
 
As can be seen form Fig. III.26 the function fitted by Lacher 
 

[ ]ln . ln
.

.p atm x
x T

x
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+ − −2
059

10 60 2052 7700  ( III.82 

 
with x = H/Pd gives a rather good fit to the experimental data. By comparison with Eq.II.33 
 

2 7700
169

εn = −
.

k  ( III.83 

 
and thus εn= -0.20 eV in perfect agreement with Eq.III.77.  
 
It is gratifying, to a certain extent that for both interpretations of Eq.III.53 the values for εn do 
not differ too much from each other. We conclude thus that the hydrogen pair interaction ε in a 
M-H system such as PdHx   and NbHx  is typically of the order of  
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In the remaining part of this subsection let us come back to the shape of the coexistence curve. 
An approximate relation valid for low concentrations cH→0 is readily obtained from Eq.III.69, 
as 
 

kT c n c e
n
kTln α

εε
− = → =

2
0 2

α  ( III.85 

 
This implies that at low temperatures the solubility of hydrogen is extremely small, if the system 
is in a state of  thermodynamical equilibrium. Metastable states are however possible for 
concentrations between A and B and between C and D in Fig. III.22.  
The locus of the concentrations corresponding to point B and C is called the spinodal line and is 
given by the condition 
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which is equivalent to 
 

∂µ
∂

H

Hc
= 0   ( III.87 

 
From Eq.III.52 we find  
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εH
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H Hc
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c c
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0  ( III.88 

 
and thus Tsp. (=Tspinodal) 
 

T n
k

c csp H H. (= − − )ε 1  ( III.89 

 
is a parabola with its maximum at the critical point Tc. Both the coexistence curve and the 
spinodal curve are shown in Fig. III.28. We shall come back to the notion of spinodal 
decomposition in a later Chapter. 
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Fig. III.27: (Three panels on the right); Chemical 
potential of the lattice gas as a function of temperature. 
The interaction term is εn=-0.2 eV i.e. 2321 K. For 
clarity a constant equal to ε0-0.2 eV has been subtracted. 
The locus of the minima and maxima of an isotherm is 
the spinodal curve (violet curve in middle panel). The 
corresponding free energy is shown in the lower panel. 
For clarity the linear term (ε0+εn/2)x has been 
subtracted. 

Fig. III.28: (Below) Coexistence curve and spinodal 
curve as determined by Eqs.III.43 and 70 for εn=-0.2 
eV. Note the sharp decrease in solubility of hydrogen in 
the metal near cH=0 and cH=1. This is very different for 
the spinodal curve which has a finite slope at 0 and 1. 
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III.3.4 INCLUSION OF THERMAL AND STERIC EFFECTS 
 
So far we have treated the lattice-gas without taking into account that the lattice can expand (or 
contract) during hydrogen  absorption or that the hydrogen atoms  vibrate in the lattice. These 
effects can be taken care of in a simple way by writing, 
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where ε0, εn, and VH  and the Einstein temperature θE of the lattice-gas vibrations (optical 
phonons) are treated as constant parameters. We then have 
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and from the Gibbs-Duhem equations III.26 and 27 
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( )ln 1M HS R c S ∞= − − + M  ( III.94 

 
where  and  are the molar enthalpy and entropy of the pure host metal. When introduced 
into the Eq.III.29 for ∆Hα→β  these relations lead to 
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Since in this model cα + cβ  = 1, we have that ∆Hα→β  = HH (cH = 1/2). The slope of a lnp versus 
1/T plot for cH = 1/2 is thus continuous at the critical point. 
 
In the low pressure regime  is independent of pressure and varies approximately linearly 
with temperature between 200 and 1000 K with a slope

HH2

∂ ∂HH2
T  = 29.1 J/K mole H2. This 

temperature variation is exactly compensated by the optical phonon term at the temperature Tcomp 
= 0.38 θE. As metal hydrides have typically θE ≅ 1000 K this implies that the temperature 
dependence of the last two terms in Eq.III.95 cancel each other around room temperature. For 
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the simple lattice-gas model considered here one thus expects the lnp versus 1/T plots to be 
linear over a large interval of temperature. For a detailed discussion of this point the reader is 
referred to the articles by Flanagan30, Flanagan and Lynch31, Wicke and Blaurock, and Wicke 
and Brodowsky32. 
 
