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1. Energy levelsin molecules; the quantum structure

1.1. The Born-Oppenheimer approximation

The Hamiltonian for a system of nuclel and electrons can be written as:
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where the summation i refers to the electrons and A to the nuclei. The first term on the right
corresponds to the kinetic energy of the electrons, the second term to the kinetic energy of the
nuclei and the third term to the Coulomb energy, due to the electrostatic attraction and repul-
sion between the electrons and nuclei. The potential energy termis equal to:
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The negative terms represent attraction, while the positive terms represent Coulomb-repul -
sion. Note that a treatment with this Hamiltonian gives a non-relativistic description of the
molecule, in which also all spin-effects have been ignored.

Now assume that the wave function of the entire molecular system is separable and can be
written as:

\Pmol (F“ﬁA) = Wel(Fi ;ﬁ)Xnuc( ﬁ)

where yq represents the electronic wave function and . the wave function of the nuclear
motion. In this description it is assumed that the electronic wave function can be calculated
for aparticular nuclear distance R. Then:
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The Born-Oppenheimer approximation now entails that the derivative of the electronic wave

function with respect to the nuclear coordinates is small, so V vy, is negligibly small. In

words this means that the nuclel can be considered stationary, and the electrons adapt their

positions instantaneously to the potential field of the nuclel. The justification for this origi-

natesin the fact that the mass of the electronsis several thousand times smaller than the mass

of the nuclel. Indeed the BO-approximation isthe |east appropriate for thelight Hy-molecule.
If we insert the separable wave function in the wave equation:
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The wave equation for the electronic part can be written separately and solved:
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for each value of R. Theresulting electronic energy can then beinserted in the wave equation
describing the nuclear motion:
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We have now in a certain sense two separate problems related to two wave equations. The
first relates to the electronic part, where the goal is to find the electronic wave function
W (Fi ;R) and anenergy E (R) . Thisenergy isrelated to the el ectronic structure of the mol-
ecule analogously to that of atoms. Note that here we deal with an (infinite) series of energy
levels, aground state and excited states, dependent on the configurations of all electrons. By
searching the elgen values of the el ectronic wave equation for each value of Rwefind afunc-
tion for the electronic energy, rather than asingle value.
Solution of the nuclear part then gives the eigen functions xnuc(R) and eigen energies:
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In the BO-approximation the nuclei are treated as being infinitely heavy. As a consequence
the possible isotopic species (HCI and DCI) have the same potential in the BO-picture. Also
all couplings between electronic and rotational motion is neglected (e.g. A-doubling).

1.2. Potential energy curves
The electrostatic repulsion between the positively charged nuclei:
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is afunction of the internuclear distance(s) just as the electronic energy. These two terms can
be taken together in a single function representing the potential energy of the nuclear motion:
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In the case of a diatom the vector-character can be removed; there is only a single internuclear
distance between two atomic nuclel.

In the figure below a few potential energy curves are displayed, for ground and excited
states. Note that:

- at small internuclear separation the energy is always large, due to thee dominant role of the
nuclear repulsion

- it is not always so that de electronic ground state corresponds to a bound state

- electronically excited states can be bound.

Electronic transitions can take place, just as in the atom, if the electronic configuration in the
molecule changes. In that case there is atransition form one potential energy curve in the mol-
eculeto another potential energy curve. Such atransition isaccompanied by absorption or emis-
sion of radiation; it does not make a difference whether or not the state is bound. The binding
(chemical binding) refers to the motion of the nuclei.

1.3. Rotational motion in a diatomic molecule

Staring point is de wave equation for the nuclear motion in de Born-Oppenheimer approxima-

tion:
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where, just as in the case of the hydrogen atom the problem is transferred to one of a reduced
mass. Note that 1 represents now the reduced mass of the nuclear motion:
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Before searching for solutions it is interesting to consider the similarity between this wave
equation and that of the hydrogen atom. If a 1/R potential is inserted then the solutions (ei-
genvalues and eigenfunctions) of the hydrogen atom would follow. Only the wave function
Xnuc(R) has adifferent meaning: it represents the motion of the nuclei in adiatomic mole-
cule. In general we do not know the precise form of the potential function V(R) and also it
isnot infinitely deep as in the hydrogen atom.

Anaogously to the treatment of the hydrogen atom we can proceed by writing the Lapla-
cian in spherical coordinates:
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Now a vector-operator N can be defined with the properties of an angular momentum:
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The Laplacian can then be written as:

The Hamiltonian can then be reduced to:
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Because this potential is only afunction of internuclear separation R, the only operator with
angular dependence is the angular momentum N2, analogously to L2 in the hydrogen atom.
The angular dependent part can again be separated and we know the solutions:
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The eigenfunctions for the separated angular part are thus represented by the well-known
spherical harmonics:

|N’ M> = YNM(ea (I))

and the wave function for the molecular Hamiltonian:



Lue(R) = R(R) Yy (6, 0)

Inserting this function gives us an equation for the radial part:
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Now the wave equation has no partial derivatives, only one variable Ris left.

1.4. Therigid rotor

Now assume that the molecule consists of two atoms rigidly connected to each other. That
means that the internuclear separation remains constant, e.g. at avalue R.. Since the zero point

of apotential energy can be arbitrarily chosen we choose V(R,)=0. The wave eguation reduces
to:
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The eigenvalues follow immediately:
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where B isdefined astherotational constant. Hence aladder of rotational energy levels appears
in adiatom. Note that the separation between the levels is not constant, but increases with the
rotational quantum number N.

For an HCl molecule the internuclear separation is Re=0.129 nm; this follows from the analysis
of energy levels. Deduce that the rotational constants 10.34 cm™.
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This analysis gives also the isotopic scaling for the rotational levels of an isotope:
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1.5 Thee€asticrotor; centrifugal distortion

In an elastic rotor Ris no longer constant but increases with increasing amount of rotation
as aresult of centrifugal forces. This effect is known as centrifugal distortion. An estimate
of this effect can be obtained from a simple classical picture. As the molecule stretches the
centrifugal forceF. is, at somenew equilibrium distance Ry, balanced by the elastic binding
force Fg, which is harmonic. The centripetal and elastic forces are:

N2

uR

2, ’
F.=HLO'R)= Fo = k(R—=Ry)

»3
e

By equating F.=F¢ and by assuming R," = R, it follows:
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The expression for the rotational energy including the centrifugal effect is obtained from:

Now use Ry’ for the above equations and expanding the first term of the energy expression

it follows:
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The quantum mechanical Hamiltonian is obtained by replacing N by the quantum mechani-
cal operator N. It is clear that the spherical harmonics Yy (€2) are also solutions of that
Hamiltonian. the result for the rotational energy can be expressed as:

Ey = BN(N+1)—DN*(N+1)°

where:
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is the centrifugal distortion constant. This constant is quite small, e.g. 5.32 x 10% cm™? in
HCI, but its effect can be quite large for high rotational angular momentum states (N* de-
pendence).

Selection rules for the elastic rotor are the same as for the rigid rotor (see later).

1.6. Vibrational motion in a non-rotating diatomic molecule

If we set the angular momentum N equal to O in the Schrédinger equation for the radial part
and introduce a function Q(R) with ®(R) = Q(R)/R than a somewhat simpler expression



results:

2 42
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This equation cannot be solved straightforwardly because the exact shape of the potential V(R)
isnot known. For bound states of a molecule the potential function can be approximated with a
guadratic function. Particularly near the bottom of the potential well that approximationisvalid

(seefigure).
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Near the minimum R=R, a Taylor-expansion can be made, wherewe usep = R- Ry
2
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and:
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Here again the zero for the potential energy can be chosen at R.. Thefirst derivativeis 0 at the

minimum and K is the spring constant of the vibrational motion. The wave equation reduces to
the known problem of the 1-dimensional quantum mechanical harmonic oscillator:

L2 L2l = B0
Zud_pz 2 p p - Vvib p

The solutions for the eigenfunctions are known:

/2 1/4 o
= 2—aexp[%ap2JHv(J&p) with o = Le W = J;I—i
T

where H,, are the Hermite polynomials; de energy eigenvalues are:

Evip = "(’)e(V”’%)
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with the quantum number v that runs over values v=0,1,2,3.

From this we learn that the vibrational levelsin a molecule are equidistant and that thereis
acontribution form a zero point vibration. The averaged internuclear distance can be calcu-
lated for each vibrational quantum state with \QV( p)\ . These expectation values are plotted
inthefigure. Notethat at high vibrational quantum numbersthelargest density isat the clas-
sical turning points of the oscillator.

The isotopic scaling for the vibrational constant is
W, < —
T

Note also that the zero point vibrational energy is different for the isotopes.
1.7. Anharmonicity in the vibrational motion
The anharmonic vibrator can be represented with a potential function:
1 2 ,,3, .4
V(p) = skp"+Kp~+K'p
On the basis of energies and wave functions of the harmonic oscillator, that can be used as

afirst approximation, quantum mechanical perturbation theory can be applied to find energy
levels for the anharmonic oscillator (with parameters k' and k'*):

2
_ 1) 15K " \3( 2 11 "
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In the usual spectroscopic practice an expansion iswritten (in cm™),

2 3 4
G(v) = (oe(v + :_ZL) - coexe(v + :_ZL) + coeye(v + %) + coeze(v + %) +
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with mg, WeXe, WY aNd meZ, to be considered as spectroscopi ¢ constants, that can be determined
from experiment.

