# Limits on a gravitational field dependence of the proton-electron mass ratio from H<sub>2</sub> in white dwarf stars\*

Julija Bagdonaite,<sup>1</sup> Edcel John Salumbides,<sup>1,2</sup> Simon P. Preval,<sup>3</sup> Martin A. Barstow,<sup>3</sup> John D. Barrow,<sup>4</sup> Michael T. Murphy,<sup>5</sup> and Wim Ubachs<sup>1</sup>

- <sup>1</sup>Department of Physics and Astronomy and LaserLaB, VU University, De Boelelaan 1081, 1081HV Amsterdam
- Department of Physics, University of San Carlos, Cebu City 6000, Philippines
- Department of Physics and Astronomy, University of Leicester, University Road, Leicester LEI 7RH, United Kingdom
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
- <sup>5</sup>Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne, Victoria 3122, Australia







#### Motivation

- Test of Einstein equivalence principle (EEP) "any local non-gravitational measurement of a freely-falling laboratory is independent of the velocity of the laboratory and its location in spacetime"
- EEP implies that fundamental constants do not couple to gravity and do not vary over spacetime
- Modern theories (e.g. String, Loop Quantum Gravity) predict violation of EEP
- Guideposts on Higgs field coupling to gravity?

# Sensitivity coefficients to

$$K_i = \frac{d \ln \lambda_i}{d \ln \mu} = -\frac{\mu}{E_B - E_X} \left( \frac{dE_B}{d\mu} - \frac{dE_X}{d\mu} \right)$$



 $K_i$  for strong bands in WD spectra, B(0) - X(3) and B(0) - X(4). These are more sensitive than some bands (e.g. B(4)-X(0)) observed in quasar

# Comparison ab-initio vs. semi-empirical

 $K_i$  were calculated using two methods

- Ab initio: varied  $\mu$  in Schroedinger equation to obtain  $\frac{dE}{d\mu}$
- Semi-empirical:  $\frac{dE}{du}$  extracted from empirical fitting of  $\frac{dE}{dv}$ ,  $\frac{dE}{dJ}$



#### $K_i$ database: $H_2 B - X$



The extensive  $K_i$  range and the number of transitions result in a robust analysis of WD spectra. (datapoint size: line intensity)

### Phenomenological $\mu$ -coupling to gravity



- WD gravitational potential  $\phi_{\rm WD} = \frac{GM_{\rm WD}}{R_{\rm WD}c^2} \sim 2 \times 10^{-4} = 2 \times 10^4 \phi_{\rm earth}$
- ullet  $\mu$ -coupling to differential potential  $\Delta \phi = \phi_{
  m WD} \phi_{earth}$  may be

$$\frac{\Delta \mu}{m} = k_{\mu}^{(1)} \Delta \phi + k_{\mu}^{(2)} (\Delta \phi)^2$$

• leading to lowest-order constraints:

$$|k_{\mu}^{(1)}| < 0.2$$
  $|k_{\mu}^{(2)}| < 1 \times 10^3$ 

# Comparison to pure lab constraints





- Earth's elliptical orbit results in  $\Delta \phi_{\rm earth} = 3 imes 10^{-10}$
- $\Delta\mu/\mu < 10^{-13}$  from [5] result in coupling constraints:

 $|k_{\mu}^{(1)}| < 4 \times 10^{-4} \quad |k_{\mu}^{(2)}| < 1 \times 10^{6}$ 

#### White dwarf stars





- Electron-degenerate after gravitational collapse
- Mostly made up of carbon and oxygen (may have diamond cores)
- About the size of the earth with about the mass of our sun
- Surface gravity about 10,000 times on earth's surface

### Astronomical spectra



- From Cosmic Origins Spectrograph of the Hubble Space Telescope
- Discovery of H<sub>2</sub> in photosphere by Xu et al. (2013) [1]
- $H_2$  lines at  $T\sim 13,000$  K in three stars

## Analysis of WD spectra



A global value for  $\frac{\Delta\mu}{\mu}$  is obtained after fitting H<sub>2</sub> features, in the 1298 - 1444 Å range, using the relation:

$$\frac{\lambda_i^{\text{WD}}}{\lambda_i^0} = (1 + z_{\text{WD}}) \left( 1 + \frac{\Delta \mu}{\mu} K_i \right)$$

# Fitting results

| Parameter                          | GD133                           | GD29-38                         |
|------------------------------------|---------------------------------|---------------------------------|
| $\log N_{ m column}  [ m cm^{-2}]$ | $15.849 \pm 0.007$              | $15.491 \pm 0.005$              |
| T[K]                               | $11800 \pm 450$                 | $14500 \pm 300$                 |
| $b[{ m km/s}]$                     | $14.55 \pm 0.58$                | $18.65 \pm 0.42$                |
| z                                  | 0.0001820(10)                   | 0.0001360(8)                    |
| $\Delta \mu/\mu$                   | $(-2.7 \pm 4.7) \times 10^{-5}$ | $(-5.8 \pm 3.8) \times 10^{-5}$ |
| $\phi_{	ext{WD}}$                  | $1.2 \times 10^{-4}$            | $1.9 \times 10^{-4}$            |

### Check on systematics





- collision shift estimated to be small
- gravitational redshift also negligib
- effect of temporal intensity pulsations tested
- Stark and Zeeman shifts expected to be low



#### This approach

requires three important ingredients:

- Accurate white dwarf spectra
- Accurate laboratory spectra
- Transition sensitivity coefficients to  $\Delta \mu / \mu$

# H<sub>2</sub> potential



- Mostly Lyman  $(B^1\Sigma_u^+ X^1\Sigma_g^+)$  transitions observed in WD
- Weaker Werner  $(C^1\Pi_u X^1\Sigma_g^+)$  transitions tentatively identified
- Transitions from vibrationally and rotationally excited levels in the ground electronic state X

# Lab spectra: $\lambda_i^0$ database



- Low J lines:  $10^{-8}$  uncertainty for laser measurements [2, 3]
- High J lines:  $10^{-6}$  uncertainty level [2, 3, 4]

#### Thermal population

- $T \sim 13,000$  K: substantial population at v = 4; peak at  $J \sim 9$
- Ortho-para intensity ratio  $(g_n)$  also holds

$$\sum_{v=0}^{0.025} \sum_{J=0}^{0.025} g_n(2J+1)e^{\frac{J-v}{kT}}$$

$$0.015$$

$$0.005$$

$$0.000$$

$$0.005$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

### Line intensities

Intensity  $I_i$  depends on the population  $P_{v'',J''}(T)$  for a temperature T, transition oscillator strengths  $f^{B-X}$ , and number of H<sub>2</sub> molecules  $N_{cc}$ 

$$I_i = N_{\text{column}} f_{v',v'',J',J''}^{BX} P_{v'',J''}(T)$$

### Conclusions

- Identification of more than a hundred Lyman transitions in analysis of WD spectra
- Calculation of sensitivity coefficients
- Comparison of white dwarf and lab spectra yield  $|\Delta\mu/\mu| < 5 imes 10^{-5}$
- Limit on  $\Delta \mu / \mu$  from white dwarf spectra more constraining for higher-order coupling to gravity

# References