To conclude this section we consider once more the case of endothermic metal-hydrogen 
systems. Recently, several late transition metals have been loaded with hydrogen at pressures up 
to 70 kbar. Unfortunately in many cases only one isotherm has been measured so that relation 
(1979) cannot be used for the evaluation of the heat of hydride formation. An estimate of ∆H or 
∆Hα→β  may, however, be obtained in the following way. 
 
For a single-phase metal hydride the equilibrium condition (Eq.III.5) leads directly to 

 
∆H TS TSH= − 1

2 2H  ( III.96 

If only half of the available sites of a given type are occupied then the mixing entropy term in 
SH  vanishes. The magnitude of SH   is therefore generally small and ∆H  is readily evaluated 

from the value of SH2
 at a given pressure and temperature. 

Similarly for a two-phase metal hydride the equilibrium conditions (Eqs.III.15 and 16) lead to 
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Within the simple lattice-gas model Eq.III.98 can then be written as 
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At low pressures 
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and Eq.III.100 reduces to 
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an expression which has often been used (see for example Buschow33) to get estimates of the 
heat of formation of metal hydrides with  = 130.8 J/K mole H2. SH2

0

 
One common feature of Eq.III.96 (with SH = 0) and Eq.III.100 is that ∆H or ∆Hα→β  are always 
negative. This seems at first sight to be in contradiction with solubility measurements in many 
simple metals and late transition metals (except Pd and Mn) where positive heats of solution 
(reaction) are found. This apparent discrepancy is easily resolved by noting that SH = 0 in 
Eq.III.96 is not possible at infinite dilution. The discrepancy seems however to persist for 
concentrated hydrides of Cr, Co, Fe, Mo, and Rh for which slightly positive ∆Hα→β  have been 
found. The explanation is that ∆H and ∆Hα→β  refer to equilibrium states at a given pressure 
(often in the kbar range) and temperature well above room temperature. In order to reduce the 
enthalpies ∆H or ∆Hα→β  to a chosen standard state we use the fact that 

 

H H V V
T

dp c dTH H H
H

pp

p

p
H− = −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +∫0 1

0

∂
∂
ln
ln ∫  ( III.103 

 
where cp

H  is the partial molar specific heat (of hydrogen in a metal) at constant pressure. It has 
only been measured for a limited number of metal hydrides. A direct evaluation of Eq.III.103 is 
thus not possible in general. The specific heat cp

H  can, however, be estimated by means of a 
simple Einstein model for the optical phonons in a metal hydride. Furthermore  one expects, on 
the basis of existing experimental data, that VH  depends only weakly on pressure and 
temperature. With these approximations we find that the standard enthalpy ∆H0 (at a suitable 
reference state with pressure p0  and temperature T0) is related to the enthalpy ∆H (at p and T) by 
means of 
 

( )
( ) ( )[ ] (

∆ ∆H H V p p

R n T n T H H
H

E BE BE H H

0
0

0
1
2

03
2 2

= − −

− − + −θ )  ( III.104 

 

where nBE  is the Bose-Einstein distribution function 

 

n
eBE TE

=
−

1
1θ /  ( III.105 

  
The Einstein temperature θE = ωB/kB  appropriate for the sites occupied by hydrogen (for 
octahedral sites θE  is typically 600 K while for tetrahedral sites θE  ≈ 1100 K) is assumed to be 
volume independent in the derivation of Eq.III.106. 
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Within the approximations used to simplify Eq.III.36 to Eq.III.37, the relation Eq.III.104 is valid 
for both ∆H and ∆Hα→β . A useful form of Eq.III.104 can be obtained by combining it with 
Eq.III.97. We then have 

 
 
 
 
 

Fig. III.29: Variation of the plateau pressure with temperature for a representative metal-hydride 
according to relation Eq.III.90  with V =1.7 cmH

3/molH and ΘE = 850 K. For each line the 

standard heat of formation  ∆H  is given in kJ/moleH. The values of the chemical potential of 
pure hydrogen are from Hemmes et al . As Eq.III.68  for SH =0 reduces to the same form as 
Eq.III.100 the curves shown in this figure are also valid for a single-phase metal-hydride in 
which only half of  the sites of a given type is occupied. The number indicated in the figure 
correspond then to the standard heat of solution ∆H0. 
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At p0 = 1 atm and T0 = 298 K,  =  8.45 kJ/mole H2. For a quick estimate of the standard heat 

of formation  from limited high-pressure data we indicate in Fig. III.29 how lnp varies 

with 1/T at constant  for a representative hydride (with 

HH2

0

∆Hα β→
0

∆Hα β→
0 VH  = 1.7 cm3/mole H, θE = 850 

K) according to Eq.III.106. In the low-pressure regime (p<1 kbar) Eq.III.106 reduces to the well-
known van ’t Hoff relation. At higher pressures significant deviations are observed. 
With expressions of the type of Eq.III.106, Driessen et al.34 determined  for metal 

hydrides synthesised under high pressures. Typical values are  ≅ + 5.4 kJ/mole H for Mo, 
+ 10 for Rh, +(15 ± 2) for Co, - (3 ± 2) for Ni, -(8 ± 1) (desorption) and + 2.3 (absorption) for 
Cr, + (10 ± 1.5) for Fe and - (8 ± 1) for Mn. 

