New constraint on cosmological variation of the proton-to-electron mass ratio from Q0528-250 Julian A. King $^{1,3}*$, Michael T. Murphy 2† , Wim Ubachs 3‡ , John K. Webb 1§ . 1 School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia Accepted for publication, 17 July 2011 ### APPENDIX A: VOIGT PROFILE FITS Online only: Figures A1 through A14 show our Voigt profile model for the z=2.811 absorber toward Q0528-250 and the surrounding Lyman- α forest regions, indicating both the positions of the H₂/HD components as well as the H_I components used to fit the surrounding Lyman- α forest. ²Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Victoria, 3122, Australia ³Department of Physics and Astronomy, LaserLaB, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands ## 2 J. A. King et al. Figure A1. H_2 /HD fit for the z=2.811 absorber toward Q0528-250 (part 1). The vertical axis shows normalised flux. The model fitted to the spectrum is shown in green. Red tick marks indicate the position of H_2 /HD components, whilst blue tick marks indicate the position of blending transitions (presumed to be Lyman- α). Normalised residuals (i.e. [data - model]/error) are plotted above the spectrum between the orange bands, which represent $\pm 1\sigma$. Labels for the H_2 transitions are plotted below the data. Figure A2. H_2 /HD fit for the z=2.811 absorber toward Q0528-250 (part 2). The vertical axis shows normalised flux. The model fitted to the spectrum is shown in green. Red tick marks indicate the position of H_2 /HD components, whilst blue tick marks indicate the position of blending transitions (presumed to be Lyman- α). Normalised residuals (i.e. [data - model]/error) are plotted above the spectrum between the orange bands, which represent $\pm 1\sigma$. Labels for the H_2 transitions are plotted below the data. ## 4 J. A. King et al. Figure A3. H_2/HD fit for the z=2.811 absorber toward Q0528-250 (part 3). The vertical axis shows normalised flux. The model fitted to the spectrum is shown in green. Red tick marks indicate the position of H_2/HD components, whilst blue tick marks indicate the position of blending transitions (presumed to be Lyman- α). Normalised residuals (i.e. [data - model]/error) are plotted above the spectrum between the orange bands, which represent $\pm 1\sigma$. Labels for the H_2 transitions are plotted below the data. Figure A4. H_2 /HD fit for the z=2.811 absorber toward Q0528-250 (part 4). The vertical axis shows normalised flux. The model fitted to the spectrum is shown in green. Red tick marks indicate the position of H_2 /HD components, whilst blue tick marks indicate the position of blending transitions (presumed to be Lyman- α). Normalised residuals (i.e. [data - model]/error) are plotted above the spectrum between the orange bands, which represent $\pm 1\sigma$. Labels for the H_2 transitions are plotted below the data. ## 6 J. A. King et al. Figure A5. H_2 /HD fit for the z=2.811 absorber toward Q0528-250 (part 5). The vertical axis shows normalised flux. The model fitted to the spectrum is shown in green. Red tick marks indicate the position of H_2 /HD components, whilst blue tick marks indicate the position of blending transitions (presumed to be Lyman- α). Normalised residuals (i.e. [data - model]/error) are plotted above the spectrum between the orange bands, which represent $\pm 1\sigma$. Labels for the H_2 transitions are plotted below the data. Figure A6. H_2 /HD fit for the z=2.811 absorber toward Q0528-250 (part 6). The vertical axis shows normalised flux. The model fitted to the spectrum is shown in green. Red tick marks indicate the position of H_2 /HD components, whilst blue tick marks indicate the position of blending transitions (presumed to be Lyman- α). Normalised residuals (i.e. [data - model]/error) are plotted above the spectrum between the orange bands, which represent $\pm 1\sigma$. Labels for the H_2 transitions are plotted below the data. Figure A7. H_2 /HD fit for the z=2.811 absorber toward Q0528-250 (part 7). The vertical axis shows normalised flux. The model fitted