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Studying energy transfer in interactions between atom-molecule and molecule-

molecule partners on the scale of individual collisions is vital to our understanding 

and control of molecular reaction dynamical processes [1-3]. With the enhancement 

of resolution in crossed-beam experiments, accompanied by the improvement in 

algorithms and computer technology, it has become possible to understand the 

chemical reactions at an exquisite level of detail. We can precisely control the 

conditions on both the reactants and products, such as the velocities, individual 

quantum state, the orientations and alignment of the colliding molecules [4, 5]. 

Over the past years, a growing interest has arisen in the field of rotationally 

inelastic scattering, in which the collisional or translational energy is transferred to 

the internal rotational energy in the scattered products. Cold molecular collisions has 

become a hot topic in present day molecular physics [6-11]. In the cold regime 

(temperatures ranging from a few Kelvins to a few milliKelvins), quantum effects 

become important, such as tunneling and scattering resonances. These effects are 

very sensitive to details of the interaction potential. Recently, the study of 

bimolecular collisions at the full quantum-state-resolved level has become possible 

[12, 13]. Contrary to atomic targets, the molecular collision partner possesses 

internal degrees of freedom, and both collision partners can become rotationally 

excited, thus rendering the scattering problem more challenging. The full product-

pair correlation of rotational excitation in both collision partners may be revealed 

now, and good agreement with theoretical calculations can be attained [14-16]. 

Moreover, the study of stereodynamics, involving steric effects, vector properties of 

molecules, collision-induced molecular orientation, is at the forefront of research 

[17-19]. These angle-dependent properties provide valuable information about how 

the molecular interactions govern the molecular collision dynamics. 

From the theoretical point of view, in order to understand the mechanism of 

molecular collisions, one needs to undertake two subsequent steps. The first one is 
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to construct potential energy surfaces (PESs) [20]. Those can be calculated via ab 

initio quantum calculations, i.e., compute the electronic structure in different 

geometries of the molecules by solving the electronic Schrӧdinger equation. The 

gradient of the surface at a given point quantifies the forces acting on the atoms of 

the reacting system and further determine how these atoms proceed over these 

surfaces. Potential energy surfaces thus form a key ingredient for understanding the 

molecular reaction dynamics.  

The second step is to carry out the scattering calculations, which are based on 

the potential energy landscape. One of the most important aspects describing the 

collision event is the fully quantum-state-resolved inelastic scattering cross sections. 

Computing the integral cross sections (i.e., the collision probabilities as function of 

collision energy), differential cross sections (i.e., the angular distributions of the 

scattering products) and rate coefficients (i.e., the rates of chemical reactions over a 

range of temperatures) have long been major targets of theoretical chemistry. Such 

results can be used to predict or explain the phenomena probed by the measurements, 

and further offer the most detailed scattering information to help understand the 

mechanism of microscopic molecular dynamics [21].  

Several theoretical methods can be used to predict the outcome of the collision 

event. The most accurate method is the exact quantum mechanical (QM) treatment, 

which contains all available information pertaining to the scattering process. One 

needs to expand the scattering wave function as a series of partial waves, which are 

the wave functions corresponding to different values of the orbital angular 

momentum l. However, this method requires to solve large sets of coupled 

differential equations, thus requiring major computational effort. The recently 

developed Quasi-Quantum Treatment (QQT) method aims to simplify and 

approximate the exact QM treatment [22, 23]. It employs a Feynman path integral 

method that exploits the path length differences originating from the different 

orientations of an anisotropic molecule. As a result, the QQT method offers a 

physically compelling framework, while greatly reducing the calculation resources.  

This thesis 

In this thesis, we will describe scattering calculations of rotationally inelastic 

collisions of atom-molecule and molecule-molecule collision partners both by QQT 

and by exact QM methods. Potential energy surfaces are taken from the literature.  

We will firstly study rotationally inelastic scattering of NO-He by the quasi-



 

 

3 
 

quantum treatment (QQT) method. The QQT method has proven to be a good 

approximation for the treatment of several collision systems, such as NO-He [22, 

24], NO-Ar [25, 26], NO-D2 [27], and it has successfully interpreted steric 

asymmetry and parity propensity [22]. Up till now, all the transitions of NO-rare gas 

system were limited to spin-orbit state conserving transitions. Moreover the QQT 

method approximated the interaction potential by a hard-shell contour, which 

corresponds to the collision energy. This causes the QQT method to be rather 

insensitive to the soft part of the PESs. Our aim is to extend and modify the QQT 

method, in order to widen the scope of application and impact of the QQT method. 

The collision of the NO molecule onto a He atom is particularly interesting, due to 

the unpaired electron in the open-shell NO molecule. This allows for energy transfer 

into the excited rotational levels of the NO upper spin-orbit state. Moreover such a 

collision may also alter its Λ-doublet and hyperfine states. The NO - rare gas atom 

collision system is a benchmark for what happens in a molecular collision involving 

more than one Born-Oppenheimer potential energy surface.  

In addition, we study H2-O2 molecular collisions by full quantum close-

coupling scattering calculations. Both the H2 and O2 molecules will be rotationally 

excited. Unlike the previous study by Kalugina et al. [28], we will focus on the para-

ortho H2 conversion induced by collision with the paramagnetic O2 molecules. This 

conversion is caused by the very weak coupling between the electron spin of O2 and 

the spins of the nuclei in H2. The cross sections and para-ortho H2 conversion rate 

coefficients by H2-O2 collisions will be calculated. 

Outline: 

In chapter 2, the QQT theory is extended to the classically forbidden part which 

yields QQT differential cross sections (DCS) similarly to the exact QM DCSs. Based 

on QQT theory, a scaling rule for the collision energy dependence of DCSs has been 

discovered.  

In chapter 3, we modify the QQT hard shell potential, which promises a simple 

tool to explore the softness of the repulsive part of the anisotropic atom-molecule 

potential.  

In chapter 4, we extend QQT to spin-orbit state conserving and changing 

transitions in the mixed Hund’s case basis, in which Hund’s case (a) and case (b) are 

mixed together.  

In chapter 5, the para-ortho H2 conversion rates, induced by collision with O2, 

are calculated from full quantum theory.  

A summary and future prospects of this work are given in chapter 6.  
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The quasi-quantum treatment (QQT) (Gijsbertsen et al., JACS 2006, 128, 8777) 

provides a physically compelling framework for the evaluation of rotationally 

inelastic scattering, including the differential cross sections (DCS). In this work the 

QQT framework is extended to treat the DCS in the classically forbidden region as 

well as the classically allowed region. Most importantly, the QQT is applied to the 

collision energy dependence of the angular distributions of these DCSs. This leads 

to an analytical formalism that reveals a scaling relationship between the DCS 

calculated at a particular collision energy and the DCS at other collision energies. 

This scaling is shown to be exact for QM calculated or experimental DCSs if the 

magnitude of the (kinematic apse) frame underlying scattering amplitude depends 

solely on the projection of the incoming momentum vector onto the kinematic apse 

vector. The QM DCSs of the NO(X)-He collision system were found to obey this 

scaling law nearly perfectly for energies above 63 meV. The mathematical derivation 

is accompanied by mechanistic description of the Feynman paths that contribute to 

the scattering amplitude in the classically allowed and forbidden regions, and the 

nature of the momentum transfer during the collision process. This scaling 

relationship highlights the nature of (and limits to) the information that is obtainable 

from the collision-energy dependence of the DCS, and allows a description of the 

relevant angular range of the DCSs that embodies this information. 

2 
 

2 
2. A general scaling rule for the collision energy 

dependence of a rotationally inelastic differential 

Cross section and its application to NO(X) + He 
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2.1 Introduction 

Rotationally inelastic scattering is one of the fundamental collision-induced energy 

transfer processes that underlie intermolecular energy flow in chemically reacting 

systems such as combustion, astrochemistry, atmospheric and ultra-cold chemistry. 

Because of developments in experimental techniques, such as velocity mapped ion 

imaging [29, 30], explorations of the quantum state-to-state resolved rotationally 

inelastic Differential Cross-Sections (DCSs) have become possible [25, 31-39]. 

Experimental studies [40-42] exploring the collision-energy dependence of the 

quantum state-to-state resolved rotationally inelastic integral cross-sections (ICSs) 

upon the collision energy have recently been reported, and may be expected to soon 

extend to measurement of the associated DCSs.  

Comparison between theoretical and experimental scattering cross sections is 

commonly employed as a test of the accuracy of the potential energy surface. For 

example, the agreement between the experimental and theoretical fully quantum 

state resolved DCSs at collision energies of around 500 cm-1 has been demonstrated 

to be very good for NO(X) + He [33, 43] and nearly perfect [25, 44, 45] for NO(X) 

+ Ar. Nevertheless, a combined theoretical and experimental study [46] of the 

depolarization rate of rotationally quantum state selected NO molecules in collisions 

within a thermal bath of Ar atoms (T=298K) yielded experimental depolarization 

rates that differed significantly from their theoretical counterparts. Interestingly, 

these calculations were performed using the same high quality ab initio PES’s 

employed to predict the NO(X)-Ar DCSs, which were found to be in excellent 

agreement with experimental measurements. Changing the initial collision energy of 

a rotationally inelastic scattering process accesses different areas of the potential 

energy surface, and also alters the angular dependence of the DCS by purely 

kinematic effects.  

Early studies [47, 48] explored the feasibility of a scaling law describing the 

temperature dependence of the thermally averaged rate constants for rotational 

energy transfer in collisions between an electronically excited Na2*(A 1Σ) molecule 

and a rare gas atom. These led to a scaling law based on the energy corrected sudden 

approximation in combination with the assumption of a power gap law, which 

required only 3 parameters to a fit all rotational energy transfer rate constants for a 

given target gas to within 7%-12% deviations. However, a disquieting feature of 

these scaling laws was the lack of a simple theoretical justification [49]. 

In this chapter, we show that the quasi-quantum treatment (QQT) formalism [22, 
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24, 27], previously introduced as a physically intuitive simplification of exact 

quantum scattering, reveals a new collision-energy scaling relationship, and we use 

the rotationally inelastic quantum state resolved DCSs associated with the NO(X)-

He collision system as a case study to explore that relationship. The NO(X)-He 

system is especially interesting, as the electronic structure allows the investigation 

of rotational energy transfer among hyperfine states, Λ-doublet states and spin-orbit 

states. Furthermore, the collision dynamics of the scattering of an NO molecule from 

a rare gas atom is an experimental benchmark and paradigm for molecular collisions 

involving more than one Born-Oppenheimer potential energy surface. 

The collision-energy scaling procedure will be demonstrated using rotationally 

inelastic DCSs obtained both from full close-coupled quantum mechanical (QM) 

calculations, as well as from QQT. Collision energies of 𝐸col
L  =63 meV and 

𝐸col
H =147 meV, corresponding to separate experimental measurements [33, 50], will 

be considered. The QM method represents the current state of the art in scattering 

calculations, while the QQT method can be expressed in a more compact, analytical 

form, yielding additional insight into the scattering problem. Additionally, the 

extension of the QQT into the classically forbidden angular region of the DCS will 

be presented, allowing a more complete comparison to be conducted with the 

corresponding QM data. 

The present DCS scaling procedure applies rigidly when the magnitude of the 

scattering amplitude depends only on the projection of the incoming momentum 

vector k on the direction of the kinematic apse vector 

 ( )
     rel rela v v k k  (2.1) 

here k and k’ denote the relative wave-vectors of the collision partners before and 

after the collision respectively. This assumption is shared by the QQT on a hard shell 

PES, and so the scaling procedure can be rigorously applied in that instance. In the 

more general QM calculations, the interaction potential may be softer, even 

containing attractive regions; but in experimental and theoretical studies [25, 31-43, 

45, 51, 52], a strong propensity to conserve the projection quantum number ma of 

the rotational molecular wave function onto a is found in nearly all cases.  

By definition, the projection of k and k’ onto the plane perpendicular to a must 

remain conserved; hence 
||

k   and 
||

k   play only a minor role in classical 

rotationally inelastic collisions [22, 25, 33, 45, 50-52]. Differences between the 

measured collision-energy dependence and the predictions from the scaling 
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relationship can high light the repulsive or attractive character of parts of the 

interaction potential that govern the rotational energy transfer. 