Note that for the anharmonic oscillator the separation between vibrational levelsis no longer
constant. In the figure below the potential and the vibrational levels for the H,-molecule are
shown.
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H, has 14 bound vibrational levels. The shaded area above the dissociation limit contains a.con-
tinuum of states. The molecule can occupy this continuum state! For D, there are 17 bound vi-
brational states.

A potential energy function that often resembles the shape of bound electronic state potentials
is the Morse Potential defined as:

V(R) = D [1—e R 7Ry?

where the three parameters can be adjusted to the true potential for a certain molecule. One can
verify that this potential isnot so good at r — <. By solving the Schrédinger equation with this
potential one can derive the spectroscopic constants:

2D, o XeBo. Be w2

e _ e~ e _ _e —
W = 2n M Xo = D, o, = 6 5 6(0e B 2_uR

The energies of the rovibrational levels then follow viathe equation:

e

3 1 1\2 2 2 1
En = Of V+ 3] —X0 V+Z] +BN(N+1)—D,N(N+1) —a v+ |N(N+1)+

Another procedure that is often used for representing the rovibrational energy levels within a
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certain electronic state of amolecule isthat of Dunham, first proposed in 1932:
_ AR |
Ewn = D> Yalv+t3) N(N+1)
k|

In this procedure the parameters Yy, are fit to the experimentally determined energy levels;
the parameters are to be considered a mathematical representation, rather than constantswith
aphysical meaning. nevertheless a relation can be established between the Yy and the mo-
lecular parameters B, D, €tc. In approximation it holds:

Yi0= ®g Yo1 = Be Y0 = —0eXe Y13 = O Y30 = 0gYe

1.8. Energy levelsin a diatomic molecule: electronic, vibrational and rotational

In amolecule there are electronic energy levels, just asin an atom, determined by the con-
figuration of orbitals. Superimposed on that electronic structure there exists a structure of
vibrational and rotational levels as depicted in the figure.

[}

Transitions between levels can occur, e.g. viaelectric dipol e transitions, accompani ed by ab-
sorption or emission of photons. Just as in the case of atoms there exist selection rules that
determine which transitions are allowed.

1.9. The RKR-procedure

The question isif there exists a procedure to derive a potential energy curve form the meas-
urements on the energy levels for a certain electronic state. Such a procedure, which is the
inverse of a Schrédinger equation does exist and is called the RKR-procedure, after Ryd-
berg, Klein and Rees.
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2. Transitions between quantum states

2.1. Radiative transitionsin molecules

In asimple picture amolecule acts in the same way upon incident electromagnetic radiation as
an atom. The multipole components of the electromagnetic field interacts with the charge dis-
tribution in the system. Again the most prominent effect is the electric dipole transition. In a
molecule with transitionsin the infrared and even far-infrared the el ectric dipole approximation
iseven morevalid, sinceit depends on theinequality. Thewavelength A of theradiationismuch
longer than the size of the molecule d:

%?d«l
In the dipole approximation a dipole moment w interacts with the electric field vector:
> 2> >
H,=uE=¢efE
In a quantum mechanical description radiative transitions are treated with a "transition mo-
ment" M;; defined as:
=
My = (Pilu - ElYPY)

This matrix element isrelated to the strength of atransition through the Einstein coefficient for
absorptionis:

2
me

Bri(w) = >
KIS

RN h

Very generaly the Wigner-Eckart theorem can be used to make some predictions on allowed
transitions and selection rules. The dipole operator is an f -vector, so atensor of rank 1. If the
wave functions have somehow a dependence on aradial part and an angular part the theorem
shows how to separate these parts:

yaMrPlyamy = (—1)J’M{ )1 J}wJHr“)HYJ?
Mg M

In the description the tensor of rank 1 g can take the values O, -1 and +1, this corresponds with
X, Y, and z directions of the vector. In al casesthe Wigner-3j symbol has avalue unequal to O,
if AJ=0, -1 and +1. Thisisagenera selection rule following if J isan angular momentum:

Ad=J-1=-10,1
J=J=0 forbidden
AM =M-M=-10,1

Therule AM=0 only holdsfor g=0, so if the polarisation is along the projection of the field axis.
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2.1. Two kinds of dipole moments: atoms and molecules

In atoms there is no dipole moment. Neverthel ess radiative transitions can occur via atran-
sition dipole moment; this can be understood as a reorientation or relocation of electronsin
the system as aresult of aradiative transition. Molecules are different; they can have a per-
manent dipole moment as well. The dipole moment can be written as:

W= Ug+tUy = —zzeﬂ-+§:eZA§A
[ A

Where e and N refer to the electrons and the nucle. In fact dipole moments can aso be cre-
ated by the motion of the nuclei, particularly through the vibrational motion, giving rise to:

2
> > d> 1 d°>) 2
u = uo+(d—Ru)Rep+2[Rujp +

wherethefirst term isthe electronic transition dipole, similar to the onein atoms, the second
is the permanent or rotating dipole moment and the third is the vibrating dipole moment.

2.2. The Franck-Condon principle

Hereweinvestigate if thereisaselection rulefor vibrational quantum numbersin electronic
transitionsin adiatom. If we neglect rotation the wave function can be written as:

> > >
‘Pmol(Fi!R/'\) = lVel(?i;R)inb(R)
The transition matrix element for an electronic dipole transition between states ¥’ and W’
IS
Wi = [¥ude

Note that on the left side within the integral there appears a complex conjugated function.
The dipole moment contains an electronic part and a nuclear part (see above). Insertion
yields:

9
le = '[We|WV|b(“~e+MN)W e|w Vlbdde =
2 >
= J-('[W eV g AW ip Y vibdR"'J-\lf oV eler.inbMNW vipdR

If two different electronic states y’ 4 and '’ o are concerned then the second term cancels,
because electronic states are orthogonal. Note: it is the second term that gives rise to pure
vibrational transitions (also pure rotational transitions) within an electronic state of the mol-
ecule. Herewe areinterested in electronic transitions. We write the electronic transition mo-
ment:

Me( R) = jwlel “ewuel dr

In first approximation this can be considered independent of internuclear distance R. Thisis
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the Franck-Condon approximation, or the Franck-Condon principle. As a result the transition
matrix element of an electronic transition is then:

Hif = Me(R)I\If'\/ib‘lf"vibdﬁ
Theintensity of atransition isproportional to the square of the transition matrix element, hence:
o |y ®ex [GVVOI®
So the Franck-Condon principle gives usa selection rule for vibrational quantum numbers in
electronic transitions. Theintensity isequal to the overlap integral of the vibrational wave func-

tion of ground and excited states. This overlap integral is called the Frank-Condon factor. It is
not a strict selection rule forbidding transitions!

2.3. Vibrational transitions: infrared spectra

In the analysis of FC-factors the second term in the expression for the dipole matrix element
was not further considered. This term:

9
Mir = IW aV eldrIinbMNW vipdR

reduces, in case of asingle electronic state (the first integral equals 1 because of orthogonality)
it can be written as:

'] 1 2 1
VIuyiplV) = (V](ap +bp™ + V)
where the first term represents the permanent dipole moment of the molecule. In higher order

approximation in a vibrating molecule induced dipole moments play arole, but these are gen-
erally weaker.
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An important consequence is that in a homonuclear molecule there exists no dipole mo-
ment, u,;, = 0, so thereisno vibrationa or infrared spectrum!

If we proceed with the approximation of aharmonic oscillator then we can use the known
wave functions Q,(p) to calculate intensities in transitions between states with quantum
numbers v and vj,:

" 1
lplk) = [Qu(PIPQ(PIdp = Ju:w[fg&k,n_ﬁ S Skne1]

form which a selection rule follows for purely vibrational transitions:
AV =V —v = 1

In case of an anharmonic oscillator, or in case of an induced dipole moment so-called over-
tone transitions occur. Then:

Av = £1, £2, etc

These overtone transitions are generally weaker by afactor of 100 than the fundamental in-
frared bands.

Note that vibrational transitions are not transitions involving a simple change of vibrational
guantum number. In vibrational transitions the selection rules for the rotational or angular
part must be satisfied (see below).

2.4. Rotational transitions

Induced by the permanent dipole moment radiative transitions can occur for which the elec-
tronic as well as the vibrational quantum numbers are not affected. The transition moment
for atransition between states [NM) and |[N"M”) can be written as:

=
My = (Pywrli- BN yw
where the states represent wave functions:
INM) = ¥ \m(p8d) = Y R(p)Yym(L)

The projection of the dipole moment onto the electric field vector (the quantization axis) can
be written in vector form (in spherical coordinates) in the space-fixed coordinate frame:

5 Sin6 cosd
H = Ho| sinBsing| ° MoY1im
coso

The fact that the vector can be expressed in terms of a simple spherical harmonic function
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Y1y alows for asimple calculation of the transition moment integral:

SinBcosd on
My = MOIYN’M’O snésing YNMdQ‘xJO IOYN'M’OYleNMdQ
Q cosf

= JL(ZN’+1)3(2N+1) N"1 NN 1N
4n 000/|MmM
This gives only anon-zero result if:

AN = N'=N = %1
AM = M"-M = 0,%1

So rotational transitions have to obey these selection rules. The same holds for the vibrational
transitions.