∆Hα β→
0

∆Hα β→
0

 
  
 
 
 
III.4   HEAT OF FORMATION OF ALLOYS 
 
So far we have considered systems made of one type of host lattice atoms and hydrogen. The 
effect of alloying can often be rather important as shown in Fig. III.30 for a series of Pd-Ag 
alloys. Already 10 % of Ag atoms induce drastic changes in the isotherms and the corresponding 
two-phase region. An even more dramatic effect of alloying was found   by Feenstra et al35 in an 
alloy of Pd containing only 5 % of uranium. 
 
To model the absorption of hydrogen in an alloy we note that in an alloy made of A and B atoms 
the distribution of these atoms on the lattice sites is random. The interstitial sites which can be 
occupied by hydrogen are then not equivalent since they can involve various numbers of A and 
B atoms. For example, in a BCC alloy Nb1-yVy hydrogen occupies tetrahedral sites coordinated 
by 4 Nb, 3 Nb and 1 V, 2 Nb and 2 V, 1 Nb and 3 V, or 4 V atoms. Each tetrahedral site is 
characterised by a local site energy εj (corresponding to ε0 in the case of a simple lattice gas as 
considered in Fig. III.19. Consequently, some sites will be more favourable for hydrogen 
occupation than others. A simple treatment of the thermodynamics of hydrogen in an alloy can 
be given by noting that Eq.III.52 can be written as, 

 

1

1
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+
= −+

kT
ncH HH

e
c µεε  ( III.107 

 
which resembles the well-known Fermi-Dirac statistics for electrons in a metal. The reason for 
the occurrence of the Fermi-Dirac statistics is due to the fact that in a lattice gas, double 
occupation of an interstitial site is forbidden : this is a sort of geometrical Pauli principle in real 
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Fig. III.30: Pressure-composition 
isotherms for H in four Pd-Ag 
alloys. The dots represent measured 
data while the curves are calculated 
with a multi-site model36. 

 

 

 

 

 

 

Fig. III.31: Pressure-composition isotherms 
for H in a Pd95U5 alloy. A comparison with 
the data for pure Pd (see Fig. III.2) reveals 
the remarkably large effect of the 5 % of 
uranium 
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space. Equation III.107 can easily be generalised to a system with a distribution of sites since at 
equilibrium the chemical potential of  hydrogen at any site must be equal to that of hydrogen in 
the surrounding gas. The probability that a site j with energy εj is occupied by hydrogen is then, 
 

( )

1

1
,

+

= −+

kT
TcfH Hj

e
c µε  ( III.108 

 
in which the function f(c, T) depends on the total concentration of hydrogen in the alloy. This 
assumption is reasonable since we expect the hydrogen atoms to interact elastically with each 
other, i.e. via long range elastic fields. The total concentration of hydrogen in the alloy is related 
to the local concentrations via the following relation, 
 

c g j j= ∑ c  ( III.109 

 
where gj is the fraction of sites j in the alloy. From Eqs.III.108 and 109 one can calculate the 
enthalpy of formation of the alloy by means of  
 
 

Fig. III.32: The various tetrahedral sites in an AB alloy. Each site is characterised by a different 
energy although the sites have the same geometry. One should note, however, that  there are 
local distortions due the difference in size between A and B atoms. In Nb1-yVy alloys it is mainly 
this size effect which leads to clear differences in the site energies  
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In Eq.III.110, h(c) is the enthalpic part of the interaction f(c, T) in Eq.III.108. The H-H 
interaction does not vary strongly from metal to metal and can be taken as the weighted average 
of the interaction energies in the pure AHx and BHx hydrides. It is then possible to determine the 
local  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. III.33: Site dependent 
enthalpies of solution and 
fraction of clusters 
(Nb4,.......V4) determined by 
Brouwer et al.37 from a fit to 
isotherms measured by 
Feenstra et al on a series of 
Nb1-yVy alloys. 