The chapter is organized as follows. In Section 2.2.1 the coupled channel exact 

solution of the rotationally inelastic scattering problem is presented, with emphasis 

on the case of 
a am = m . In Section 2.2.2 the essentials of the QQT hard shell PES 

apse frame computational model are summarized, along with the equations needed 

to transform a rotationally inelastic (QM or QQT) DCS and relevant vector quantities 

from the scattering frame to the apse frame. In Section 2.2.3.1 the QQT is extended 

into the classically forbidden region of scattering angles. The results and 

consequences of such an extension for the NO(X)+He rotationally inelastic QQT 

DCSs are given in Section 2.2.3.2. The scaling formalism describing the collision 

energy dependence of the QQT DCS is provided in Section 2.2.4.1 and subsequently 

extended to the QM DCSs in Section 2.2.4.2. Section 2.2.4.3 describes in detail the 

scaling method of the QQT and QM DCSs from 𝐸col
H =147 meV to 𝐸col

L =63 meV for 

the 0 2j = j =  and 0 6j = j =  rotationally inelastic transitions. The results 

and discussion are presented throughout Section 2.3. Section 2.3.1 presents the 

collision energy scaled closed shell NO(X)–He DCSs and the agreement with the 

directly calculated DCSs is discussed. The corresponding open shell NO(X)–He 

DCSs are provided and discussed in Section 2.3.2. Our conclusions are presented in 

Section 2.4, where Section 2.4.1 focuses on the accuracy of the DCS collision-energy 

scaling relationship and Section 2.4.2 on the signature of the properties of the 

interaction potential that are visible the DCS. 

2.2 Method

2.2.1 Coupled-channel QM solution 

The solution of the rotationally inelastic scattering of a diatomic molecule colliding 

with an atom by the coupled channel quantum mechanical formalism is exact. As 

such, it represents the most accurate method by which calculations can be performed, 

and contains all available information pertaining to the scattering process. 

As a starting point, one expands the scattering wave function as a series of partial 

waves, which are the wave functions corresponding to different values of the orbital 

angular momentum l. The collision geometry is uniquely specified by the length, R, 

of the displacement vector, R, from the He atom to the center of mass (COM) of the 

NO molecule, and by the polar angle 
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 ˆ ˆarccos( )R  
NO

R r , (2.2) 

Where N̂O
r  is the unit vector pointing along the diatomic molecular axis from O to 

N. These two variables then jointly specify the potential interaction energy according 

to some function ( , )RV R  . 

In the case of the NO(X) molecule, the coupling of the various angular momenta 

are best described according to Hund’s case (a), at least for low values of the 

rotational quantum number. The coupling between Σ (the projection of the electronic 

spin of the unpaired electron onto the internuclear axis) and Λ (the projection of the 

electronic orbital angular momentum of the singly occupied π* orbital onto the 

internuclear axis) gives rise to two spin-orbit channels specified by the total 

electronic angular momentum projection quantum number Ω. Transitions within a 

single spin-orbit manifold (where the magnitude of Ω is conserved) can be shown to 

take place on an effective potential ),( RV Rsum  , while changes in spin-orbit state 

are mediated by the qualitatively different potential ( , )dif RV R   [53, 54]. 

The Schrödinger equation must then be solved for each value of J. This entails 

finding the solution to a large set of second order differential equations (describing 

the coupling between the initial and final quantum states) with respect to the atom-

diatom distance R. This coupling between a particular initial and final molecular 

state is provided by the R-dependent potential matrix element, 

, , , , ( , ) , , , ,J R Jj l f J M V R j l i J M  , here j denotes the initial rotational quantum 

number, l the orbital angular momentum quantum number of the scattering channel, 

and i (f) all other quantum numbers associated with the initial (final) state. Primed 

indices are associated with the outgoing final quantum state. 

From the R dependence of the radial wave functions, 
,

, , ( )J M

j l fU R  , obtained from 

these coupled equations, the TJ-matrix elements in the total angular momentum 

representation can then be calculated. These matrix elements, , , ; , ,

J

j l f j l iT    , then 

directly reflect the probability amplitudes associated with transitions from one 

quantum channel to another during the scattering process, allowing the subsequent 

calculation of any observable quantity of interest associated with the collision.  

In this case we are interested in obtaining the differential cross-sections, and so 

we first calculate the dimensionless scattering amplitude 
, , , ,

ˆ( )
j jj m f j m if   

k   where 

the scattering angle θ is defined by the relation ˆ ˆ cos  k k , and specifies the polar 
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angle of k  in the collision frame for which k  points along the Z axis [54, 55]. 

 

0.5

, , , ,

, ,

, , ; , , ,

ˆ( ) [(2 1) ] (2 1)
0

ˆ  ( )

j j

j j

l l

j m f j m i

l l J j j

J

j l f j l i l m m

j j j j

j J l
f i l J

m m

j J l
T Y

m m m m




  


   

 
     

 

  
 

   
 

k

k

. (2.3) 

The differential cross-section itself is then given by the square modulus of the 

dimensionless scattering amplitude averaged over jm  and summed over jm . 

 
, , 2

, , , ,2
,

d 1 1ˆ ˆ( ) | ( ) |
d 2 1 j j

j j

j f j i

j m f j m i

m m

f
k j



 

 

 


 

k k . (2.4) 

In the case that the projection of the rotational angular momentum of the NO 

molecule is conserved along some axis (e.g., this projection along â  must always 

be conserved for a hard-shell type of collision), the scattering amplitude becomes 

diagonal with respect to the am  projection quantum number along that axis, and 

may be written as 

 
, , , , , , , , , ,

,

ˆ ˆ( ) ( , ,0) ( , ,0) ( ) 
a a j a j a j j

j j

jj

j m f j m i m m m m j m f j m i

m m

f D D f   
 

    


  k k , (2.5) 

where the spherical angles β and α denote the direction of â  with respect to k̂ , 

 ˆˆarccos( )  a k . (2.6) 

While Eqs. (2.3) and (2.5) appear appealingly simple, it is typically a state of 

the art numerical effort to obtain the requisite TJ-matrix elements, 
J

iljfljT ,,;,,  . This 

is largely due to the very large set of coupled differential equations containing all the 

relevant scattering channels j, l, i, j’, l’, f, that must be solved for each value of J. 

Typically, one has to couple more than thousand channels more than a hundred times.  

2.2.2 QQT calculation 

In the quasi quantum treatment (QQT) of the rotationally inelastic scattering problem, 

the interaction potential is approximated by a smooth convex hard shell, whose 

radius SR  is given by the function ( )RSR . In the case of the NO(X)-He system, 

this shell is defined by the potential energy contour 

 ( , )sum R SV R E  , (2.7) 
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in which ES is set equal to the (most relevant) lower collision energy considered in 

this study, Ecol
L  =63 meV. The predominantly attractive nature of the ),( RV Rdif   

interaction potential that mediates changes in spin-orbit state does not facilitate the 

definition of an anisotropic shell in this fashion, so we treat the rotational energy 

tranfer as dominated by the more repulsive spin-orbit conserving interaction 

potential ( , )sum RV R   in all cases. To further simplify the calculations and 

associated expressions, the angular momentum eigenfunctions of the NO molecule 

are approximated by their closed-shell 1Σ ,j m  equivalents. 

In QQT one addresses the rotationally inelastic collision problem in the so-

called kinematic apse frame, in which the quantization axis points along the 

kinematic apse vector a . The magnitude of the outgoing wave vector is determined 

by the amount of translational energy 2 2 /2colE k    transferred into rotational 

excitation ( ) ( )ROT

j j ROT ROTE E j E j
   , 

 1 /ROT

j j colk k E E
    . (2.8) 

In contrast to the exact coupled channel QM solution of the collision problem 

(but very much in the spirit of the classical treatment of the rotationally inelastic 

collision problem by Evans et al. [56]). QQT suppresses the summation over the 

angular momentum J, l and l′ quantum numbers (Eq. (2.3)) and provides a transition 

moment type expression for the scattering amplitude in which the spherical 

scattering angles   and   are replaced by the spherical angles of the kinematic 

apse β and  . 

Other essential QQT variables include the polar angle a   of the diatomic 

inter-nuclear axis, N̂Or , with respect to the kinematic apse, and the azimuthal angle 

a  of the molecular plane (defined by the vectors N̂Or  and ( )RSR ) with respect 

to the scattering plane (defined by the vectors k̂  , ˆk   and â  ). Note that the 

cylindrical symmetry of the hard shell implies that N̂Or , ( )RSR  and â  must all 

reside in the same plane.  

In the case of a hard shell, as depicted in Figs. 2.1 and 2.2, momentum transfer 

is restricted to the direction perpendicular to the surface at which the collision takes 

place. Moreover, only the component of k parallel to n̂ , cosk k   , plays a role 
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in the transfer into rotational energy with ˆ ˆ( 1) p

 
  k k . Note that the index, p=1 or 

2 denotes whether the transition is classically allowed or forbidden, as discussed 

further in section 2.3.1. Because the component of k parallel to the surface, 

|| sink k  , cannot be used to transfer energy into the rotational degrees of freedom 

of the molecule (as depicted in Fig. 2.1) it must be conserved 
|| ||

k k . 

 

 

 

 

 

Figure 2.1: Representation of the classically allowed, p=1 (solid lines) and 

classically forbidden, p=2 (dashed lines) Feynman paths that contribute to the 

scattering amplitude within the QQT formalism. 
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  k

â
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Figure 2.2: Representation of the angles defining the QQT collision geometry (left 

hand panel), and the classically allowed, p=1 (upper right hand panel) and classically 

forbidden, p=2 (lower right hand panel) Feynman paths that contribute to the 

scattering amplitude within the QQT formalism. Although the illustrative 

NO(X)+He system is represented here, the formalism is general, and extends to any 

atom-diatom collision system. The labels associated with all vectors and angles are 

explained in the main text. 

 

The apse frame scattering amplitude, g(β), associated with a particular quantum 

state-to-state resolved scattering process, can now be expressed in terms of the 

overlap integral between a specific final |f   and initial | i    molecular state, 

together with the coupling between the two states. Within the QQT formalism, this 

coupling is expressed in terms of the phase shift, η, associated with each of the 

scattering paths within the integral over the full range of the spherical angles aγ  

and a . 

 
, , , ,

, , ,

( , ) ( ) , , | ( ; )

                                        exp[ ( ; , )] | , ,
a a

a a

QQT

j m f j m i a geom a

j f j i a a m m

g p C j m f g

i p j m i

   

   

  

 

  

 
, (2.9) 

N
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NOr̂
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where ( )C   is a normalization constant that will be discussed later. It should be 

noted that in the case of a collision with a hard shell, the projection of j onto the 

kinematic apse must remain unchanged, such that a am m   [22, 24, 27]. The phase 

shifts themselves are calculated via the expression [26] 

 
( ; , ) ( , ) ( )

[ ( 1) ] ( )cos( )

f i a a

p

S R R a

p p

k k R

    

  



 

  

    

S
a R

. (2.10) 

This phase shift is defined as the difference in phase between 1) the path of the 

incoming wave, k , which is scattered at the shell surface into a outgoing wave, k , 

and 2) the virtual reference path in which k  passes unhindered through the hard 

shell surface, intercepts the COM of the NO molecule and scatters into the outgoing 

wave k , and then passes without hindrance through the hard shell surface in the 

outwards direction. 