2.5. Rotation spectra

The energy expression for rotational energy levels, including centrifugal distortion, is:

F, = B,N(N+1)—D N’ (N+1)°

Here we adopt the usual convention that ground state levels are denoted with N" and excited
state levelswith N'. The subscript v refersto the vibrational quantum number of the state. Then
we can express rotational transition between ground and excited states as.

v = F,(N)=F,(N)
= (B,N'(N"+1) =D ,N*(N’ + 1) = [B,N'(N" + 1) =D N"*(N’ + 1)°])
Assume N'=N"+1 for absorption:
Vape = BL(N”+ 1)(N” +2) =N”(N” + 1)] =D [(N” + 1)’(N” + 2)° = N"*(N” + 1)°]
= 2B,(N” +1)—4D (N” + 1)°
If the centrifugal absorption is neglected and an equally spaced sequence of linesisfound:
VabS(N”) _Vabs( N"-1) = ZBV
The centrifugal distortion causes the slight deviation from equally separated lines.

Note that in apure rotation spectrum there are only absorbing transitions for which AN=N’"-N"=
1, so in the R-branch (see below).
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2.6. Rovibrational spectra

Now the term values, or the energies, are defined as.
T = G(v) +F,(N)

F,(N) = B,N(N+1)—D ,N*N+1)

G(v) = ooe(v + %) —wexe(v + %)2

For transitions v — v’ one finds the transition energies:

o(vV'=v”) = F(N")=F,,(N") + G(v') = G(v”")

Herec, = G(v’) —G(v”) istheso-caled band origin, therotationlesstransition. Note that
thereisno line at this origin. So:

o(vV'=v”) = o5+ F,(N)=F_(N")

Now the different branches of atransition can be defined. The R-branch relatesto transition
for which AN=1. Note that this definition means that the rotational quantum number of the
excited state is always higher by 1 quantum, irrespective of the fact that the transition can
relate to absorption or emission. With neglect of the centrifugal distortion onefindsthe tran-
sitions in the R-branch:

O = 04+ B,/ (N+1)(N+2)—B "N(N+1)
= 6,+2B,"+ (3B, —B,” )N+ (B, —B,”)N’

Similarly transitionsin the P-branch, defined as AN=-1 transitions, can be calculated, again
with neglect of centrifugal distortion:

6p = 6,— (B, +B,”)N+ (B, —B )N
Now the spacing between the lines is roughly 2B; more precisely:

6g(N+1)—0r(N)~3B, —B,” S0 <2B,’
6p(N+1)—cp(N)~B, +B,” S0 >2B,’

where the statement on theright holdsif B, < B,.. Hence the spacing in the P-branchislarg-
er in the usua case that the rotational constant in the ground state is larger. Thereisapile
up of linesin the R-branch that can eventually lead to the formation of a bandhead, i.e. the
point where areversal occurs.

An energy level diagram for rovibrationa transitions is shown in the following figure.
Where the spacing between lines is 2B the spacing between the R(0) and P(1) lines is 4B.
Hence thereis aband gap at the origin.
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V — TI_TII
T = Tg—G'(V) + F'(N')
Tll — TA_GI/(VI/) + FI/(NI/)

Again Rand P branches can be defined in the same way asfor vibrational transitions with tran-
sition energies:

Or = 6, +2B,"+ (3B, —B,”)N+ (B, —B,”)N’
6p = Go—(B,”+B,”)N+ (B, —B," )N’

But now the constants have aslightly different meaning: o istheband origin including the el ec-
tronic and vibrational energies, and the rotational constants B, and B, pertain to electronically
excited and lower states. If now we substitute:

m=N+1 for R—branch
= —N for P —branch

Then we obtain an equation that is fulfilled by the lines in the R branch as well as in the P-
branch:

6 = 64+ (B, +B,”)m+ (B, —B,")m
Thisisaquadratic function in m; if we assumethat B' < B", asisusually the case, then:
G =0p+ am—pm’

aparabolaresults that represents the energy representations of R and P branches. Such a parab-
olaiscalled aFortrat diagram or a Fortrat Parabola. The figure shows one for a single rovi-
bronic band in the CN radical at 388.3 nm.
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Fig. 24. Fortrat Parabola of the CN Band 3883 A (see Fig. 18). The schematic spectrum
helow is drawn to the same scale as the Fortrut parabola above. The relation between curve and
spectrum is indicated by broken lines for two points (i = —11 andm = +18). Noline is observed
at m = 0 (dotted line ).
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Note that thereisno line for m=0; thisimplies that again there isaband gap. From such fig-
ures we can deduce that there always is a bandhead formation, either in the R-branch or in
the P-branch. In the case of CN in the spectrum above the bandhead forms in the P-branch.
The bandhead can easily be calculated, assuming that it isin the P-branch:

dOp o (B +B")+2N(B ~B) = 0
R ) +2N(B'-B") =
It follows that the bandhead is formed at:
_ B/_I_ BI/
N - B/_B//

2.7 Population distribution

If line intensities in bands are to be calculated the population distribution over quantum
states has to be accounted for. From statistical thermodynamics a partition function follows
for population of states at certain energies under the condition of thermodynamic equilibri-
um. In case of Maxwell-Boltzmann statistics the probability P(v) of finding a molecule in
quantum state with vibrational quantum number v is:

—~(E(v))/(KT)

P(v) = ,
Ze—(E(v )/ (KT)

v
When filling in the vibrational energy it follows:

1 Tk TR

P(V) = Ne
where N is the Zustandssumme, and kT is expressed in cm™. As often in statistical physics
(ergodic theorem) P(v) can be interpreted as a probability or a distribution. As an example
P(v) is plotted as a function of v in the following figure.

1.0

0.8

0.6

0.4

0.2

) l | [ L T 1 L -
[+ 200 400 860 800 1000 1200 E{em™)

Fre., 58. Boltzmann Factor and Thermal Distribution of the Vibrational Levels. The curve
gives the function e —8/k7 for T = 300° K. with % in e~ The broken-line ordinates correspond
to the vibrational levels of the Iy molecule.

At each temperature the ratio of moleculesin the first excited state over thosein the ground
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state can be calculated. P(v=1)/P(v=0) islisted in the Table for several moleculesfor 300K and
1000K.

TABLE 14. RATIO OF THE NUMBER OF MOLECULES IN THE FIRST
TO THAT IN THE ZEROTH VIBRATIONAL LEVEL ror 300° K. awp 1000° K.

e—*AG!,.éﬁcfkT

Gas Az (em™) :

For 300° K. For 1000° K.
H, 41602 2.16 X 107° 2.51 X 1073
HCL 2885.9 9.77 X 1077 1.57 X 1072
Ny 2330.7 1.40 X 107° 3.50 x 1072
co 2143.2 3.43 X 107° 4.58 X 1072
0, 1556.4 5.74 X 1074 1.07 X 1071
S, 721.6 3.14 X 1072 3.54 x 1071
Cly 556.9 6.92 % 1072 4.49 X 107!
Iy 213.2 3.60 X 1071 7.36 X 107!

In case of the distribution over rotational states the degeneracy of the rotational states needsto
be considered. Every state |J) has(2J+ 1) substates |[JM) . Hence the partition function becomes:

—E, o/ (KT
(2J+1)e ™ kD _ 1 (2J+1)e—BJ(J+1)+DJZ(J+1)2
_Erot/(kT) Nl’Ot

Z(ZJ’+ Le
7

P(J) =

In the figure the rotational population distribution of the HClI molecule is plotted. Note that it
does not peak at J=0. The peak value is temperature dependent and can be found through set-
ting:

d -
P =0

40~

3.0

2.0

1.0

i
]
i
). il I n L i
] 2 4 [ 8 0 12 J
Fra. 59. Thermal Distribution of the Rotational Levels for T = 300° K. and B = 10.44 ¢m !
{That is, for HClin the Ground-State). The curve represents the function (2J -+ 1)e —BI(J +1he/kT

as a function of J. The broken-line ordinates give the relative populations of the corresponding
rotational levels.
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2.8 Rovibronic spectra

If there are two different electronic statesinvolved rovibronic transitions can occur, i.e. tran-
sitions where the electronic configuration, the vibrational aswell as the rotational quantum
numbers change. Transitions between alower electronic state A and a higher excited state B
asin the following scheme can take place:

Tl
term value
of excited state

TII

term value
of lower state

-_— . Ta

Possible transitions between the lower and excited state have to obey the selection rules, in-
cluding the Franck-Condon principle. Transitions can be calcul ated:



3. Electronic states

3.1 Symmetry oper ations

Symmetry plays an important role in molecular spectroscopy. Quantum states of the molecular
Hamiltonian are classified with quantum numbers that relate to symmetries of the problem; the
invariance of the Hamiltonian under a symmetry operation of the molecule in its body fixed
frame is connected to a quantum number. For a diatomic molecule the symmetries are:

Oy

o?o/®¢

The Hamiltonian Hy:
II2
2
Hy = =5-3V, +V(f;, R)
i

Isinvariant under the symmetry operations.