 
 

 
 
 
enthalpies of formation ∆Hj by fitting expression III.110 to measured values of the enthalpy ∆H  
( for example from measurements of pressure-composition isotherms). The result of such an 
approach is shown in Fig. III.33 for a series of  Nb1-yVy  alloys. For each alloy one expects 5 δ-
functions, one for each type of tetrahedral site shown in Fig. III.32. However, it is clear that in 
dilute alloys the fraction gj of certain sites is too small to be considered in the fit. It is interesting 
to see although pure Nb and V form hydrides with essentially the same heat of formation, that 
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for example a V4 cluster in a Nb rich alloy is more favourable for hydrogen than pure vanadium. 
This is due to the local expansion of V4-clusters in a Nb matrix. The reverse is observed for a 
Nb4-cluster in a vanadium matrix. It is therefore possible to use hydrogen as a local probe for 
alloys. 
 
 
 
III.5  SEMI-EMPIRICAL MODELS 
 
Despite the importance of ∆H, for example for technical applications, first principles calculations 
of the heat of formation of metal hydrides are still lacking for ternary hydrides A1-yByHx because 
the theory of cohesive properties of multicomponent systems is inherently complicated and a 
priori calculations are still very time consuming. Until now ∆H has been calculated for selected 
binary hydrides MHx only. Almost no calculations are available for ∆H in ternary metal 
hydrides. 
The difficulty in determining ∆H from first principles has stimulated a search for empirical 
correlations between ∆H and physical parameters such as the unit cell volume, interstitial site 
size, elastic moduli, Debye temperatures and electronic specific heat. These empirical 
correlations are useful for the optimisation of metal-hydrogen systems for specific technical 
applications. In general, however, they do not provide us with more insight into the physics of 
hydride formation and are difficult to generalise. This is probably the reason why semi-empirical 
models were developed to predict ∆H for large classes of metal hydrides.  
 
 

III.5.1 THE MIEDEMA MODEL 
 
 
The best-known example of such a model is due to Miedema38 and his collaborators. In this 
model each metal is characterised by two parameters (essentially the work function and the 
electron density at the boundary of the Wigner-Seitz cell of the elemental metal).  
For the application of this model to ternary hydrides one uses the rule of reversed stability which 
relates, in a straightforward manner, the heat of formation of the hydride of an intermetallic 
compound to the heats of formation of the intermetallic compound itself and of the binary 
hydrides of the metals constituting the compound.  
 
 

( ) ( ) ( ) ( )nmnmmn ABHHBHAHHHABH ∆−∆+∆=∆ 2  ( III.112 

 
 
 
The rule of reversed stability is found to work well for intermetallics made of a minority metal 
with high hydrogen affinity and a majority metal with a low hydrogen affinity (e.g. LaNi5, YCo5, 
but not FeTi). For other types of compounds it generally leads to too negative values for ∆H. 
Several workers have tried to give a microscopic basis to the model of Miedema, but without too 
much success. 
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III.5.2 THE SEMI-EMPIRICAL BAND STRUCTURE MODEL 
 
More recently Griessen and Driessen39 proposed a semi-empirical model in which each metal is 
characterised by one parameter (essentially the difference between the Fermi energy and the 
energy of the lowest conduction band of the host metal). The heat of solution is then given by 
 
 

( )( βα +−=∆ sF
s EE

n
H

2
 )  ( III.113 

 
with α= 29.62 kJ/eV/molH  and β=-135 kJ/molH. In Eq.III.114 ns represents the number of 
electrons per atom in the lowest s-like conduction band of the host metal. The existence of such a 
relation is supported by the data in Fig. III.35. 

Fig. III.34: Density of states curves (full line) and the two parameters that enter the Griessen-
Driessen model are the Fermi energy and an effective s-band energy Es defined as the energy 
where the integrated density of states curve (dashed line) of the host metal equals 1. These 
parameters are indicated for three transition metals and silver. For a discussion of density of 
states functions, see Chapter V. 
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Fig. III.35: Correlation between the measured heat of formation of binary hydrides and the 
energy difference EF-Es determined from existing band structure calculations for the host metal. 
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Fig. III.36: Measured heats of formation of ternary hydrides compared to the prediction of the 
semi-empirical band structure model . The correlation is much better than for the Miedema 
model . 

 
 
 
This model reproduces well the heat of formation of binary hydrides and, when generalised to 
ternary hydrides, predicts ∆H values in good agreement with existing experimental data. 
 
A generalisation of the semi-empirical band structure model that takes into account also local 
effects is described by Griessen40. 
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