Each of these paths is weighted by the so-called molecule fixed geometric 

dimensionless scattering amplitude ( ; )geom ag    [24, 49]: 

 1 2

( ; )
( ; ) | cos | ( ) ( )

geom

a

geom a a a

a

d
g k k

d

  
      


  , (2.11) 

in which )(1 a   and )(2 a   denote the local radii of curvature of the 

cylindrically symmetric convex surface. This geometric differential cross-section, 

d ( ; )

d

geom

a

a

  


, is simply the area of the hard shell that presents itself to the incoming 

plane wave given the angles ( ; )a   defining its orientation. In our case of 0 j   

or 
1
2

 j   averaging over the spherical angles a  and a  of N̂Or  with respect 

to â  yields the NO orientation-averaged geometric DCS,  

 
1

1

d ( ; )d ( ) 1
cos

d 2 d

geomgeom

a

a

a a

d
   


 

  . (2.12) 

The normalization constant ( )C   in Eq. (2.9) is chosen such that the QQT DCSs 

recover the geometric (NO orientation averaged) DCS, 
d ( )

d

geom

a

 


, for all values of 

β, when summed over all final states. Hence the QQT scattering amplitude is 

normalized with respect to the incoming flux. [See section 2.2.4.3 for a comparison 

to the normalization of the QM case of Eq. (2.3)].  
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Equation (2.9) captures the fundamental methodology of QQT particularly 

clearly. The (apse frame) scattering amplitude can be seen to be given by a path 

integral considering the phases, η, of all possible paths associated with all possible 

relative orientations, ( ; )a  , of the hard shell with respect to the kinematic apse. 

Neither the QQT phase shift function, ( ; , )f i a p   , nor the geometric scattering 

amplitude, ( ; )geom ag   , depend on a , and so it suffices to conduct the integral 

solely over the polar angle a . 

 

2

0 0

2

1

2

2

1
2

0

| ( , ) |
( , )

2 1
                        ( ) | cos (cos )

4

                            ( ; )exp[ ( ; , )] |

QQT QQT

j j j j

a

a j a

geom a j a

d g p
p

d k

j
C d P

k

g i p

 




  

    

    









 




 . (2.13) 

As can be seen by comparing Eqs (2.3) and (2.9), the standard QM approach 

specifies the differential cross-section in terms of the collision frame spherical angles 

( , )  , while the QQT provides the DCSs in terms of the angles ( , )  , defined 

with respect to the kinematic apse. These spherical angles may be chosen such that 

  . In this case, the apse frame and collision frame DCSs are related to one other 

according to 

  
d d dcos ( )

, ( , )
d d dcos

f i f i

a

   
   

  

 
 . (2.14) 

This will turn out to be an important expression, because as well as allowing us 

to directly compare the QM and QQT DCSs, it also clearly shows the basis of the 

collision energy relationship that underlies the scaling formalism developed below. 

As a starting point to derive the Jacobian in Eq. (2.14), we consider the 

coordinate frame for which 

 ˆ ˆk Z , (2.15) 

 ˆ ˆ ˆsin cos   k X Z . (2.16) 

The kinematic apse can then be re-written in terms of these new coordinates as 

 ˆ ˆ[ sin ] [ cos ]k k k       a k k X Z . (2.17) 

Taking the dot product of the kinematic apse with the Z axis then yields the 

relation 
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2 2

cosˆˆcos
2 cos

k k

k kk k






 
  

  
a Z . (2.18) 

The Jacobian appearing in Eq. (2.14) can then be re-written as 

 
2

2 2 1.5

dcos ( ) [ cos ]

dcos [( ) 2 cos ]

k k k

k kk k

 

 

  


  
. (2.19) 

This expression can now be used in conjunction with Eq. (2.14) (or its inverse) 

to allow for facile transformation between the scattering frame and apse frame DCSs, 

allowing direct comparison between the QM and QQT calculations.  

2.2.3.1 Extension of QQT into the classically forbidden region 

As mentioned already in section 2.2.2, the index p specifies whether a particular 

scattering path, included in the path integral formulation of the scattering amplitude, 

is classically allowed or forbidden. All previous QQT derivations and calculations 

have focused on the classically allowed region of the DCS [3, 22, 24, 25, 27]. In this 

Section we shall extend the formalism to include the classically forbidden region. 

The scattering angle can be obtained by re-arrangement of Eq. (2.18) to give 

 

0.5
2

2 2arccos sin ( 1) | cos | 1 sinpk k

k k
   

      
                

. (2.20) 

The mathematical origin of the index p that indicates whether a particular path 

is classically allowed or forbidden now becomes clear –– it simply serves to 

distinguish between the two allowed roots of Eq. (2.20). In this study only the lowest 

initial rotational quantum state of j is considered, and so the magnitude of the 

outgoing wave-vector, k  , cannot be larger than that of the incoming wave-vector, 

k. In this case, Eq. (2.20) gives rise to two distinct scattering angles for each possible 

value of β; these shall be denoted 1  if p=1 (classically allowed) and 2  if p=2 

(classically forbidden). The classically allowed case p=1 corresponds to a scattering 

angle range of 1c    , while the angular range from 20 c    corresponds 

to the classically forbidden case p=2, where 

 cos /C k k  . (2.21) 

Further inspection of Eq. (2.20) indicates that to obtain a real value of θ, the 

range of β is restricted between -1 and some cut-off value c , defined such that 
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 21 cos cos 1 ( / )c k k        . (2.22) 

Note that Eq. (2.22) implies c     , while the collision frame DCS is 

provided for 0    . In the case of elastic scattering, the substitution of k k   

into Eqs. (2.21) and (2.22) yields values of cos 1C   and cos 0C  , implying 

a one to one relation between θ and β, such that 2     [24]. 

Previous QQT expressions [22, 24-27] were restricted to the classically allowed 

angular range 
1 C  . The rotationally inelastic QQT DCSs were found to decrease 

monotonically with decreasing scattering angles as 
1 C    and the relative 

magnitude of the DCS near 
1 C   was found to be very small. As such, for values 

of C   the DCSs were set to zero. However, the QM rotationally inelastic DCSs 

exhibit no such cutoff for C  . Indeed, the small scattering-angle region is an 

especially interesting area for comparison, because QQT neglects the diffractive 

contribution to the scattering process, due to the rigid relation imposed between θ 

and β. This difference can be expected to lead to features in the QM DCSs that 

remain absent in the corresponding QQT calculations. More significantly, the 

extension of the QQT DCS into the classically forbidden region plays a crucial role 

in the collision-energy scaling procedure developed here, as will be shown in the 

following section. 

Further insight into the collision dynamics can be obtained by considering the 

details of the hard shell collision Feynman paths that correspond to the p=1 and p=2 

cases. As has been argued in previous studies, a (non-diffractive) direct collision 

requires that the incoming wave-vector, k, impinges directly onto the
 
hard shell 

surface. This precondition implies that the component of k directed perpendicular to 

the surface, k , should point inwards towards the surface (i.e. the incoming plane 

wave is traveling towards the hard ellipsoid). This can be seen to be the case for all 

paths depicted in Fig. 2.1. The intuitive classically allowed path is then impulsively 

scattered from the hard shell surface such that 
k

 
makes a positive projection onto 

the kinematic apse. However, the classically forbidden path is distinctly less intuitive, 

and can be seen to pass through the hard shell surface, with 
k

 
making a negative 

projection onto the kinematic apse. 

Figure 2.2 depicts the classically allowed (panel b) and classically forbidden 

(panel c) pathways that contribute to the scattering process, along with the angles 



Chapter 2. A general scaling rule for collision energy dependence of DCS 

18 
 

specifying the collision geometry (panel a). In all panels the incoming wave-vector 

k, depicted as a horizontal green arrow, defines the Z-axis of the collision frame. The 

azimuthal angle a  (panel a of Fig. 2.2) does not influence the outcome of the 

scattering amplitude because of the cylindrical symmetry of ( )RSR . 

The same (arbitrary) choice of a  is used for all panels of Fig. 2.2, leading to 

identical impact positions, ( )RSR , depicted as a solid purple displacement vector 

with respect to the COM of the NO molecule. The spherical angles ( , )    and 

( , )   define the spatial directions of â  and k  with respect to k. The projections 

of k and k  onto the shell surface are indicated by a dashed purple line. 

As discussed previously, in panel b of Fig 2.2 (depicting the classically allowed 

path), 1,
k  must point outwards from the shell. Panel c depicts the corresponding 

classically forbidden path, in which the 2,
k   component of the outgoing 2

k  

wave-vector points inwards towards the shell. That this outcome should be Feynman 

path allowed can be rationalized by considering the limit in which the DCS is defined 

at an arbitrarily high level of scattering angle resolution.  

This implies that the Heisenberg uncertainty relation between scattering angle 

and classical impact parameter (or quantum mechanical partial wave) [56], 

automatically incorporated in the Schrödinger equation, permits any lateral 

displacement of the path of the 2
k   wave-vector with respect to the position at 

which the incoming k vector impinges upon the hard shell. This lateral displacement 

of the (dashed red) 2
k  wave-vector in Fig 2.2 its lower right panel is conducted 

such that the wave front (and therefore also the phase shift) of the (solid red) 

outgoing 2
k  wave-vector remains matched to that of the incoming k vector.  

2.2.3.2 Example Calculations  

To demonstrate the extension of the QQT DCSs into the classically forbidden region, 

the NO(X)+He rotationally inelastic DCSs for transitions from 0j    to 

1 12j    have been calculated for a collision energy of 𝐸col
L =63 meV. The DCSs 

associated with these transitions are displayed in Fig. 2.3, both in the apse frame 
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Figure 2.3: Differential cross sections for the scattering of NO(X)+He from the 

initial state j=0 to final rotational states j’=1-12, calculated using closed-shell QQT 

at a collision energy of 63 meV. The DCSs are displayed in both the collision frame 

(as a function of θ, with solid lines) and the apse frame (as a function of β, with 

dashed lines). The angular threshold at which the transition becomes classically 

forbidden is indicated with a dashed vertical line.  

 

(dashed lines) and in the collision frame (solid lines). It should be noted that the 

DCSs displayed here are plotted so that the horizontal axes are linear in cos . At a 

first glance, these two sets of DCSs, related to one another according to Eq. (2.14), 

appear qualitatively similar to one another. In all cases, the QQT DCSs lack the 

characteristic oscillatory structure arising from the diffractive effects that one would 

expect to find in the corresponding QM calculations. However, the magnitude of 

most collision frame DCSs was found to be about half that of the corresponding apse 

frame ones. These differences are due to the weighting factors associated with the 

polar angles β and θ. Since the two angles are constrained to within different ranges, 

so the weighting factors take different values. These corresponding values of cosβ 

are depicted along the upper horizontal axes in each panel.  
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The classically allowed range of cos  can be seen to run from -1 (at the right 

end of each plot) to cosβ = cosβC (near the left end of each plot), where the classically 

allowed boundary is illustrated with a vertical dotted line. The classically forbidden 

region is then located to the left of this line, although it is too small to be visualized 

in the case of j′ =1. In accordance with Eq. (2.22), the classically forbidden region 

of
 
cosβ is found to increase with increasing j′. Most importantly, Fig. 2.3 shows that 

as a result of the formalisms developed here, the QQT DCSs can now be smoothly 

and continuously extended through this classically forbidden region.  

As follows from the relations expressed in Eqs. (2.18) and (2.20), a rigid 

correspondence between θ and β is presumed. The azimuthal symmetry of a DCS 

requires that its first derivative with respect to θ should be zero at θ = 0 and θ = π, or 

equivalently that it displays a stationary point at these values. This requirement is 

met by all the DCSs displayed in Fig. 2.3. In Appendices we show that all QM and 

QQT DCSs exhibit this stationary behavior in both the apse and collision frames. 

The QM collision frame DCSs must necessarily display such stationary behavior at 

θ = 0 or θ = π, by virtue of the fact that they can be written as a series of Legendre 

polynomials, all of which individually obey this requirement [56]. The apse and 

collision QQT DCSs at Ecol
L = 63 meV are also listed for θ = 0 and θ = π in Table 2.A 

of Appendices. 

2.2.4.1 Scaling formalism describing the dependence of the QQT DCSs on Ecoll 

The basis for the scaling formalism describing the energy dependence of the QQT 

DCSs lies in the transformation from the apse frame to the collision frame. As the 

collision energy increases, the mapping between the scattering angle θ and the apse 

angle β changes, so that a particular scattering angle corresponds to different regions 

of the apse frame DCS at different collision energies, as can be seen from Eqs. (2.18) 

and (2.20). The dependence of the phase shifts on the collision energy Ecol follows 

from 

 
( ; , ) cos 1 ( 1) 1 /

                     ( )cos( )

p ROT

f i a j j col

S R R a

p k E E

R

   

  

 
     
 

 
. (2.23) 

The phase shifts associated with a particular scattering angle, θ, calculated at 

two different collision energies, EH and EL, are related to one another according to a 

simple geometric relationship 
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Table 2.1: Numerical values of the closed-shell and open-shell QM NO(X)+He ICSs. 