- Ry rotation over every angle ¢ about the molecular axis

- Oy reflection in amolecular plane containing the molecular axis
-1 in version in the molecular centre

These operators not only leave the molecular Hamiltonian invariant, they are also commuting
observables. In the language of quantum mechanicsthis meansthat these operators can generate
aset of simultaneous eigenfunctions of the system.

Note that the operator i only applies in a diatomic molecule with inversion symmetry, i.e. a
homonuclear molecule. These operators form groups, for a homonuclear moleculesthe D_;,,
for the heteronuclear moleculesthe C_,, point group.

3.2. Classification of states

The electronic states of the molecules are classified according to the eigenvalues under the sym-
metry operations.

Thereflection operator o, (later we will seethat this operator is connected to the concept of par-
ity for amolecular eigen state) acts has two eigenvalues.
o Ve = Ty, eigenvalues + -

The operator R, is connected to another constant of the motion, L;. Assume that in a molecule
the electronic angular momenta are coupled to aresulting vector L = ZTi .Inanaom L isa
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constant of the motion, since thereisoverall rotational symmetry. Hereisthe distinct differ-
ence between atoms and molecules; the overall rotational symmetry is broken. In a diatom
thereisonly axial symmetry around the internuclear axis of the molecule. Henceonly L, is
a constant of the motion. The eigen value equation is:

"y,
LWe = i a¢

In the nomenclature of diatomic molecules the e ectronic states are called:

= A"y, eigenvalues A = 0,+1,+2+3,

h) for A=0

IT for A==1

A for A=22

[} for A=1x3 el

The energy of the molecule depends on A% stateswith A and -A are degenerate.
For the inversion operator there are two eigenvalues:

e = Ty, eigenvalues g,u

The g (gerade) and u (ungerade) symbols are chosen for a distinction with the eigenvalues
of the 6, operator.

Hence we find simultaneous eigenvalues, under the three symmetry operations, resulting in
possible quantum states:

Homonuclear Heteronuclear
A=0 zg+z +zg' T >ty
+ + - + -
A=1 Mg 11, g T, '
A=2 Ag+Au Ag AS ATA
etc
Remarks.

- Thereisadouble degeneracy under the c,, operator for states A # 0. Thereforethe +/- signs
are usually omitted for A #0.

- There is no degeneracy under the i operator for u and g states. So u and g states have dif-
ferent energies.

The electron spins are added in the moleculein the same way asin atoms: $= § . Inthe
classification of statesthe multiplicity (25+1) due the electron spinis given in thg same way
asin atoms. Hence we identify states as:

1zg+ for the ground state of the H, molecule

%4 for theground state of the O, molecule

2H3/2 for the ground state of the OH molecule; here spin-orbit coupling is included (see
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later)

Additional identifiers usually chosen arethe symbols X, A, B, C, ..., a b, ¢, ... Thesejust relate
to away of sorting the states. The electronic ground stateisreferred to with X. The excited states
of the same multiplicity get A, B, C, etc, whereas a, b, c are reserved for electronic states of dif-
ferent multiplicity. For historical reasons for some moleculesthe symbols X, A, B, C, ..., a b, c,
... are used differently, e.g. in the case of the N, molecule.

3.3. Interchange of identical nuclei; the operator P

In molecular physicsusually two different frames of reference are chosen that should not be con-
fused. Asthe origins of the body fixed frame and the space fixed frame the centre of gravity of
the molecule is chosen. The coordinates in the space fixed frame are denoted with capitals (X,
Y, Z) and those in the body fixed frame with (X, y, ). By making use of Euler-angles the two
reference frames can be transformed into one another. The z-axis is by definition the line con-
necting nucleus 1 with nucleaus 2 and this defines the Euler-angles © and ¢. By definitiony =0
and thisties the x- and y-axis (see figure). For an Euler-transformation with y = O:

XcosBcosd + YcosOsing —Zsind

y = =Xsing + Ycoso
z = XsinBcoso + Ysinfsing + Zcoso
z z z
y Y 0 Yy e Y Y
o > _ e - S I SO -
o X o
X X X

Euler-transformation with = 0. First (X, y, 2) rotated around the z-axis over angle ¢. Then the x- and y-axis
stay in the XY -plane. Subsequently (X, y, 2) is rotated around the y-axis over angle 6. The y-axis staysin the
XY -plane by doing so. The grey plane in the drawing is the xz-plane.

If Risthe separation between the nuclei, then R, 6 and ¢ can be expressed in the positions of the
nuclei in the space fixed frame (see also figure below):
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0 = acos| ————
X3+ Y5+ 724

- X1 o N2, 2,52
(I) = &OS(FZ] and R=2 X1+Y1+Zl
Where (X4, Y1, Z;) isthe position of nucleus 1 in the space fixed frame.

If the operator interchanging the two nuclei is caled P then:

P(X]_’ Yl, Z]_7 X27 Y2, ZZ) = (x29 Y27 Zz, x]_9 Yl’ Z]_)
= (_X]_, _Y19 _Z]_7 _X27 _Y2’ _ZZ)

yd
Z
0 R
2y R

S *————=0

1 L
0

X

Fig: Under the inversion-operation P not only the angles 6 and ¢ change, but
also the z-axis.

OrinR, 6 and ¢:
P(Ra 97 ¢) = (Ra Tc_e’ q) +TC)
Because the z-axis by definition runs from nucleus 1 to 2, it will be turned around. From the equa-

tionsit follows that the y-axis also turns around. If the i electron has a position (x;, Y;, z), then the
posititions of all particles of the molecule represented by (R, 6, 0; X;, Vi, z) and so:

P(R 6, 0:%,Yi,Z) = (R =0, +1X, Y, -Z)

The inversion-operator in the space-fixed frame I, is then defined as:
1IF(X,Y,2) = (=X, =Y, =2)

It can be deduced that:
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ISF(R, 0,0:X,Y,2) = (RT—0,0+1,-X,VY;2)
Z Z

_____

2: 7I+¢

Fig: Under the interchange operator P not only the angles 6 en ¢ change, but also the z-as.
For the inversion-operator in the body-fixed frame i®F, it holds that:

By combining the last two equationsit follows:

iBF|SF(R 0, 0:%. ¥i. z) = (R =6, ¢+ 1%, -y}, —7)

Hence the important relationship for the inversion operatorsiis proven:

.BF, SF
P=1i"1

3.4. The parity operator

Parity is defined as the inversion in a space-fixed frame, denoted by the operator 157, We wish to
prove here that this operator | Fis equivalent to areflection through a plane containing the nuclear
axis (z-axis). For this plane we take xz, but the same proof would hold for any plane containing
the z-axis. One can write:

6, (X2)(R 6, 0:X, Vi, ) = (R 6, 0;%, -y, )
with 6,(xz) areflection through the xz-plane. A rotation of 180° around the axis perpendicular to
the chosen plane (so the y-axis), givesin the body-fixed frame:

Rigo) (XY, 2) = (=X Y, -2)

with Rygq(Y) the rotation-operator around the y-axis. In some textbooks Ry go(y) iswritten as Cx(y).
The nuclel exchange position:

Rigo(Y)(R. 6,¢) = (R -8, 0 +m)
and the xyz-frame then rotates. Thetotal rotation is:

Risgo (R 6, 0:%,Y;,Z) = (R T—0,¢ +7,=X, -V, Z)
By combining equations one gets:

0,(X2)Rigo(V)(R 6, ¢;%;, ¥5,Z) = (R =6, +7,—X, Y;, Z)
Thisisthe prove that:

1 = 6,(x2)Rygy(Y)
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or in general:
Sk _
1™ = o,Rigo
where the axis of R;gy must be perpendicular to the plane of 6,,. In isotropic space the state
of a molecule isindependent of the orientation; hence a molecule can undergo an arbitrary
rotation without change of state. Hence it is proven that c,, Signifies the parity operation:

ISF _
=0,

3.5 Parity of molecular wave functions; total (+/-) parity

Parity playsanimportant rolein molecular physics, particularly in determining the selection
rules for allowed transitions in the system. Quantum mechanics dictates that all quantum
states have adefinite parity (+) or (-). Asdiscussed above parity is connected to the operator
| defined in the space-fixed frame, but most molecular properties are calculated in the
body-fixed frame. Hence we usually refer to o,, as the parity operator. The total wave func-
tion of amolecular system can be written:

\Pmol = Ve WyibVrot

and hence the parity operator should be applied to al products.
In diatomic molecules the vibrational wave function is only dependent on the parameter R,
the internuclear separation and therefore:

SyWyib =  * Wyip

Note that thisis not generally the case for polyatomic molecules.
Therotational wave functions can be expressed asregular Y3, functions for which the parity
is:

-J
6,Yim = (1) Yyu

where J is the rotational angular momentum, previously defined as N. More generally
|2IM) wave functions can be used, in similarity to symmetric top wave functions |[JKM),
in which J is the angular momentum and Q is the projection onto the molecular axis in the
body-fixed frame, while M is the projection in the body-fixed frame. In fact Q is also the
total electronic angular momentum. The effect of the parity operator is:

6, |QIM) = (=1)° "%, 3, M)

where J takes the role of the total angular momentum.