to the spectrum is shown in green. Red tick marks indicate the position of H_2 /HD components, whilst blue tick marks indicate the position of blending transitions (presumed to be Lyman- α). Normalised residuals (i.e. [data - model]/error) are plotted above the spectrum between the orange bands, which represent $\pm 1\sigma$. Labels for the H_2 transitions are plotted below the data. Figure A8. H_2 /HD fit for the z=2.811 absorber toward Q0528-250 (part 8). The vertical axis shows normalised flux. The model fitted to the spectrum is shown in green. Red tick marks indicate the position of H_2 /HD components, whilst blue tick marks indicate the position of blending transitions (presumed to be Lyman- α). Normalised residuals (i.e. [data - model]/error) are plotted above the spectrum between the orange bands, which represent $\pm 1\sigma$. Labels for the H_2 transitions are plotted below the data. Figure A9. H_2 /HD fit for the z=2.811 absorber toward Q0528-250 (part 9). The vertical axis shows normalised flux. The model fitted to the spectrum is shown in green. Red tick marks indicate the position of H_2 /HD components, whilst blue tick marks indicate the position of blending transitions (presumed to be Lyman- α). Normalised residuals (i.e. [data - model]/error) are plotted above the spectrum between the orange bands, which represent $\pm 1\sigma$. Labels for the H_2 transitions are plotted below the data. Figure A10. $\rm H_2/HD$ fit for the z=2.811 absorber toward Q0528-250 (part 10). The vertical axis shows normalised flux. The model fitted to the spectrum is shown in green. Red tick marks indicate the position of $\rm H_2/HD$ components, whilst blue tick marks indicate the position of blending transitions (presumed to be Lyman- α). Normalised residuals (i.e. [data - model]/error) are plotted above the spectrum between the orange bands, which represent $\pm 1\sigma$. Labels for the $\rm H_2$ transitions are plotted below the data. Figure A11. H_2/HD fit for the z=2.811 absorber toward Q0528-250 (part 11). The vertical axis shows normalised flux. The model fitted to the spectrum is shown in green. Red tick marks indicate the position of H_2/HD components, whilst blue tick marks indicate the position of blending transitions (presumed to be Lyman- α). Normalised residuals (i.e. [data - model]/error) are plotted above the spectrum between the orange bands, which represent $\pm 1\sigma$. Labels for the H_2 transitions are plotted below the data. Figure A12. $\rm H_2/HD$ fit for the z=2.811 absorber toward Q0528-250 (part 12). The vertical axis shows normalised flux. The model fitted to the spectrum is shown in green. Red tick marks indicate the position of $\rm H_2/HD$ components, whilst blue tick marks indicate the position of blending transitions (presumed to be Lyman- α). Normalised residuals (i.e. [data - model]/error) are plotted above the spectrum between the orange bands, which represent $\pm 1\sigma$. Labels for the $\rm H_2$ transitions are plotted below the data. Figure A13. $\rm H_2/HD$ fit for the z=2.811 absorber toward Q0528-250 (part 13). The vertical axis shows normalised flux. The model fitted to the spectrum is shown in green. Red tick marks indicate the position of $\rm H_2/HD$ components, whilst blue tick marks indicate the position of blending transitions (presumed to be Lyman- α). Normalised residuals (i.e. [data - model]/error) are plotted above the spectrum between the orange bands, which represent $\pm 1\sigma$. Labels for the $\rm H_2$ transitions are plotted below the data. Figure A14. $\rm H_2/HD$ fit for the z=2.811 absorber toward Q0528-250 (part 14). The vertical axis shows normalised flux. The model fitted to the spectrum is shown in green. Red tick marks indicate the position of $\rm H_2/HD$ components, whilst blue tick marks indicate the position of blending transitions (presumed to be Lyman- α). Normalised residuals (i.e. [data - model]/error) are plotted above the spectrum between the orange bands, which represent $\pm 1\sigma$. Labels for the $\rm H_2$ transitions are plotted below the data.