Values are given both for the calculations performed directly at 147 meV and 63 

meV, also for the calculations scaled from 147 meV. The associated QM calibration 

factor (see text for details) is also given here. 

 

 

 ( ;cos , ) ( ;cos cos , )L

H

kL H

f i a L f i a H Lk
p p          . (2.24) 

Similarly a further, scalar dependence of the DCS on the collision energy is 

given by the collision energy scaling of the molecule fixed geometric scattering 

amplitude, which varies according to 

c-s QM
o-s QM

F1e → F1e
o-s QM

F1e → F1 f

△j

(meV)
(Å2) (Å2) (Å2) (Å2) (Å2) (Å2) (Å2) (Å2) (Å2)

1 0.62 1.888 1.822 2.94 0.69 1.002 0.969 1.446 0.64 2.161 1.866 2.758 0.63

2 1.66 5.200 4.509 6.48 0.62 3.121 2.684 3.943 0.63 0.679 0.623 1.043 0.72

3 3.11 2.225 1.993 3.235 0.70 0.883 0.806 1.327 0.71 1.289 1.000 1.808 0.78

4 4.98 2.805 2.202 3.637 0.71 1.514 1.161 2.088 0.77 0.602 0.550 1.027 0.80

5 7.26 2.214 1.967 3.228 0.70 0.676 0.613 1.111 0.78 0.900 0.456 0.937 0.88

6 9.95 1.885 0.999 1.769 0.76 0.944 0.475 0.975 0.88 0.523 0.347 0.747 0.92

7 13.06 2.126 1.477 2.644 0.77 0.538 0.356 0.736 0.89 0.606 0.180 0.416 0.99

8 16.59 1.257 0.461 0.870 0.81 0.584 0.160 0.368 0.99 0.476 0.105 0.248 1.01

9 20.53 2.093 0.646 1.31 0.87 0.446 0.103 0.223 0.93 0.249 0.046 0.118 1.09

10 24.89 0.483 0.165 0.348 0.90 0.227 0.030 0.074 1.05 0.355 0.012 0.025 0.89

11 29.66 1.848 0.156 0.362 1.00 0.290 0.014 0.019 0.57 0.117 0.006 0.017 1.17

12 34.84 0.230 0.034 0.080 1.00 0.078 0.002 0.004 0.85 0.153 0.003 0.003 0.57

o-s QM

F1e → F2e

o-s QM

F1e → F2 f

△j

(meV) (Å2) (Å2) (Å2) (Å2) (Å2) (Å2)

1 15.49 0.015 0.013 0.018 0.62 0.277 0.203 0.269 0.57

2 16.55 0.144 0.115 0.155 0.57 0.142 0.127 0.167 0.56

3 18.04 0.087 0.079 0.107 0.58 0.339 0.278 0.334 0.51

4 19.96 0.222 0.174 0.225 0.55 0.347 0.304 0.410 0.58

5 22.31 0.240 0.206 0.296 0.62 0.250 0.178 0.212 0.51

6 25.08 0.224 0.135 0.179 0.57 0.460 0.347 0.499 0.62

7 28.28 0.357 0.234 0.362 0.66 0.184 0.109 0.141 0.56

8 31.90 0.175 0.089 0.129 0.62 0.485 0.211 0.317 0.64

9 35.95 0.422 0.131 0.207 0.68 0.117 0.048 0.064 0.58

10 40.43 0.108 0.035 0.051 0.62 0.476 0.063 0.090 0.62

11 45.33 0.432 0.032 0.047 0.63 0.073 0.010 0.012 0.51

12 50.66 0.091 0.006 0.007 0.52 0.366 0.008 0.010 0.50

ROTE HE

dir HE

scale LE

dir QMCF HE

dir HE

scale LE

dir QMCF HE

dir HE

scale LE

dir QMCF

ROTE HE

dir HE

scale LE

dir QMCF HE

dir HE

scale LE

dir QMCF
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Upon combining these scaling factors, the collision energy dependence of the 

QQT DCSs follows from: 

 

; ; (cos cos , )(cos , ) L
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d k d
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Note that only the range cos 0L

H

k

Hk
    of 

; (cos , )QQT H

f i H

a

d p

d

 




 is scaled 

down to 

; (cos , )QQT L

f i L

a

d p

d

 




 . However, since the range of cos L   is 

0cos1  L , according to Eq. (2.26), cos H  should be stretched to fill this 

range by an additional factor of cos cosH

L

k

L Hk
  . These factors combine to give 

 
; ; 

, 

QQT L QQT H

f i QQT scale f iSF    (2.27), 

where 2

co( / ) /H L

QQT H L col lSF k k E E    is defined as the scaling factor and the 

incomplete ICS ; 

, 

QQT H

scale f i 
 denotes the scalable part of ; QQT H

f i 
 with 

 

;2 0
;

,
/

1

(cos , )
2  cos

L H

QQT H

f i HQQT H

scale f i H
k k

p a

d p
d

d

 
  










   . (2.28) 

It should be noted that the scaling relationship, as outlined here in the case of 

QQT, is exact only when the same hard shell surface is taken for both collision 

energies. 

2.2.4.2 Applying the scaling formalism to the QM DCSs 

As described in Sections 2.2.1 and 2.2.2, an important difference between the QM 

and QQT treatments of the scattering problem is that QM is formulated in the 

collision frame, in which the quantization axis, Z, points along the incoming wave-

vector, k  , while QQT is evaluated in the kinematic apse frame, for which the 

quantization axis, Za , points along the kinematic apse, a. In the collision frame, the 

state-to-state DCS is described by the spherical angles ( , ) 
  

which reflect the 

direction of k  with respect to k, whereas in the apse frame the direction of a with 

respect to the collision frame Z axis is given by the spherical angles ( , )  . The 
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azimuthal symmetry of the collision problem about the Z axis implies that the DCS 

is independent of   and  . Because k points directly along the Z axis we are thus 

free to set   . The corresponding collision frame and apse frame DCSs are then 

related to one another as described in Eq. (2.14). 

In the previous Section, it was shown that the collision energy scaling of the 

DCSs can be exactly applied to the QQT expressions for rotationally inelastic 

collisions. Now we will extend this application to include the collision energy scaling 

of the exact numerically calculated QM state-to-state resolved rotationally inelastic 

DCSs. As the scaling method has its motivation firmly within QQT, it is not 

automatically given that it will be applicable to the more general QM calculations. 

The key approximations for the scaling expression are the conservation of angular 

momentum projection on the kinematic apse, and the invariance of the interaction 

potential with collision energy. Any discrepancies between scaled and directly 

calculated (or measured) DCSs may yield valuable information on the scope and 

limitations of the approximations involved, while good agreement will instead 

validate the approximations as found below.  

The first step is the transformation of the QM DCS from the collision frame into 

the kinematic apse frame. Eqs. (2.17), (2.18), and (2.20), describe in detail the 

mathematical relations between the two reference frames, while Eqs. (2.14), and 

(2.19), describe the transformation itself. The second step in the procedure is the 

application of Eq. (2.26) to account for the collision energy scaling of the DCS 

within the kinematic apse frame. However to match the integrated amplitude of the 

numerically exact directly calculated 𝐸col 
L  DCS to that of the 𝐸col 

L  DCS obtained 

by scaling the 𝐸col
H  QM DCS, an additional calibration factor ),,( ijfjCFQM   

is needed. Finally the scaled apse frame DCS is transformed back into the collision 

frame, using the inverse of the procedure employed in the first step. 

2.2.4.3 Example calculations 

Very recently, accurate QM DCSs for the scattering of closed shell NO(X) molecules 

residing in the j = 0 level and open shell NO(X) molecules residing in the lower Λ-

doublet level of the rotational ground state j = 0.5 with He, at a collision energy of 

𝐸col
H =147 meV and of 𝐸col

L =63 meV were presented [57, 58]. As in other studies [22, 

24-27, 45, 57], rotational energy levels of NO(X) [59, 60] are employed that are 

spaced according to spectroscopic observations [59], which are in agreement with 

mixed Hund’s case eigenenergies of the NO angular momentum wave functions [60]. 
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Accordingly, in the case of integer j values the rotational energy transferred during 

a collision 
ROT

jjjE 0   was equalized to 1 1
1 12 2

, , 

ROT

j j F j F
E

   
   which refers to the 

mixed Hund’s case rotational energy level spacing between final and initial 

rotational states. The QM NO(X) closed shell rotationally inelastic scattering 

calculations were carried out on an ab initio NO(X)-He surface obtained by Kłos et 

al. [43]. These rotationally inelastic DCSs shall be used as a case study for the 

application of the QQT collision energy scaling method developed in this work, in 

which the quantum state-to-state resolved NO(X)-He DCSs will be scaled from 

𝐸col
H =147 meV to 𝐸col

L =63 meV. 

Figure 2.4 depicts the closed-shell QM NO(X)+He DCSs calculated for 

transitions from the initial state j = 0 to the final states 2j  , 6j  . Each vertical 

pair of panels refers to a discrete step in the collision energy scaling formalism as 

outlined in the preceding text. 

The QM (solid red lines) and QQT (dashed blue lines) scattering frame DCSs 

for the transitions from j=0 to j′=2 and j′=6 are depicted in the top row of Fig. 2.4. 

Note that the differences between the QM and QQT DCSs arise from 0am   

transitions in the kinematic apse frame, and from the neglect of diffractive 

contributions to the scattering amplitude in QQT. It should however be emphasised 

at this stage that any discrepancies between the QM and QQT DCSs do not affect in 

any way the validity of the scaling formalism derived here as it applies to either QM 

or QQT DCSs. A black dotted vertical line separates the classically forbidden 2p 

c   range from the classically allowed 1p  c   region. These panels show 

similar information to that displayed in Fig. 2.3. The second row of panels depict the 

kinematic apse frame DCSs after the transformation has been performed according 

to Eq (2.14). As such, the horizontal scale is now linear in cos  rather than linear 

in θ (as in the first row of panels). The classically allowed p = 1 contributions to the 

DCS are depicted as solid red curves and classically forbidden p = 2 contributions 

as solid green curves. Note the steep rise to infinity for cos cos c   at which 

cos cos c  . Eq. (2.19) shows that the inverse  

Jacobian 
d cos

d cos




 becomes infinity if c   but for all c   

d cos

d cos




 

remains finite and all QM apse frame DCSs show a smooth dependence upon β away 

from the unique singularity at c  . The dotted black vertical line denotes the  
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Figure 2.4: Illustration of the step-by-step process used to scale the closed-shell QM 

DCSs from a high collision energy EH  to a lower collision energy EL. The scattering 

of NO(X)+He from j = 0 to j’=2 and to j’=6 are considered as examples here. The 

various steps associated with each row of panels are described in the main text. 

 

lower limit to the range of values for which cos /H L Hk k    can contribute to the 

QQT apse frame collision energy scaled DCS and ICS, defined by Eqs. (2.26) and 

(2.28) respectively.  

The third row of panels shows the simple collision-energy scaling of the apse 

frame angle, β, given in Eq. (2.26) multiplied by an additional calibration factor 

CFQM (j’, f ← j , i) to retrieve the QM ICS calculated by Kƚos [57, 58] at 𝐸col
L =63 

cos H
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3 10
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meV. The application of the scaling relationship can be seen to effectively ‘stretch’ 

the region of the high collision energy DCS from 
kL
kH

≤ cosβH ≤ 0 to fill the entire 

(apse frame) angular range 1 cos 0    of the lower collision energy DCS. In 

addition to the predicted (𝐸col
L =63 meV) DCSs obtained from scaling the (𝐸col

H =147 

meV) data, given by dashed red (p=1) and dashed green (p=2) curves, the directly 

calculated closed shell QM DCSs at 𝐸col
L =63 meV (transformed from the collision 

frame to the apse frame) are given as solid black curves in the panels of the third row.  