So in general the wave functionsfor rotational motion are somewhat more complicated than
the spherical harmonics Yy, (6, ¢) , which are the proper eigen functions for amoleculein
als state. The situation is different when L and/or S are different from zero. Then J isnot
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perpendicular to the molecular axis. It can be shown that the wave functions are:

|QIM) = (- )M_Q /2;+21D(|\;|])Q(0‘BY)
T

where D standsfor the Wigner D-functions. The phase factor depends on the choice of the phase
convention; the above equation isin accordnace with the Condon-Shortly convention. Note that
other conventions are in use in the literature.

Thisisrelated to the effect of the parity operator on the spin part of the electronic wave function:

oS5 = (-1D° S -

Note that here X has the meaning of the projection of the spin Sonto the molecular axis; that is
acompletely different meaning of X than for the statesin case A=0. For the orbital angular mo-
mentum of the electrons:

A
o, |A) = £(-1)"|-A)
So remember for A=0 states there are indeed two solutions:
+ +
o X ) =HZ)

because the states =* and X are entirely different states with different energies.
The effect of the parity operator on the total wave function is then:

Gv(welwvibwrot) = Gv(|nAEQ>|V>|QJM>)
= (1)’ 5%, A, S DW-Q, I, M)

where 6=0 for all states except for X" states, for which 6=1.
Sincethe o,, operation changesthe signsof A, X, and Q the true parity eigenfunctions are linear
combinations of the basis functions, namely:

2S+1 J-2X+S+0.2S+1

Aqyt(-1 A
|25+1AQi y = | *(-1) | _)
J2
for which the parity operator acts as.
Gv|28+ 1AQi > = 4 |ZS+ 1AQi >

These symmetrized wave functions can be used to derive the selection rules in electric dipole
transitions.

With these equations the parity of the various levels in a diatom can be deduced. In a X" state
the parity is (-)N*1, with N the pure rotation. For a=* state the parity is (-)N. States with A>0
are double degenerate and both positive and negative rotational levels occur for each value of
N. Note that we have jumped back from the angular momentum J (which includes ) to N which
refers to pure rotation.
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4 + 4 - 3 -1+ 2 -1+
3 - 3 + 2 +/- 1 +/-
2 + 2 -1 -I+ 0 -1+
1 -1 + 0 +/-
0 + 0 -

>t by I1 A

The lowest energy levelsin the IT and A states are purposely depicted higher. Those are the
levelsfor which the pure rotational angular momentum isN=0. Notethat in astate of IT elec-
tronic symmetry thereis 1 quantum of angular momentum in the electrons; hence the lowest
quantum stateis J=1. In a A state J=2 isthe lowest state.

3.6 Rotationless parity (e/f)

Because of the J-dependent phase factor the total parity changes sign for each J-level in a
rotational ladder. Therefore another parity concept was established where this alternation is
divided out. (e) and (f) parity is defined in the following way (for integer values of J):

oV = +(—1)J1|; for e
oV = —(—1)pr for f
For half-integer values of J the following definitions are used:
oV = + (—l)J_l/Z\y for e

oy = —(—1)3_1/2111 for f

It can be verified that all levelsin aX™ state have (€) parity. Similarly, al levelsinaX” state

have (f) parity. For IT states all levels occur in eff pairs with opposing parity.
The use of e/f suppresses the phase factor in the definition of the parity eigenfunctions. Now
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it is found, for example in the evaluation of symmetrized basis functions for I1 states:

2 2
| T3, % T1_3,,)

2
I, ,,.e/f) =
| 3/2 ﬁ
2 2
2 | 11y, % 11y )
I, ,.e/f)y =
| 1/2 «/é
2+ 2.+
2 + _ [ 29,2052,
%y, .e/f) =
J2
2 — 2 —
2— 2, 2%[ 23,
2. e/f) =
21,2 2

3.7 g/lu and s/a symmetriesin homonuclear molecules

For homonuclear molecules the point group D, contains the inversion operation i defined in
the body-fixed frame. The operation i leaves the vibrational, rotational and electron spin parts
of the wave function unchanged; it only acts on the electronic part of the wave function. The
important point to realize is that the transition dipole moment operator p is of u-parity and
hence the selection rules for electric dipole transitions are g <> u.

In the above the interchange operator P was defined and it was proven that:

.BF SF _ .BF
P=1"1" =10,

States which remain unchanged under the P operator are called symmetric (s), while those

changing sign are called anti-symmetric (a). Under the operation I or o, the levels get their

(+/-) symmetry, while the operation igg introduces the g/u symmetry. Thusit follows when the

electronic stateis:

gerade - + levels are symmetric
- levels are anti-symmetric
ungerade - +  levelsare anti-symmetric

- levels are symmetric
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This gives the following ordering:

N
4 +——o— s - —7——2 a t——M™ 8 —a - — 5
3 - a + S - s + a
2 + s - a + a - S
1 - a + S - S + a
0 + S - a + a - S
+ - + -
Eg Eg DI P

For A>0 states the Hg' states are ordered as Zg', etc.

3.8 Theeffect of nuclear spin

The magnetic moment of the nuclei interact with the other angular momentain the molecular
system. When all the angular momenta due to rotatign, electronic orbital and spin angular mo-
mentum are added to J then the spin of the nucleus | can be added:

> 2 >

F=J+1

If both nuclei have a spin they can both be added following the rulesfor addition of angular mo-
menta.

2> 2 > >

F=Jd+l1+12
The additions of angular momenta play a role in heteronuclear as well as homonuclear mole-
cules. Of course the degeneracy of the levels should be taken into account: (21,+1)(21,+1).

In a homonuclear molecule the symmetry of the nuclear spin wave functions play arole. For
diatomic homonuclear molecules we must distinguish between nuclei with:

- integral spin, which obey the Bose-Einstein statistics

- half-integral spin  which obey the Fermi-Dirac statistics

The symmetrization postulate of quantum mechanicstells us that all wave functions are either

unchanged or change sign under permutation of two particles. The total wave function ¥ must
be symmetric for integral spin particles, anti-symmetric for half-integral spin particles. This
givesrise to symmetry restrictions that can be viewed in various ways, the textbooks give also
various arguments, starting from different perspectives. One view is to start from the inter-
change operator P, consider electronic stateswith g-symmetry (under igg) and +-symmetry (un-
der 6,) and neglect the vibrational part (aways a positive parity in diatomics). Then the
rotational parts of the wave function and the nuclear spin wave functions remain. The product
of the exchange properties of these wave functions should follow the proper statistics. For the
rotational levels (here we restrict ourselvesto pure rotation; in case of angular momentum cou-
pling between electronic and rotational motion it also applies) the parity is (-)N. Hence it fol-
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lows;

FD-nuclei even N require Yhue anti-symmetric
odd N require Ynue Symmetric
BE-nuclei even N require Ynue Symmetric
odd N require Yue anti-symmetric

If the symmetry of the wave function is considered then the rules change for -parity states and
for u-states. One can derive:

FD-nuclei Slevels require Yue anti-symmetric
alevels require Ynue Symmetric

BE-nuclei Slevels require Ynue Symmetric
alevels require Yue anti-symmetric

The nuclear spin weight is (21+1)% where | is the spin. Of the (21+1)? possible states:

21+1)(1+1) are symmetric
2+l are anti-symmetric

3.9 Para and ortho hydrogen
In the hydrogen molecule with two spin 14=1/2 the total nuclear spinis:
Ttot = TH+TH =01

Thereexist (21+ 1)2:4 possi ble quantum states of which 3 are symmetric and one anti-symmetric
under interchange of the two particles (note that o means spin up, B spin down):

a(l)a(2)
4 B(1)B(2)
%Z[a(l)B(Z) +B(L)o(2)]
and:
120  S{a(1)BR)-BL)a)]

J2

Note that the three states for 1=1 have M;=+1, -1 and O.

For the hydrogen nuclei FD-statistics applies, hence the symmetric wave function vy, . couples
with alevels and in the electronic ground state, of 1Eg+ symmetry, with the odd N levels. This
form of hydrogen is called ortho-hydrogen; the other is para-hydrogen. There is a 3:1 ratio of
levelsin ortho vs para. It is not easy for the molecule to undergo atransition from ortho to para;
In electromagnetic transitions this does not occur, since the electric dipole does not affect the or-
dering of nuclear spins.
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3.10 Missing levelsin the oxygen molecule

The nuclear spin of 160 nuclei is1=0. As a consequence the nuclear spin wave function can
be left out of the problem, or in other words, it should be considered as a having positive
symmetry. The electronic ground state of O, has a3zg' symmetry, hence has anegative par-
ity for the electronic wave function. 180 nuclei follow Bose-Einstein statistics, so the total
wave function must be symmetric under the interchange operator. The symmetric states (s
symmetry, see the figure for X states) are the ones with odd N quantum numbers for pure
rotation. These s-states combine with symmetric nuclear spin wave functions, the (a)-states
would combine with anti-symmetric nuclear spin wave functions, but these do not exist. As
aconsequence the (a) states, or the states with even rotational angular momentum do not ex-
ist.

The energy levels of the oxygen molecule in its ground state are depicted in the figure.

N=4 J=4
A A
RRIIRQ s 14+ N=3 J=3
)
N=2 J=2 g RR| R
B d-d Q
PHIIPQl Pol Rs N = L J=1
N=0 J=0 PR|PQ
A
NO
J=3
N=3 J=4 ,
J=2 S5 J=2
9 N=2— J=3
J=1 J=1
N=1 J=2
J=0
N=0 J=1

Figure: The allowed and forbidden states and transitions in the 160, molecule.

Note that this analysis only holds for the 180, molecule, and for the 180, molecule, because
the 180 nucleus also has 1=0. The heteronuclear species (isotopomers) 20180, 160170 and
170180 do not follow this peculiar behaviour since the additional inversion symmetry is ift-
ed. In the 170, isotopomer the situation is also different, because the nuclear spin is 1=5/2.
Thisgivesriseto an intensity alternation (which one?), but not to a disappearing of lines. So
for all isotopomers except 1°0, and 180, the level scheme depicted on the right is appropri-
ate.

Inthefiguretherotational levelsof the electronic ground state (329') are splitinto three com-
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ponent as a result of the triplet structure. The electron spins of the two paired outer electrons
lign up to atriplet giving,molecular oxygen a paramagnetic charzgeg. The interaction between
theresulting spin vector S and therotational angular momentum N, J = N + S causesalifting
of the degeneracy and a splitting into three components, wherever possible (not for N=0 obvi-
oudly).

In the electronically excited state of 1zg+ symmetry, the situation is similar. Because the elec-
tronic parity is positive here the odd N-levels are missing; also thereis no triplet splitting, since
we deal with asinglet state.

The transitions depicted in the figure are also anomalous. Since both the ground and excited
statesare of g-symmetry electric dipoletransitions are not allowed. A second reason isthat 15"
- 329' transitions are not allowed for electric dipole. The thick lines are the allowed but very
weak magnetic dipole transitions, while the thinner lines refer to the branches of the electric
quadrupole transitions (again weaker by afactor 10°). The fact that the transition is between a
triplet state and a singlet state is also a reason for its weakness.

311 The3:1ratioin N,

Herzberg measured, in the 1930s, a spectrum (the Raman spectrum in the electronic ground
state of 12 symmetry) for the nitrogen molecule and observed a 3:1 ratio between lines. This
phenomenon could only be explained by assuming that the nitrogen (**N) nucleus has a nuclear
spin of 1=1. In those days nuclei were considered to be built from protons and electrons; the
neutron was not yet observed, postulated however. The 14N nucleus was considered to be built
form 14 protons and 7 electrons giving rise to a charge of 7+ and a mass of 14 amu. But 21
particles of half-integer spin should build a nucleus of total half-integer spin and should there-
fore obey Fermi-Dirac statistics. This paradox gave support to the neutron hypothesis.
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4. Open Shell Molecules

4.1 Introduction

In our discussion of rotational energies we ha\l/e assumed (tacitly) that ﬁ was the only angular
momentum. This assumption isvery good for "X in which al electronic spins are paired off and
the orbital angular momentum, athough in principle not necessarily Zexo, manifestsitself only in
second order. The situation isdrastically different in states other than "X inwhich both L and S
can be effectively different from zero. On the gther hand in the discussion of electronic energies
the molecule was considered as non-rotating N = 0. In actual molecules all these angular mo-
menta may be present and coupled in a complicated way by gyroscopic and magnetic forces. In-
dividual angular momenta then lose their identity and only certain sums resulting from effective
couplings are constants of motion which can be determined from the observed spectra.
The presence of the various angular momentaintroduces a number of new phenomena and prob-
lems:

(1) coupling schemes,

(2) interactions which may not only shift but also split electronic energy levels,

(3) breakdown of certain rules and approximations.

ANGULAR MOMENTA |DEFINITION QUANTUM
NUMBER

Electronic orbital L=3T, L

SF projection L, M,

BF projection L, A
Electronic spin $=v% s

SF projection S, Mg

BF projection S, z
Rotational R R

SF projection R, M

BF projection R, -
Total orbital N = R+L N

BF projection N, A
Total molecular 3=NK+8% J

SF projection J, M,

BF projection J Q=A+Z
Total electronic 3= -

BF projection - Q

In the table al the angular momenta are collected which appear in calculations of molecular en-
ergies, with their projectionsin SF-Z axis and the BF-z axis (the molecular axis), and associated



quantum numbers. The coupling of ﬁ 'stqQ E} andgi 'sto § corresponds to the atomic Russel-
Saunders coupling, whilethe coupling to Ja(ji = I, + &) represents an analogon of jj-coupling.
We have disregarded the possibility of avibrational angular momentum. Various possible ways
of coupling the angular momentaintroduced by Hund in 1926 (known as Hund' s cases) are dis-
cussed in the following section.

The new interactions which have to be considered in the presence of unpaired electronic spin
and non-zero orbital momenta are:

spin-spin,

spin-orbit (and also spin other orbit),

spin-rotation.

The microscopic hamiltonian for the spin-spin (H.,) and spin-orbit (Hg,,) interactionis:

n (5 8)rs —3(H; - &) (Fij - §)]
o= (g B A1 80
j>i

Hsor = (;‘1%) ZerMéazj(rzj—{j q jo X @\Z _\é/oc)J ' él) -
_(Z_;D 2mgeuéz (%} [?ij X (%\’/j —\’/i) : 5}

j2i i

and:

In these expressons g, is the electronic g factor, pg the Bohr magneton,
Fuw = Fu—Fe(Fux = [Fud) and ¥, standsfor the velocity of the particle .
Actually this expression, first derived by Van Vleck (1951), isasum:
HSOI‘ = HSO+HSI’
where
_ (Mo 2 Z, 1 1 1- >
Hso = (ﬂ) nge“B{Z(?J([ jorX évi] 3) —z[r—sj([ (5 —Viﬂ ' )}

o, T j=iTij

W Z
Hsr = _(4_,_0[) 2mgg“§2(€)([?m><\>/a] : é])
o]

The hamiltonian H, is the most general form of the fine structure interaction. It contains the
usual spin-orbit interaction, the spin-other-orbit interaction and the crossterms between the var-
ious s, Vs and &'s. The most common forms of H,, are:

, T " > 2
Hso' = Zgj(?j)(li(x "§) or H,” = A(L-S)
j, o

Thelast form of H., can only be used when [ and S are well (or almost well) defined. In el-
ementary text books this form iswritten as:

He,” = AAZ

This expression can only be used for the diagonal contribution of H,, and only when A and =
are good (or amost good) quantum numbers. In this expression A is the spin-orbit coupling
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>
constant (A > 0 for normal and A < 0 for inverted fine structure) and ljo. isthe orbital angular
momentum of the j-th electron with respect to the o nucleus. The spin rotation hamiltonian is
usually written in the form:

> >
Hy = Y(R-S)
(often with ﬁ replacing ﬁ and A replacing 7).

4.2 Hund’s Coupling Cases

Case (a)

Thlscgseoccurs when |

(1) dl I’sarecoupledto Land all §’sto 5,

(2) the coupling L of and S to the axial internuclear field (sometimes called the L A and
S- A coupling, respectively) is much stronger than the spin-orbit (L - S) or any other possible
coupling (eg. R-L)i.e:

» and »

v v
4/j>4,
v Vv
v v
VooV
v -

N
N

S-A»L-S and S-A»N-S

A gyroscopic diagram of this coupling is shown in the figure below. Both E and % precess
independently about the internuclear axis and only their components (A and X, respectively)
and their sum:

Q=A+ZX
%

. . . L2
are constants of motion. This sum, written as a vector  couples with R to atotal molecular
angular momentum:

Hunds case (a) Hunds case (b)

It's quantum number can take the values:
J=0Q,Q+1,Q+2,...

Consequently, the levels with J < Q cannot occur. Hund’s case (a) is quite common in the
ground state of "X molecules, especially the light ones.

Case (b)

, > : . 2. .
Inthiscase L istill coupled to internuclear axis but S is decoupled fromit, more or less. Put
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> >

_ > > > 7 S
differently, S iscoupled morestronglyto N = R+ A thanto A, i.e.
> > > > >
L-A»L-S and L-A»R
> > > >
N-S>S-A
The couplings of the various angular momenta and their precessions are shown in the figure.
Explicitly the couplings are:

N+S=
The quantum numbers J and N can take the values:
J=N+SN+S-1, , ,IN-§

N=AA+LA+2,A+3 ...

Precession of § aroynd ﬁ Is slow compared to rotation because the interaction which couples
these vectors (YN - S) isrelatively weak. The case (b) coupling is especially important when
A = 0but S#0 (CN,H,", HgH, NH, Os,...), but can also occur for other electronic states, par-
ticularly when there are relatively few electrons.

Case ()

The coupling diagram for this case is shown in the figure below. It occurs when the spin-orbit
coupling is much stronger than the coupling to the internuclear axis:

> > >

> > > > >
L-S»L-A and L-S»S-A

_______ J
l
l
R |
0 |
o

L | J,

/'S
Hund' s case () Hund' s case (d)

Thisis usualy the case in heavy molecules, like Br,, I,. The coupling which produces 3a may
be of Russel-Saunders or of jj type:

3azﬁ+§ 3a:Z‘ji Jgi=li+§)
Case (d)

In cases (a) and (b) the L-A coupling is assumed to be strong. However, in some excited states
of Hy, He, and other molecules, the electronic orbit is so large that this coupling becomes too
weak. The gyroscopic effects uncouple L from the internuclear axis. The coupling diagram ap-
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propriate for this situation, shown in the figure above, corresponds to the coupling scheme:

> > >
R+L =N
> > >
N+S=1]
When S = 0 we expect a splitting of alevel into 2L + 1 components characterized by:
N=R+LR+L-1 ...,...,|R-L]

Splitting between the J components when S> 0 is determined by the KI . § interaction which
isusually very weak.