It is important to note that in the second row of panels, 
; /QM H

scale ad d    is 

designated only within the range of cos   that is scalable from H
colE   to L

colE  ; 

/ cos 0L H Hk k    . Upon "stretching" from this limited range of cos H  to the 

full range, 1 cos 0L   , the angular dependence of the collision energy scaled 

DCS was found to be nearly identical to that of the directly calculated DCS, as shown 

in the third row of panels. All of the information pertaining to the sumV   PES 

contained within the lower collision energy DCS is concentrated into the reduced 

angular range / cos 0L H Hk k      of the higher collision energy DCS. The 

effectiveness of this scaling procedure implies that the DCS associated with a 

rotationally inelastic transition is determined solely by the component of the 

incoming wave vector that is directed along the a vector. 

The final row of panels then depicts the transformation back from the kinematic 

apse frame (now at the lower collision energy EL) to the collision frame, at which 

point the collision energy scaling procedure is complete. Again the scaled dashed red 

(p=1) and dashed green (p=2) collision frame QM DCS’s are depicted in this last 

row of panels together with the solid black curve of the exactly calculated DCSs for 

comparison.  

It should be noted at this stage that when the scaled and the directly calculated 

DCSs are compared with one another, a proportionality factor is applied to scale 

these DCSs such that both render an identical ICS. In the case of QQT this factor is 

given rigorously by the collision energy scaling factor co/H L

QQT col lSF E E , as derived 

above. This factor is multiplied by the j′-dependent ),,( ijfjCFQM   to yield an 

identical QM cross section 
QM

ijfj ,0,    for the collision-energy scaled and the 

exactly calculated DCS for each rotationally inelastic ijfj ,,   transition. The 

QM calibration factor ),,( ijfjCFQM   is introduced because flux normalization 
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of a particular quantum-state-resolved 
QM

ijfj ,,   assures that when one expands the 

incoming plane wave exp( ) | , ,ikZ i j m    in spherical waves, the total outgoing 

scattering angle-integrated flux of all | , ,f j m    states equals the incoming flux of 

the spherical wave expansion of the | , ,i j m   plane wave [3, 61] In the case of 

QQT the incoming plane exp( ) | , , aikZ i j m   is not expanded in spherical waves 

but is rather flux-normalized, as described in Section 2.2.2, by the introduction of 

the normalization constant ( )C   in Eq. (2.9), ensuring that at each β the geometric 

differential cross section equals the sum of the QQT elastic and inelastic apse-frame 

DCSs. In all QQT solutions of the collision problem, ( )C   was found to be close 

or equal to unity. In the QM case the elastic DCS is required always to be larger than 

the sum of inelastic DCSs, even when one ignores the diffractive forward scattered 

elastic DCS [3], whereas in QQT the contribution of the elastic DCS does not have 

to exceed the sum of inelastic DCSs. However the maximum allowed magnitude of 

the sum of the inelastic ICSs in the semi-classical limit is similar for QQT and QM 

in the case of a hard shell PES [3]. 

2.3. Results and Discussion

2.3.1 Collision-energy scaling of the closed-shell NO(X)+He DCSs 

Using the methodology outlined in the previous section, the DCSs for the scattering 

of NO(X)+He, calculated using the closed-shell QM formalism, were scaled from 

the collision energy of 147 meV to the lower collision energy of 63 meV. The 

comparison of these scaled calculations with those obtained directly from closed-

shell QM calculations at 63 meV is depicted in Fig. 2.5. At first glance, the agreement 

between the collision energy scaled DCSs and their directly calculated counterparts 

can be seen to be extremely good for all final quantum states and for the entire 

scattering angle range of the DCSs. Even the rapid oscillatory structures present in 

the forward scattered direction are correctly accounted for, being most accurately 

reproduced for 1j   and 2j   with values of 4.73C    and 8.21C   

respectively. These oscillations arise from diffraction interferences at the small 

scattering angle 35   region [62, 63], where a nearly proportional relation  
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Figure 2.5: Complete set of the closed-shell QM NO(X)+He DCSs from j=0 to j’=1-

12, scaled from a collision energy of 147 meV to 63 meV (dashed lines). Also shown 

are the corresponding DCSs calculated directly at 63 meV (solid lines). Insets in the 

first two panels show a detailed comparison at low scattering angles. The scattering 

angle at which each transition becomes classically forbidden is shown as a dashed 

vertical line. 

 

exists between θ and cos , as can be seen from Eq. (2.20). The angular separation 

between two neighboring peaks is inversely proportional to the wave vector, being 

given by / mkR     [64], where 06mR a   gives the location of the global 

minimum of the He-NO PES [58]. These peaks are reproduced to a lesser extent at 

3j   and 4j    DCSs. Although the classically forbidden p=2 scattering angle 

range 0 C    increases with j , it is just at this range that the DCSs of larger 

j  are found to be small. Consequently, the contribution of the classically forbidden 

part of the DCS to the ICS is minor for 4j  . The differences between the scaled 

and directly QM calculated DCSs become more significant around θ =180°. It is just 

at these high values of θ that the magnitude of the kinematic apse vector, a  , 

approaches its maximum allowed value,  k k . As can be seen from Eq. (2.10), 
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the QQT phase shift, ( ; , 1) ( , 1) ( )f i a ap p          Sa R , reaches its maximum 

sensitivity to a  around this region. In this scattering angle region the magnitude 

of a scaled QM DCS with respect to the directly calculated QM DCS is most 

sensitive for the precise form of the ( , )sum RV R  potential. 

The header of Table 2.1 lists ROTE  , HE

dir  , HE

scale  , LE

dir   and 
QMCF   for 

1 12j   . HE

dir  and LE

dir  denote respectively the directly QM calculated ICSs at 

147 and 63meV. The QQT scaled ICSs LE
scale  ( HL E

scaleQQT
E
scale SF    not shown in 

table 2.1) need to be multiplied by a calibration factor to result L LE E

dir QM scaleCF   . 

For 1j    0.69QMCF    turns out to be slightly larger than that for 2j   

0.62QMCF   . Note that 1QMCF    indicates that /H LE E

scale dir QQTSF   , which is 

expected for inelastic transitions that DCSs at 
HE  are more mostly brought about 

by the softer part of the PES compared to those at EL. For 2j   transition, QMCF  

gradually increases with j’ to about 1.0 for 11j   and 12j  . At these high j′-

values the hard shell features of the PES are apparently dominant both at 
HE  and 

LE  such that 
QQTSF  itself provides already the proper scaling factor to result LE

dir . 

Moreover, note that in table 2.1 both HE

dir  and LE

dir  become marginally small at 

ROTE  far from the kinematic limit. The magnitude of HE

dir  and LE

dir  relates to 

the strength of the various anisotropic terms of the intermolecular potential [25, 45, 

57, 58]. Besides the very minor differences between the absolute magnitude of the 

scaled DCSs and the directly QM calculated DCSs at strongly backwards scattering 

angles the overall high level of agreement of the angular distributions lends 

considerable support to the validity of the collision-energy DCS scaling relationship 

for the closed shell He-NO system. 

2.3.2 Collision-energy scaling of the open-shell NO(X)+He DCSs 

Figures 2.6 and 2.7 depict the directly calculated open-shell QM DCSs at 63 meV, 

together with those scaled from 𝐸col
H =147 meV to 𝐸col

L =63 meV for 1.5 12.5j   , 

with  1,,|
2
1

2
1 j   as the initial state and 1| , , 1j F      (Fig. 2.6) or 

1| , , 1j F      (Fig. 2.7) as final state. All are presented in a similar fashion as the 
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Figure 2.6: As for Fig. 2.5, but showing the open-shell spin-orbit conserving QM 

NO(X)+He DCSs transition from 0.5 1j    to 1.5 12.5 1j     , scaled from 

a collision energy of 147 meV to 63 meV. 

 

closed-shell DCSs (Fig. 2.5). The similarity among the two DCSs belonging to the 

same parity pair in the limit of Hund’s (a) follows directly from the structure of the 

coupled Schrödinger equation and is not restricted to a hard shell alike PES. In the 

open-shell QM rotationally inelastic He-NO scattering problem the ),( RV Rsum   

PES is coupled with ),( RV Rdif  . The exit channels of the former connect to spin-

orbit conserving and the latter spin-orbit changing channels. Also QQT predicts a 

close to similar angular recoil distributions for the n j  closed-shell QM DCSs to 

those in case of Hund’s case (a) for spin-orbit conserving parity pair DCSs with 

/ 2n j    . The similarity between the LE  QM DCSs scaled from the HE  by 

employing the QQT relationship of Eq. (2.26) and the QM DCSs calculated directly 

at LE  exactly for spin-orbit conserving rotational transitions displayed in Figs. 2.6 

and 2.7 is striking and holds also for their spin-orbit changing counterparts in Figs. 

2.8 and 2.9. This agreement provides strong evidence that the component of k 

perpendicularly to the apse a has only a minor influence on the rotationally inelastic 

dynamics of the He–NO (
1
2
, 1j   ) scattering at the collision energies between 

63 and 147 meV. 
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Figure 2.7: As for Fig. 2.5, but showing the open-shell spin-orbit conserving QM 

NO(X)+He DCSs transition from 0.5 1j     to 1.5 12.5 1j       , scaled 

from a collision energy of 147 meV to 63 meV. 

 

Table 2.1 provides an overview of the QQT collision energy scaling parameters 

of relevance to the DCS scaling process. In the case of open-shell QM spin-orbit 

conserving DCSs, the calibration factor rises from 0.63QMCF   at n = 2 smoothly 

up to close to unity at n = 8, as was the case for the closed-shell QM DCSs. At these 

quite high n-values, the hard shell features of the PES become apparently dominant 

both at HE   and LE  . Thereafter QMCF   exhibits a rather irregular dependence 

upon n. At n = 10 1QMCF  , which means that H LE E

scale QQT dirSF   . In this case the 

scalable part of the spin-orbit conserving ICS at HE  is appreciably more depleted 

by its larger opacity for spin-orbit changing transitions than that at LE  . 

Qualitatively this could be understood from the larger spin-orbit changing and 

smaller spin-orbit conserving opacity functions at HE  compared to those at LE  

[58]. 
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Figure 2.8: As for Fig. 2.5, but showing the open-shell spin-orbit changing QM 

NO(X)+He DCSs from 0.5 1j    to 1.5 12.5 1j     , scaled from a collision 

energy of 147 meV to 63 meV. 

 

It is well known [44, 65] that when both Λ-doublet components of the initial 

1
2

j   rotational state are equally populated there is a propensity for molecules such 

as NO with 1  electron configuration, to preferentially populate the A -symmetry 

Λ-doublet component of the j  state on collision. So in the case of a spin-orbit 

conserving rotationally inelastic transition the upper 1     Λ doublet component 

of the 1F  rotational wave function will be preferred. And in the case of a spin-orbit 

changing transition the lower 1     Λ-doublet component of the 2F   rotational 

wave function will be preferred. These rules do not apply when the initial 
1
2

j   

rotational state resides exclusively in its lower 1   Λ-doublet component, as in 

the present study. The propensity for the conservation of parity for He-NO 

rotationally inelastic Integral Cross Sections (ICSs) at 𝐸col
L =63 meV and 𝐸col

H =147 

meV also plays an important role [57, 58]. Inspection of Table 2.1 shows that the 

calibration factor QMCF   for a particular parity pair number n turns out to 
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Figure 2.9: As for Fig. 2.5, but showing the open-shell spin-orbit changing QM 

NO(X)+He DCSs transition from 0.5 1j     to 1.5 12.5 1j       , scaled 

from a collision energy of 147 meV to 63 meV. 