The Hund's coupling schemes are idealizations, at their best actual molecules can only ap-
proach them. Nevertheless, they are useful as a classification and as an indication of the “best”
basis for calculations of molecular energies.

4.3 Calculation of rotational energies

4.3.1 Case (a)

An expression for the rotational energy can in this case be obtained from the “ pure” rotational
hamiltonian

>2 52 e
H =BR = B(J —QZ)

2
assuming asimple “rotational” basis set of |JQM > corresponding to eigenvalues of 3 NN
and J, . The result for the energy, or rotational term value, is:

F,(J) = B[ J(J+1) Q% = BJJ+1)

In the second line the term —BQ? is disregarded because it is a constant in a given electronic
state. Rotational levelsof a °’IT multi plet are shown schematically inthefigure. The lowest lev-
elsin thisfigure correspondto J = Q. For a It state, apart from J = 1/2, each value of J oc-
curs for each of the two multiplet componentswhich have Q = 3/2,1/2.

3 3 3
1o Iy I
4 4 4
3 3 3 . o,
Rotational energy levels in a °I1
- N - state
4 4
1 1
0—
J J J

The question is, how good is the expression for the rotational energy. First of all we note that
R isNOT agood quantum number. Its value is fixed by the condition:

2= J0+1)-0Q°
Strictly, speaking the only good quantum numbers for a rotating molecule are J, M; and €.

Then R should be considered more properly as the perpendicular component of J (i.e.
J;Q =J | ). Butthis J; doesnot result from nuclear rotation alone, but has also a contri-
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bution from the rapidly precessing perpendicular component

> . . >
L, of L. The"pure” nuclear rotation couples with L, to produce J, . The operator R of the
pure rotational angular momentum and the rotational hamiltonian are:

9

- 2 2 .2
Hence:
2 2
F,(J) = B,[JJ+1)-Q7]+B(L|)—-2B,(J, -L))
The last term in this expression may be approximated by:
9
—-2B,(R-L))

ThetermB, (¢ Li} - Qz) has a constant value in agiven electronic state and can be removed as
apart of electronic energy. The rotational energy can then be written as:

F,(J) = B,[J(I+1)]+f,(Q,J)

f,(Q, J) represents contribution of the last term of in the equation. As will be shown later this
term isresponsible for the A -doubling.

Spin orbit coupling A A X splitsthe electronic stateinto 2S + 1 multiplet components that have
different values of Q and f,(€2, J).

4.3.2 Case (b)

In the pure case (b) with % = 0 an expression for the rotational energy F,(N) follow from:
52 32 72
R =N -A

l.e.

F,(N) = B,[N(N+1)—A”]

which reducesto F (N) = B,[N(N+1)] because BVA2 is independent of the rotational
quantum number (R or N).
A (somewhat) better approach is analogous to that followed in case (a). By writing:

EN
we get:
>2 2 2
>2 2 2
e

F,(N) = BIN(N+1) =A%+ (L2)] + (A, N)

The last term represents a coupling between electronic and rotational motion, in fact the same
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as above. If this coupling is neglected and the terms —ZBV(A2 - <Li>) areincluded in the
ro-vibrational energy, then F, (N) reduces to:

F,(N) = B,N(N +1)

The treatments followed aboye neglect not only other electronic couplings, but also for the
Hund’ s case (b) essential N - S coupling to obtain J. This coupling can, in good approxima-
tion, be written as:
2 >

Hogy = 7(S-N)
with vy as the spin-rotation constant. It can be interpreted as an interaction of the spin mag-
netic moment with the magnetic field produced by molecular rotation. Thisfield can be pro-
duced by:
(1) simple rotation of the nuclear frame and
(2) by excitation of electrons to states with non-zero angular momentum.
The second effect is generally the most important one, depending on the separation between
the electronic states. We consider now two examples of case (b) coupling assuming a basis
set of INSIM).

(1) *x gates

For these states the spin-rotation interaction isthe only one contributing to the rotational en-
ergy.
1

Moy = 1[J(J+1) S(S+1)—N(N+1)] = for J=N+1/2
Hew =3 ZY[—(N+1) for  J=N-1/2

i.e

BN(N+1) + %VN for J=N+1/2
Fy(N) = 1
BNN+1)-3y(N+1)  for  J=N-1/2

Energy levels for %y and a “IT states are shown schematicaly in the figure. States for
J=N+1/2andJ = N-1/2 areoften designated as F, and F, following Herzberg. The
spin rotation splitting in the figure is greatly exaggerated. Each value of J occursin associ-
ation with two possible val ueszof N(eg. J = 3/2 fromN=1and N =2)

It should be noted that in the “X state a spin-orbit tyge interaction ' S- i (see % states)
may contribute significantly to y . The splitting of a "X state due to the spin-rotation inter-
action is known as p-doubling.
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2) %% states

The best known example of this state and coupling is O, in its ground state. Since there are two
unpaired electronic spins the following interactions have to be considered:
(1) spin-rotation, (2) spin-spin, (3) polarization, or induced spi n-orzbit
Spin-rotation interaction is, i i\ principle, the same asin the case of "X states. The contributionis
given by above, which for a "X state (S=1) yieldsatriplet (this splitting is sometimes called p-
tripling):
YN for J=N+1
< HSN> = —-Y for J=N
—y(N+1) for J=N-1
It was shown by Kramers (1939) that in the case of two parallel spins this interaction, when av-
eraged over the molecular rotation, is equivalent to:

2
H,, = M(3cosy’—1) = A(3S-9)
where y isthe angle between é and the molecular axis. So the spin-spin interaction is equivalent

to S- A. Caculation of the spin-spin contribution is rather straightforward if use can be made of
angular momentum techniques. Theresult is:

(He9 = (NSIHNSJ) = _;{SX(X+ 1) —4S(S+ 1)N(N + 1)J

2(2N—-1)(2N + 3)
where:
X=JUJ+1)—-SS+1)—N(N+1)
and A isthe spin-spin coupling constant. For S=1 we obtain from this expression:

T AN _
5N+ 3 for J=N+1
(Hy = A for J=N
N+1 _
_xZN_l for J=N-1

The polarization effect involves excitation of electrons to states with non-zero orbital momen-
tum li; this momentum (or momenta) interact then with S via a spin-orbit type coupling
ZS- ;. Hebb (1936) considered a coupling of thetype S- L1 . Another possible mechanismis
ajmagnetic spin excitation of orbital angular momentum. This excitation is especially important
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when thereisalow lying IT state. Both mechanisms involve perturbation of the ground state
by aIl state. Effective hamiltoniansin both mechanisms have the same angular dependence as
the spin-spin interactions and, except for adifferent coupling constant, give the same contribu-
tion to the energy. The effects of spin-spin and of the other interaction cannot be separated from
observed spectra. In the following we assume that A contains al the effects. The constant A
can be large; for O,.
A=39667 MHz y =-252.7MHz B =43102 MHz

The resulting rotational energies are:

Fy(N) = BN(N+1) +y(N+ 1)~ 3A "
Fy(N) = BN(N+1)
N
Fy(N) = BN(N+ 1) ~yN -3k

6.3.3 Case(c) and (d)

Case (c) occurs quite often in heayy diatomic molecules, (d) is however quite rare. The latter
case requires aweak coupling of L to the internuclear axisand astrong N - S (or R- S) cou-
pling, conditions which are difficult to fulfil, ssmultaneously.

If we disregard all the weaker effects the rotational energy in case (€) is given by the same ex-
pression asin case (a):

F,(J) = B,J(J+1)

Similar argumentsyield for case (d):

F/(R) = BR(R+1)

When spin-orbit interaction islarge the LS manifold may appear as a set of distinct energy lev-
els. In case (d) the manifold may contain (2L + 1)(2S+ 1) levels because N can take values
from R+L to R—L, except when R<L. Splitting between the L sublevels may, be large but
between the J components when S> 0 is normally negligible because the N - S coupling is
usually very weak.

4.4. Intermediate Cases

4.4.1 Background

The calculation of rotational energies in the preceeding section are not very accurate for a
number of reasons. First of all,snolecules never comply to pure Hund's coupling cases. In a
molecule S can be coupled to A or to the molecular axis in low rotational states, but as the
rotational frequencyincreases and becomeslarger than the precession frequency of S about A,
S decouples from A and couplesto N instead. We then get a transition from case (@) to case
(b), also known as spin-uncoupling. Many molecules, e.g. OH belong to an INTERMEDIATE
CASE. Similar L-uncoupling occurs when rotation becomes much faster than precession of L
about the molecular axis. We then get atransition from case (b) to case (d), which is rather un-
common. 5

Another reason liesin energiesinvolved in the various couplings. Incase (a) S isstrongly cou-
pledto A and states differing X (because e,g. of spin-orbit coupling) have large energy differ-
ences. Incase (b) S isweakly coupled to N, and states differing in orientation of S (i.e. in J)
show only a small energy difference. Consequently an effect which is considered asrelatively
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small in one case is not necessarily so in another. A practical consequence of thisis that off-
diagonal contributions of some interactions generally cannot be disregarded apriori. In this sit-
uation energies are solutions of (often large) secular equations.