 

be typically a few percent larger for 1 1Fe F f  transitions than that for 1 1Fe Fe  

transitions. This phenomenon reflects a weak preference for HE
scale   at Ecol

H  =147 

meV, to scatter into A   symmetry, favoring ( 1)e     levels, rather than A  

symmetry favoring ( 1)f      levels. This preference is essentially absent at 

63 meVL

colE   for LE
dir  [65]. The spin-orbit-changing transitions do not exhibit a 

regular dependence of QMCF   on n. The value of QMCF   at fixed 2n    was 

always found to slightly larger for the 1 2Fe F e   transitions than for the 

1 2Fe F f  transitions. This latter reflects a slightly greater preference of HE
scale  to 

scatter into A  symmetry, favoring ( 1)f     levels, rather than A   symmetry 

favoring ( 1)e     levels at 𝐸col
H  =147 meV than the preference observed at 

𝐸col
L =63 meV for LE

dir  [65]. 
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2.4 Conclusions

2.4.1 Accuracy of the collision-energy scaling relationship 

As the QQT-derived collision-energy scaling procedure relies on the assumption 

that the interaction potential can be approximated by a hard shell, its application is 

most appropriate for collision systems where this assumption is at least 

approximately true. This is an excellent approximation for the NO(X)+He 

( , )sum RV R   interaction potential (which governs all closed-shell transitions, and 

spin-orbit conserving open-shell transitions) as it is overwhelmingly dominated by 

repulsive intermolecular forces. The magnitude of the NO(X)-He van der Waals well, 

the most attractive part of the potential energy surface, is less than 1/17 of even the 

lower collision energy of 𝐸col
L =63 meV

 
used in this work. It is interesting to note 

that the QQT-derived scaling performs extremely well in the more forward-scattered 

region of j′< 9 final rotational quantum states, where one would expect the scattering 

dynamics to be less dominated by hard shell type interactions. A favorable property 

of the NO(X)-He collision system for the QQT treatment is its low reduced mass. At 

𝐸col
L =63 meV the de Broglie wave length is 1.15 a0, which is a factor of 2.2 larger 

than that of the NO(X)-Ar system at the same collision energy.  

In contrast, the NO(X)+He ( , )dif RV R  interaction potential (which is involved 

in spin-orbit changing transitions) is much “softer” in character, containing a 

significant attractive component. The effective potential on which spin-orbit 

changing and conserving transitions take place may be written as  

 ( , , ) ( , ) ( , )cos(2 )eff R sum R dif RV R V R V R       (2.29) 

where   denotes the azimuthal angle of the symmetry plane of the unpaired anti 

bonding Π orbital in the molecular NO frame [54, 60]. The special case of 

1
2

0,      then correspond to ,  A A    symmetry respectively. Neither 

( , ) ( 0, , )A R eff RV R V R       or 1
2

( , ) ( , , )A R eff RV R V R        qualifies as a soft 

surface [43, 58, 65] and the soft 
difV   potential serves only to induce a small 

cos2   dependent modulation of the repulsion dominated He-NO effective PES 

( , , )eff RV R   . In light of this observation, both spin orbit state conserving and 

changing transitions can be seen to be brought about by repulsion dominated He-NO 

interactions. The reproduction of the diffractive features in the forward scattered 



2.4 Conclusions 

 

35 
 

direction, suggests a robust behavior of the kinematic apse frame collision energy 

scaling formula even in the case of interaction potentials that deviate significantly 

from a simple hard shell. More specifically, the QQT scaling procedure assumes that 

only the component of k anti-parallel to â  is of relevance for the outcome of a 

particular rotationally inelastic transition. Consequently for all type of collisions for 

which this assumption holds or shows strong propensity, the QQT DCS collision 

energy scaling method will hold. In the case of a not infinite steep shell, a PES with 

a well, or branching to e.g. other spin-orbit state outgoing channels, the absolute 

value of the QQT scaled QM calculated or experimentally determined QQT scaled 

DCSs need to be multiplied with the calibration factor ( )QMCF f i  to result the 

same ICS as the directly QM calculated or experimentally determined ones to 

facilitate comparison. An interesting extension of the present work would be to 

explore such collision systems as NO(X)-Ar and/or OH(A)-He, that carry a 

substantial well in their interaction potential [66]. The theoretically predicted 

maximum well depth of the NO(X)+Ar Vsum PES is 116 cm-1 [44]. The OH radical 

in its first electronically excited state forms strongly bound van der Waals complexes 

with the rare gas atoms; the well depth for OH(A)+Ar is about 1219 cm-1 [67]. As 

such, the application of the collision energy scaling relationship presented here to 

QM calculations of the DCS for these systems could yield further insight into its 

flexibility and operation. 

2.4.2 Signatures of the potential energy surface within the DCSs 

The structures present in the state-to-state resolved DCS all have their origin in the 

interaction potential on which the collision takes place. Therefore, features of this 

potential can be inferred from a close study of the features present within the DCSs. 

For example, the rapid oscillations present at low scattering angles for small values 

of Δj can be attributed to diffraction interference between trajectories scattered from 

a core approximately the radius of the global minimum of the He-NO PES [58, 62, 

63]. The broader, slower oscillations that can be seen in the DCSs for the scattering 

of NO(X)+Ar are rather ascribed to the anisotropy of the inner repulsive core of the 

potential energy surface (these oscillations do not appear for NO(X)+He because of 

the lower relative momentum associated with the collision, and hence the longer de 

Broglie wavelength). The changes in these characteristic structures in the DCS as a 

function of the collision energy could thus yield information on the anisotropy and 

steepness of repulsive features in the potential energy surface, or on the depth and 

position of any attractive wells that may be present. Changes in these features with 

total (collision) energy will be manifested by departures from the collision-energy 
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scaling relationship, which assumes no change in the interaction potential with 

changes in collision energy. 

Another interesting area of consideration is the question of which angular 

regions of the DCS provide the most information on a particular feature of the 

interaction potential. Intuitively, we expect the forward scattering region to provide 

more information about the attractive part of the potential, and the backward 

scattered region to provide more information about the repulsive part of the potential. 

To this intuition, we can now add the behavior described in Eqs. (2.24) and (2.26); 

when going from a high collision energy to a lower collision energy, a section of the 

high energy apse frame DCS from H
col

L
col

H
c EE /coscos    is extended to fill 

the lower energy DCS within the range 1coscos   L
c  . Because both the 

higher and lower energy DCSs contain the entire angular range in θ, this implies that 

all the information contained within a lower energy DCS excludes contributions 

from the H
col

L
col

H
c EE /coscos     range of the higher collision energy DCS. 

Hence the backward scattering H
col

L
col EE /cos1    region of a high collision 

energy DCS contains information about the interaction potential that is excluded 

from the lower collision energy DCS. This realization requires a pure quantum state 

resolved DCS. The collision energy dependence of DCS or ICS associated with 

1
2

, ,j j      rotationally inelastic transition with      is expected to be 

dissimilar to that with      even in the case of pure Hund’s case (a). This is 

because one of these two rotationally inelastic DCSs concerns a parity conserving 

rotationally inelastic transition while the other one concerns a parity changing 

rotationally inelastic transition. 

The successful application of the QQT collision energy scaling formalism 

reinforces the evidence that the He-NO rotationally inelastic DCSs depend very 

sensitive on the anisotropy of the repulsive part of the PES. This repulsive part of an 

atom molecule PES is the most difficult to predict accuracy from ab initio based 

calculations. 

For the He-NO(X) collision system our study demonstrated that the scattering 

angle dependence of all its QM DCSs directly calculated at 𝐸col
L  =63 meV are 

essentially perfectly reproduced by the part of the 𝐸col
H =147 meV DCSs QQT scaled 

to 𝐸col
L  =63 meV. As argued in subsection 2.3.4.3 this implies that the sumV   and 

difV  PESs are similarly probed by the range of values of cos  that contribute to 
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HE
scale  and LE

dir . The dependence of the calibration factor, QMCF , listed in Table 2.1, 

on the final rotational quantum state of the NO molecule yields complementary 

information on the He-NO(X) 
sumV  and difV  PESs. QMCF denotes the factor by 

which the QM DCSs that have been scaled from the higher collision energy of 

𝐸col
H =147 meV to the lower collision energy of 𝐸col

L =63 meV must be multiplied, in 

order to obtain ICSs that are in agreement with those directly calculated at 𝐸col
L =63 

meV. Thus, complementary information on the He-NO(X) 
sumV  and difV  PESs is 

also provided by the ,j  dependence of the ratio HL E
scale

E
dir  / . 

In summary, the collision-energy scaling formalism developed here has been 

shown to be remarkably accurate when applied to the case study of the DCSs of 

NO(X)+He for collision energies of 147 meV and 63 meV. It can be successfully 

applied to both the spin-orbit conserving and the spin-orbit changing collision 

channels, suggesting it is capable of operating both for the hard shell like potentials 

from which was derived, and for more general potentials with a significant attractive 

component. The extension of the QQT into the classically forbidden region has also 

been presented, allowing the comparison of QM DCSs with their corresponding 

QQT counterparts throughout the entire angular range. Finally, the role of these new 

methodologies in characterizing interesting features of the potential energy surface 

from the calculated DCSs has been discussed, with the collision energy scaling 

formalism emerging as a useful new tool that is now available to tackle such 

problems. 

Appendices 

2.A The stationary nature of the QQT collision frame and apse frame 

DCS at θ = 0 and θ = π 

The azimuthal symmetry of the DCS constrains its mathematical form to be 

stationary at θ = 0 and θ = π in the scattering frame and in the apse frame. In this 

appendix we prove that these conditions are indeed fulfilled within the QQT 

framework. As previously noted, the QM DCSs automatically fulfill this requirement 

in the collision frame, because they can be written as a series of Legendre 

polynomials, all of which individually meet this criterion. When transformed into 

the apse frame, the constraints are then met in the same fashion as the QQT DCSs.  

As a starting point we shall consider the QQT DCS in the apse frame. From Eq. 
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(2.9) one writes the QQT apse-frame scattering amplitude as 
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, (2.A.1) 

where the dependence of all quantities in Eq. (2.A.1) on θ has been made explicit. 

Equation (2.10) can be used to write out the θ dependence of the phase shift, η, as 

 2 2

0 ( ) 2 cos ( )j j ak k kk A    
    , (2.A.2) 

where A(γa) is independent of θ (and hence does not affect the behavior of the DCS 

as a function of θ ). We now turn our attention to the first stationary point, located at 

θ=0. Around this region, one can neglect all but the leading terms in the Taylor 

expansion of cos , such that 

 

2

cos 1
2


   . (2.A.3) 

Utilizing Eq. (2.A.3) then allows us to approximate the cos  dependence of 

Eq. (2.A.2) in the forward scattered direction to  
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. (2.A.4) 

Note that the last line of Eq. (2.A.4) is obtained by performing a Taylor 

expansion of 
2 1/2(1 )a , about 2 0a  , keeping only the leading term in 2a . 

The behavior of the exponential part of Eq. (2.A.1) around θ = 0 can then be 

written as 

 

2

0 0 2
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. (2.A.5) 

Taking the derivative of Eq. (2.A.5) with respect to θ and evaluating as θ tends 

to zero then yields 
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At the second stationary point, where θ → π, cos   can instead be 

approximated by 

 

2( )
cos 1

2

 



   . (2.A.7) 

Using the same arguments as were employed for the case of θ = 0, it can be 

shown that 
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 ， (2.A.8) 

The case is the same when θ = π. The exponential part of the QQT apse frame 

scattering amplitude has thus been shown to go to zero as θ goes to 0 or π, as required. 

The non-exponential part of Eq. (2.A.1) can also be differentiated with respect 

to θ, in this case yielding the expression 
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Since cos  is obviously stationary at θ = 0 and θ = π, the geometric scattering 

amplitude must also display the same behavior, such that 
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Eqs. (2.A.6), (2.A.8) and (2.A.10) can then be jointly substituted into Eq. 