4.4.2. Hamiltonians and r epr esentations

It should be obvious by now that electronic effects upon rotational energies have to be taken
into account right from the beginning. We shall consider explicitly only the rotational energies
inacertain electronic state, the various smaller effectswill beincluded in alater stage. The mo-
lecular hamiltonian can, in this approximation be written as a sum:

H = Hev + Hr

He, isthe vib-electronic hamiltonian of a non-rotating molecule and H, isthe rotational ham-
iltonian. When z isthe molecular axis H, can be written as:

2 2 2 2
H, = B(R\+R)) = Bl[(J—L—S)"+(Jy—Ly,—S)"]
For calculations an equivalent hamiltonian is:
»2 9 >2 2 >2
H, = BJ -3)+B(L -L)+B(S -S) +B(L,S+LS,)-
-B(J,L.+JL,)-BJ,S+JS))
Itisseenfromthisexpressionthat <H, > equals BJ(J + 1) when both i and é can beignored
{(case (&) and (c)}, BN(N+ 1) when L can but S cannot be ignored, and BR(R+ 1) when
none of them can be ignored { case (d)} .
When spin-orbit interaction is considered explicitly H,,, can be written as:
> > >
Hoy = Hoy +A(L-S) = Hg, + S a(F(li- &)
The simplest basis functions for the calculation are: |
lev, r) = |ev)|r)

where |r> istherotational and |ev> the electronic wave function. Both have to be specified
formally as far as possible. To this end we have to look which quantum numbers are good or
bad. Quantum numberswhich MUST be good in non-rotating mol ecul e and degeneracies of the
states in question are:

case (a) Q (Q=A+X) 2o0rl

case (b) same 2(25+1) or 25+1
case (c) Q 20rl

case (d) L,ASXE (2L+1)(2S+1)

When the spin-orbit interactionislarge Q isagood quantum number and |Q> isagood basis
because the operator associated with Q satisfies:

(L + S = QQ)

However, onthisbasis A or £ isNOT agood quantum number. When the spin-orbit interaction
issmall A, S and £ are almost good quantum numbers and |ASZ> is the best basis we can
choose. Finally, when both spin-orbit and the axis interaction are not strong (e.g. electronsin
Rydberg orbitals) A, S, X and L arealmzqssi good and |ASZ> isagood basis. This basis may
correspond to case (d) when energies E( I;)1 of the multiplets are less then the rotational
separation BJ; we have case (d) when all E( L) » BJ, case (b) is between (a) and (d).

In the following we shall adopt the |ASX> basis for the non-rotating molecule. But it should
be kept in mind that these are not exact eigenfunctions of the hamiltonian because spin-orbit
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mixes states with different A, S and X. In calculationsit is often more convenient to assume
that |ASZ> are the exact eigenfunctions but the quantum numbers A, S and X are not per-
fectly good, i.e.

LJASE) = AJASE) +d,)

S|ASY) = Z|ASE) +0y)

|6,> and |dy> are small functions which may be considered as due to mixing effects.

The rotational functions |r> can be specified as  [Q2JM> when J and M is the quantum
number associated with 3~ and J, respectively. Inthe absence of externa fields J and M are
perfect quantum numbers but © is NOT a quantum number for rotation because it is not an
eigenvalue of arotational operator. It entersin the problem because of the presence of operator
L,+S,. Intherotational function |[QIM>| = QJ>, Q should be considered as a parameter.
The basis set for arotating molecule is chosen to be

lev, r) = |ASE, QJ) = [ASE)|QJ)

9
Itis seen from the expression for H, that the operators i and S contribute to matrix elements
via products J,L,, J L., J,S, and J S, . Selection rules for matrix elements of L, L, and

X=X TyTy
SX,Syare:
AA = +1 AY = +1

Matrix elements of the relevant operators can be obtained from well known expressions, for
example:

(s3/&ssy = ss+1)
(SE|S)S) = =

(S(Z£1)[S, |ST) = J(S£X)(S£X+1)

For thei operator replace Sby L, X by A and [SZ> by [LA>, butfor the3 operator é_F
should be replaced by J+ .

There are complicationsin actual calculations (1) because some quantum numbers may not be
good or only approximately good and (2) because some of the quantum numbers may not be
defined at all, e.g. L. In thelatter case some of the expressions cannot be used and these matrix
elements have to be represented by parameters.

4.43 TI State

Forthisstate A = £1,S = 1/2,X = +1/2.Thebasisset |ASZ, QJ> comprisesfour func-
tions:

S 113 _g 113
|1> - |17 27 27 27 'J> |3> - | 19 29 2, 2, ‘]>
=i 116 i1 1
|2> - |19 27 27 2 ’ J> |4> | 1, 2, 2, 29 J>

Diagonal matrix elements of H,,, are:

1
(YHa|D) = (3Hgfd) = E+3A

1
(2|Hev‘2) = (4‘Hev‘4> = E_EA

The matrix of these elements corresponds to two degenerate states with % = +3/2,+1/2.
In the representation chosen the matrix elements of B(J -J,),B(S -S,) and
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2
B(i —Li) = BLi are all diagonal. The (off-diagonal) matrix elements of:
BL,S +L_S,)-BJ ,L_+J L ,)

are al zero (these operators do not contribute on the diagonal). The reason is that the basis set
contains only functions with A = +1 and the operators L, cannot produce non-zero matrix
elementscorrespondingto AA = +1. Sotheonly off-diagonal contribution comesfrom the op-
erator:

-BJ ,S +J.S.,)

whose matrix elements can be obtained from the general expressions. The final form of the en-
ergy matrix with the present approximation is given in the table (see below).

Eigenvalue of this matrix are most easily obtained by subtracting 1/2 trace from each 2 x 2 ma-
trix. The resulting eigenvalues are:

Eg = E+B(L®, y+B[(J+1/2)°-1]+ %JA(A—4B) +4B%(J+1/2)°

Thisexpression, with E + B( Li) ignored, was first derived by Hill and Van Vleck (1932) and
is known as the Hill-Van Vleck expression for “T1 states. It represents energy of two doubly
degenerate levels.

1> 2> |3> 4>

11> B[J(3+1)-7/4+<L 25]  -B[(F1/2)(I+3/2)] V2 0 0
+A/2
12> |-B[(F1/2)(3+3/2)]Y2  B[I(I+1)+1/4+<L %] 0 0
-Al2
3> 0 0 B[J(J+1)-7/4+<L %> -B[(F+1/2)(3+3/2)] Y2
+A/2
4> 0 0 -B[(F1/2)(3+3/2)]Y2 B[IF+1)+1/4+<L %]
-Al2

When J=1/2 the functions |1> and |3> do not exist in both matrices.
The hamiltonian matrix factors then into two identical 1x1 matrices. The result is a doubly de-
generate level with energy:

1 2 1
En,, = E-3A+B(LD) +B[J(J+1)+ZJ

From the general expression E; the limiting (a) and (b) case can be obtained by expanding the
sguare root.

Case(a)
2
B, 6 1/4B 2
sgrt = |A|{1—2-+-(—j[(J+1/2) —1]}
A 2( p2

with |A| rep!Laced by A and keeping only terms of order B/A we obtain:

Apart from iB = B(S)) thisexpression agrees with B[J(J + 1)—92].

Case (b)
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1 7
Epn,, = 5A* B[J(J +1) ‘ZJ

1 1
En,, = —3A* B[J(J +1)+ ZJ

For apure Hund' s case (b) A = 0. With thisvalue of A we obtain
c - [B[(J +1/2)(J+3/2)-1]
B[(J-1/2)(J+1/2)-1]

These expressions are consistent with BN(N+1) for N = J+1/2 .

The basis set consisting of functions | ASNJ> isalso quite convenient to handle °I1 atesin
intermediate coupling. This set corresponds to case (b), while the one we have used is clearly
an (a) set. It is aso interesting to note that molecular energies follow approximately case (b),
not only when BJ » |AA| but also when A/B = 4. his quantity is a measure of the coupling
to the internuclear axis. Generally A(A—4B) has the same value for A/B = x and just
A/B = 4—x.When x> 4 there are two possible values of A (one positive and one negative)
which give terms with the same separations. This correspondsto regular (A > 0) and inverted
(A< 0) doublets.

In the figure is shown a correlation diagram between case (b) and case (a) both for regular and
inverted fine structure.

Light molecules(large B, small A) approach case (b) already at |low J-values, heavier molecules
are closer to case (4). OH radical is agood example of this situation.

52 —4m8M8M8 —— _5/2
, 21(b) ,
T13/5(a) I145(a)
] 712 — 32
5/2 Uo
72 — 512 _ T2
3/2
3/2
2 52 ——— _ 52 2
My(d) / I My(8)
32 —478M8 — _ 32
mw— 7k F1
J J
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