(2.A.1) to yield the required behavior in the apse frame 

 

, 0,

, 0,

d ( 0, ) / ( )

d
d ( , 1,2) / ( )

0
d

a a

a a

j m j m

j m j m

g C

g p C

  


  



   

   



 
 

. (2.A.11) 

Additionally it can be shown (by summing the scattering amplitude over all final 

states) that the first derivative of the normalization constant, C(β), with respect to β 

is also equal to zero 
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
 . (2.A.12) 

Combining Eqs. (2.A.1), (2.A.11) and (2.A.12), the first derivatives of the 
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QQT DCSs in the apse frame must also necessarily be stationary at 0  , π as is 

required: 

 

2 2

0 0d d
( 0, ) ( , 1,2) 0

d d d d

QQT QQT

j j

a a

p
 

   
   

  
     . (2.A.13) 

Note that Eq. (2.14) relates the QQT collision frame DCSs to its apse frame 

counterpart, hence: 

 

 
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0 0

0

d d dcos ( )
, ( , )

d d d d dcos
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d d dcos

QQT QQT

j j

a

QQT

j

a

p

p

   
  

    

  


  

  




 



. (2.A.14) 

As was shown in Eq.(2.19), setting θ equal to 0 or π gives us the simple relations 

 
2

dcos ( 0) 1

dcos (1 / )k k

 







, (2.A.15) 

 
2

dcos ( 0) 1

dcos (1 / )k k

 







, (2.A.16) 

which leads to: 

 

2

0d dcos ( 0, )
( , 1,2) 0
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QQT
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a

p
   

 
  

 
  
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  (2.A.17) 

Finally 

 

2

2 2 1.5

d dcos ( ) dcos( ) [ cos ]
d dcos

[( ) 2 cos ]d dcos d
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k kk k

  


  

   
  

   
. (2.A.18) 

Note that Eq. (2.A.18) is zero for θ = 0 and for θ = π. 

Combining Eqs. (2.A.14), (2.A.17) and (2.A.18) the first derivatives of the 

QQT DCSs in the collision frame are stationary at θ = 0, π. 

2.B The stationary nature of the QM apse frame and collision frame 

DCS at θ = 0 and θ = π 

Arthurs and Dalgarno [55] showed that 
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which implies that at θ = 0 or θ = π 

 
, ,dd ˆ ˆ( ) 0

d d

QM

j f j i

 

 
  k k .  (2.B.2) 

Equation (2.14) can also be applied to relate the QM collision frame DCSs to 

its apse frame counterpart: 
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. (2.B.3) 

Inspection of Eq. (2.A.18) and combining with Eq. (2.B.2) and (2.B.3) shows that 

 
2

, ,d
, 0

d d

QM

j f j i

a


 

 

 



 if θ = 0 or θ = π. 

 

Table 2.A: Numerical values of the closed-shell QQT NO(X)+He DCSs from 0j   

to 1 12j    at a collision energy of Ecol
L =63 meV for θ = 0 and θ = π. Values are 

given in both the kinematic apse and the collision frames. 

 d d ( )a    

(Å2/sr) 

 d d ( )    

(Å2/sr) 

j’ θ = 0 θ = π  θ = 0 θ = π 

1 3.83E-05 0.192  3.682 0.054 

2 0.0515 0.104  538.25 0.029 

3 0.0028 0.281  7.064 0.077 

4 0.0605 0.527  52.81 0.142 

5 0.0045 0.575  1.653 0.152 

6 0.0375 0.280  6.555 0.072 

7 0.0052 1.343  0.468 0.337 

8 0.0244 0.354  1.208 0.086 

9 0.0056 1.059  0.157 0.245 

10 0.0163 0.343  0.263 0.075 

11 0.0058 0.357  0.054 0.073 

12 0.0111 0.135  0.059 0.025 
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A Modified Quasi-Quantum Treatment (MQQT) has been developed to account for 

the softness of the repulsive part of the anisotropic atom-molecule PESs. It addresses 

the rotationally inelastic collision problem in the so-called kinematic apse frame, 

where the previous RQQT restriction of single hard shell PES contour is modified to 

a PES contour which barrier height is taken to be just large enough to reflect the 

kinetic energy, provided by the component of the incoming momentum vector 

directed anti-parallel to the hard shell normal at the site of impact. The MQQT 

resulting rotationally inelastic quantum state resolved DCSs and ICSs of He + NO(X) 

at Ecol=508 cm-1 are compared with those obtained with RQQT and with those 

resulting from Quantum Mechanically exact calculation on to the full range highest 

quality ab initio Vsum PES. The parity changing MQQT DCSs for Δj ≤ 4 in the 

forward range of scattering angles agree much better to QM DCSs than RQQT ones. 

The improvements of the other MQQT DCSs with respect with the RQQT DCSs was 

minor due to the nearly hard shell character of the n≠1 or 3 anisotropic Legendre 

polynomial terms of the PES. 

 

3 
 

2 
3. The modified Quasi-Quantum Treatment of 

rotationally inelastic NO(X)-He scattering 
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3.1 Introduction 

The Regular Quasi-Quantum Treatment (RQQT) of the rotationally inelastic collision 

problem, introduced by Gijsbertsen et al. [22], succeeded for the first time to clarify 

the physical mechanism behind the remarkable sign alternation of the steric 

asymmetry (SA) of the rotationally inelastic Integral Cross Section (ICS) between 

even and odd changes in the rotational quantum number j. Such changes were 

observed and theoretically predicted for the NO(X)-Ar [68, 69], and NO(X)-He [70] 

collision systems. Moreover RQQT also revealed that the angular dependence of the 

Differential Cross Sections (DCSs) to neighboring rotational states of NO(X) with the 

same parity are nearly identical [22, 24-26, 71]. Assuming an anisotropic convex hard 

shell potential that mimics the repulsive core of the ab initio NO(X)-RG sumV  PES 

[43, 44], RQQT ought also to be able to predict both the spin orbit conserving and 

changing quantum state resolved rotationally inelastic DCSs. 

Applying the RQQT, Taatjes et al. [27] were able to take measurements of the 

SA and Λ-doublet propensities provided by experimentally observed rotationally 

inelastic NO(X)-D2 ICSs, and to extract from these a realistic hard shell PES, which 

provided a good match to the NO(X) – D2 experimental values. 

Ballast et al. [24] provided a more systematic basis for the hitherto intuitive 

formulation of the RQQT of the rotationally inelastic collision problem, and 

extended RQQT to collisions of an atom with a closed shell linear molecule. The 

resulting RQQT DCSs for Ne-CO (X
1 ) and for He-NO (X

2 ) compared well 

with the exact QM DCSs calculated at a collision energy of respectively 511 cm-1 

(63.4 meV) [32] and 514 cm-1 (63.7 meV) [33]. 

The RQQT has also been the subject of recent development, with Zhang et al. 

[72] obtaining a general scaling rule for the collision energy dependence of a 

rotationally inelastic DCS, and also extending the calculation of the RQQT DCSs 

from the classically allowed region into the classically forbidden range of small 

scattering angles. The rotationally inelastic quantum state resolved NO-He DCSs at 

a collision energy Ecol=508 cm-1 (63 meV) of the present chapter served as the focus 

of their study. 

The Modified Quasi-Quantum Treatment (MQQT) of the present study, in 

common with RQQT, is numerically extremely efficient [73]. RQQT has already 

been successfully employed to provide insight into the distinct interference 

structures reflecting different sensitivities to specific terms in the interaction 

potential [25, 26, 57, 58, 74]. 
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The velocity-mapped [30] ion imaging method [29], pioneered on the HCl-Ar 

system at a collision energy of Ecol =66.7 meV (538 cm-1) [31] and later extended to 

Ne, Kr, N2 and CH4 as collision partners [75], provides a convenient means by which 

the quantum state resolved rotationally inelastic DCSs can be measured.  

This method of observing quantum state resolved rotationally inelastic DCSs 

has been extended to an appreciable number of collision systems, and the resulting 

experimentally determined DCSs have subsequently been compared with 

numerically exact QM DCSs obtained on state of the art ab initio calculated PESs. 

The remainder of this chapter is organized as follows. The MQQT of the 

rotationally inelastic collision problem is described in Section 3.2. The Legendre 

expansion coefficients of the MQQT Vsum PES [43], the phase shift curves, scattering 

amplitudes and finally the quantum state resolved rotationally inelastic differential 

and integral cross sections calculated for the NO(X)-He collision system at 
1508colE cm  (63.0 meV) are presented and discussed in Section 3.3. The main 

conclusions and outlook for the future are then given in Section 3.4. 

3.2. Method

The regular QQT theory has been described in previous studies, and only the 

essentials necessary to inform the reader of the methodology [22, 24, 72] and 

relevance of MQQT are given below. Appendix 3.A provides specific 

methodological details and additional information. 

The numerically exact QM solution of the Schrödinger equation for the 

rotationally inelastic collision problem utilizes the full range of the PES, and expands 

the incoming plane wave into spherical waves. This transforms the collision problem 

into a large set of coupled differential equations covering all relevant 

, , , , , , ,j l j l        scattering channels, which are numerically solved at each 

permitted value of the total angular momentum quantum number J, to obtain a series 

of 
, , , ; , , ,

J

j l j l
S

     
 matrix elements, in which j is the rotational angular momentum 

quantum number, l is the orbital angular momentum quantum number,   is the 

absolute value of the projection of the electronic angular momentum onto the 

molecular axis and ε is the symmetry index which labels the lower(upper) Λ-doublet 

level with 1    ( 1    ). The 1     rotational sublevels differ in parity by a 

factor of 
1
2( 1)

j
P 


  . Primed quantum numbers denote the final state. Often one 

has to couple about hundreds of channels to obtain the scattering amplitude 
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0.5, , 0.5, , , ,
( )

j m j m
f

 


      
 . Such multiple coupled differential equations and 

summations between channels are avoided in RQQT and MQQT. Both of these 

method bypass the calculation of the S-matrix elements and approximate the 

scattering amplitude 
0.5, , 0.5, , , ,

( )
j m j m

f
 


      

  directly. The rotationally inelastic 

transition probability amplitude is obtained by sandwiching a phase shift function 

between the “bra” of the final and the “ket” of the initial rotational quantum state 

wavefunction. The so-called kinematic apse frame is employed, in which the 

momentum transfer vector, 

 a k - k , (3.1) 

serves as the quantization axis along which the projection quantum numbers of j and 

of j’ are am  and am . The direction of â , residing in the k and k′ azimuth 

scattering plane, with respect to k is denoted by the spherical angles β and   . 

The spherical angles ( , )a a   of the molecular axis r with respect to â  provide 

the primary variables defining the geometry of the instantaneous impact onto the 

hard shell PES surface at ( , )S a aR   , effecting the transfer of the incoming state 

| 0.5, , 0.5,aj m      to the outgoing state , , , |aj m      . The normal n̂  to 

the shell surface at the point ( , )S a aR    and â  are identical [22, 24]. The 

component of the incoming wave vector k parallel to the shell surface at ( , )S a aR    

remains conserved [46], i.e. k k
|| || . Conversely, the component k  of k directed 

anti parallel to â  is not generally conserved throughout the collision, and the 

maximum amount of the available collision energy Ecol that can be transferred into 

rotation is limited to 2(cos )colE  . The projection quantum number ma of j onto 

â  remains conserved throughout the collision event [22, 52, 72, 76]. The former 

restriction limits the range of β for which the transition from the rotational ground 

state 
1
2

j   with 1
2

( ) 0E j    to the rotationally excited j  state with ( )E j  is 

allowed to 180     [72], where 

 2arccos( 1 ( / ) ) arccos( ( ) / )colk k E j E       . (3.2) 

The function cos (cos )   reaches its maximum at    [72]: 

 arccos( / )k k  . (3.3) 
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We define an index p, such that p=2 if 0 arccos( / )k k   , corresponding to 

a classically forbidden (but Feynman path allowed) transition for which 
 
 k k

and p=1 if arccos( / ) 180k k      [72], corresponding to a classically allowed 

transition for which  
 k k . The relation between k

  and k
 depends on the 

rotational eigen-energy of the scattered NO molecule ( )E j , defined relative to 

( ) 0E j  , and is given by [72]: 

 2

22( ) ( )k k E j


 
   . (3.4) 

The MQQT PES contour 
mod (cos ;cos )S RR    is chosen such that the height of 

the potential energy barrier is just sufficient so as not to be surpassed by the effective 

collision energy 
2coscolE  , 

 mod 2[ (cos ;cos )] cosS a colV R E   。 (3.5) 

The MQQT hard shell contours 
mod (cos ;cos )S aR    at β=100º and β=170º 

obtained from the ab initio NO(X)-He ( , )sum RV R   PES calculated by Kłos et al are 

shown in Fig. 3.1 [43]. The varying shell shape and size probed by (classically 

allowed, p=1) quite forwards β=100º and by quite backwards β=170º scattered near 

elastic collision events are visualized in back and red respectively. Overall, the 

radius of the mod[cos ;cos( 100 )]S RR      shell is about 0.8 bohr larger than that of 

the mod[cos ;cos( 170 )]S RR      shell. This difference is almost as large as the De 

Broglie wavelength (1.16 bohr) of the incoming wave vector k at Ecol = 508 cm-1.  

Less pictorial but more detailed information is provided in Fig. 3.2. It displays both 

the dependence of 
mod (cos ;cos )S RR     on cos R   and 

mod (cos ;cos )S aR     on 

cos a  for a number of individual β values covering the range from β=90º to β=180º. 

At arccos( 0.086) 95a       the mod[cos ;cos( 90 )]S aR       contour is no longer 

uniquely defined by a single convex shape. The smooth He-NO (X) PES contours 

mod (cos ;cos )S aR    are found to be partially concave for 
min90 101.45convex       

and purely convex for 
min 101.45convex    . Note that at each β there are three values 

of cos R   at which mod mod(cos ;cos ) (cos ;cos )S a S RR R      both at cos 1R    

and at 0.1 cos 0.05R    . It is within the latter range of cos R   that the 
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dependence of mod (cos ;cos )S aR    upon cos a  is the most distinct from that upon 

cos R . Specifics details concerning the MQQT phase shift, scattering amplitude, 

DCS and ICSs, defined consistently to those of RQQT (but distinct from QM) are 

given in Section 3.A of the Appendix. 

 

 

 

 

 

 

Figure 3.1: Illustration of the relationship between the modified QQT hard shell 

contour and the polar angle    between the solid apse vector a (extended by a 

dashed line) and the incoming wave vector k. The blue NO axis vector r   is 

extended by a dashed blue line. The 100    contour corresponds to nearly perfect 

forward scattering and 170    to nearly perfect backwards scattering. The red 

and black shell circumferences correspond respectively to 
mod[cos ;cos( 170 )]S RR       and to mod[cos ;cos( 100 )]S RR      . Note that the 

forward 100    shell exhibits a slightly concave shape at its waist. 
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Figure 3.2: The hard shell contours mod (cos ;cos )S RR     of the He-NO(X) 

modified hard shell as a function of cos R  (solid black lines) at Ecol =508 cm-1 for 

a number of specified kinematic apse angles β. These same contours are also 

displayed as a function of cos a   (dotted red lines). Note that the waist of the 

potential contours (cos ,cos )s RR     does not occur at cos 0a    but at a slightly 

negative offset for cos a , shifted towards the O-end of the NO(X) molecule. This 

offset decreases as the apse angle β increases. Note that between 

mincos cos 0.19842convex     and cos 0   it is impossible to assign a unique value 

of SR  to the values of cos a  near the waist of the potential contours. In the range 

min90 101.45convex        the mod (cos ;cos )S aR     functionality at about 

cos 0.05a    is no longer singly valued. The MQQT range of allowed Δj values 

for a particular hard shell contour as well its associated β are indicated. 
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3.3. Results and Discussions

3.3.1 Phase shift curves and scattering amplitudes 

To gain insight into the distinctive features of the rotationally inelastic MQQT DCSs 

compared to those of the RQQT (and also into their underlying Legendre anisotropy 

coefficients (cos )nC   of the PES, specified and discussed in Section 3.B of the 

Appendix), the cos a   dependency of the phase shifts 
mod

0 ( 4.5) ( ; . )E E j a p       and 

0 ( 4.5) ( ; , )reg

E E j a p      have been explored over their kinematic range:[72] 

 1 cos cos       (3.6) 

Note that in the case of RQQT, 
mod(cos ) (cos ; 180 )reg

S a S aR R      does not 

depend on β. In Fig. 3.3 the cos a  dependence of the MQQT and RQQT phase 

shift curves of the 
71

2 2
j j     inelastic transition is shown for a number of 

representative apse angles β (chosen to coincide with the 103    angles depicted 

in Fig. 3.2), for both classically allowed (p=1) and classically forbidden (p=2) 

pathways. These representative apse angles facilitate a comparison of the p=1 and 

p=2 phase shift curves in relation to the specifics of the probed PES contour. Eq. 

(3.A.4) (Section 3.A of the Appendix) shows that the p=2 phase shift is a factor if 

2 2{| cos | cos / } / {| cos | cos / }j col j colE E E E          smaller than the 

p=1 phase shift. The MQQT and RQQT phase shifts shown in Figs. 3.3 and 3.4, (as 

obtained from Eq. (3.A.1)), are shown as solid and dashed curves, respectively. To 

facilitate comparison of the modified 
mod

0.5 7.5 ( ; , )j j a p       and regular 

0.5 7.5 ( ; , )reg

j j a p      phase shifts on β and p, the maximal values in Figs. 3.3 and 

3.4 have been shifted to unity. This was done by the addition or subtraction of the 

proper a   independent phase shift. Eqs. (3.A.8)-(3.A.15) (Section 3.A of the 

Appendix) show that both the apse and collision frame RQQT and MQQT inelastic 

DCSs are independent of such a constant shift.  

As in the full QM approach, in QQT the classical lever due to the γa - dependent 

impact of the He atom onto the He-NO(X) PES contour has no direct relevance on 

the outcome of the scattering event. Both the QM scattering amplitude and the 

MQQT scattering amplitude of Eq. (3.A.8) (Section 3.A of the Appendix), depend 

on the interference between all Feynman allowed paths from the initial rotational  
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Figure 3.3: The modified 
mod

0.5 2.5 ( ; ) /j j a        and regular 0.5 2.5 ( ; ) /reg

j j a       

QQT phase shift curves of the rotationally inelastic 71
2 2

j j    transition of He 

+ NO(X) at Ecol = 508 cm-1 for 103 , 110 , 120 , 135 , 150         and180  , which 

respectively correspond to 15.0 ,  35.5 ,  57.3 ,      88.5 ,  119.1   and 180   in 

the p=1 left panel and to 11.1 ,  4.55 ,  2.66 ,  1.55 ,  0.85    and 0   in the p=2 

right panel. Note that  84.102  or 22204.0coscos   . The p=2 QQT 

phase shift curves relate to the p=1 ones to a β and colj EE /   dependent 

proportionality factor which ranges from unity at  coscos    to 0.01266 at 

1cos 
 

as follows directly from Eq. (3.A.5) of Appendix. 

 

quantum state to the final rotationally excited quantum state at a particular classically 

allowed (p=1) or classically forbidden (p=2) apse angle β, or at the equivalent 

scattering angle θ [22, 24, 72]. One of the most striking features in Fig. 3.3 is the 

similarity of the 
mod

0.5 2.5 ( ; , )j j a p       and 0.5 2.5 ( ; , )reg

j j a p       phase shifts for 

negative cos a  O-end impact sites of the He-atom onto the hard shell contour PES, 

while the phase shifts differ more strongly at positive cos a  N-end impact sites. 

To allow a clear differentiation between the N-end part and the O-end part of a  

cos a cos a

—— :  Modified QQT

------ :  Regular QQT

=103 

=110 

=120 

=135 

=150 

=180 

p=1 p=2

=103 

=110 

=120 

=135 

=150 

=180 

Fig 4 new

(a) (b)
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Figure 3.4: Details of the NO-He phase shift curves /    for p=1 around 

cos cos waist

a a    of the modified (left panel) and regular (right panel) which 

remained unresolved in Figure 3.3. Note that the value of cos waist

a  at the maximum 

/ 0    was found to be equal to -0.082 at β=103º, -0.076 at β=110º -0.071 at 

β=120º, -0.065 at β=135º, -0.058 at β=150º and -0.055 at β=βmax=180º, i.e. the 

maximum shifts towards that of the homonuclear limit of cos 0waist

a    when β 

increases from 100° to 180°. Such a shift is deemed to remain absent in the right 

panel. RQQT assumes a hard shell PES which is equal to that of MQQT at 

β=βmax=180º for all β. 

 

particular He-NO β-dependent PES contour, the cos cos waist

a a   edge was chosen 

to coincide with the “waist” of the 
mod (cos ; )S aR     shell contour. The value of 

cos waist

a  follows from: 

 
mod[cos cos  ; ]

0 ;   cos 1
cos

waist

waistS a a

a

a

R   




 
  


  (3.7) 

The details of the MQQT and RQQT p=1 phase shift curves around the 

cos cos waist

a a   impact region are shown in Fig. 3.4. The MQQT and the RQQT 

phase shifts are both proportional to a ( , )K p  kinetic factor, given by Eq. (3.A.2) 

(Section 3.A of the Appendix). The left panel of Fig. 3.4 shows that when β increases 

from 100° to 180° the MQQT value of cos waist

a shifts from -0.085 to -0.054. Since 

mod(cos ) (cos ; 180 )reg

S a S aR R      all RQQT phase shift curves in the right panel 

cos a cos a

Fig 5
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of Fig. 3.4 maximize at cos 0.054waist

a   .  

Dynamically the near similarity of the O-end MQQT and RQQT phase shifts 

reflects the more closed shell character of the NO(X) molecule at this impact region. 

As discussed in more detail in Section 3.B of the Appendix, the π* orbital of the NO 

molecule possesses a smaller and less extended one electron charge density at the O-

end than at the N-end region [43]. This phenomenon is also responsible for the 

anomalous direction of the +NO (X)   electric dipole moment. The same 

phenomenon causes the difference between the RQQT and MQQT phase shifts for 

all scattering angles with β <180º to maximizes at cos 0.5a  , as shown in Fig. 

3.3. The orbital symmetry node in the π* lobe along the NO axis causes the 

differences between the MQQT and RQQT phase shifts to become minimal at 

cos 1a   , where the π* orbital electron density drops to zero. When β approaches 

180º the MQQT and RQQT phase shifts become similar. By definition in both panels 

the 103     phase shift curves are identical. 

The MQQT apse frame scattering amplitude 
mod

0.5, , 0.5, , , 0.5,
( , )

a aj m j m
g p

 


       
 

also depends on the geometric scattering amplitude, 
mod [ ; ]geom ag   , which constitutes 

an additional a - dependent factor in the integrand of Eq. (3.A.5) (see Section 3.A 

of the Appendix). Ballast et al, previously explored the so-called constant curvature 

approximation in which a a  
independent geometrical scattering amplitude [24] 

 mod 2

0(cos ) | cos | [ (cos 1)]reg

concurg R       (3.8) 

was used instead of 
mod ( ; )geom ag    in the integrand of Eq. (3.A.5) (Section 3.A of 

the Appendix), where
mod

0 (cos 1)R     denotes the averaged value of 

mod ( ;cos 1)S aR     . The constant curvature approximation leads to slightly smaller 

DCSs for low values of Δj than when the full a -dependent 
mod [ ; ]geom ag  

 
is used. 

The small differences between the resulting absolute values of the DCSs were found 

to disappear at 8j   [24]. For this reason, the γa-dependency of 
mod [ ; ]geom ag    is 

expected to be of minor influence on the outcome of 

mod

0.5, , 0.5, , , 0.5,
( , )

a aj m j m
g p

 


       
, validating the approximation of 

mod ( ; )geom ag    with 

mod (cos )concurg  , where 
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 mod mod 2

0(cos ) | cos | [ (cos )]concurg R     (3.9) 

It is the phase shift function 
mod

0.5exp[ ( ; , )j j ai p      which most strongly 

determines the β and p dependency of 
mod

0.5, , 0.5, , , 0.5,
( , )

a aj m j m
g p

 


       
, and hence 

the angular dependence of the DCS. Eqs. (3.A.6) - (3.A.8) (Section 3.A of the 

Appendix) and Eq. (3.9) incorporate the constant curvature approximation into the 

expression for the MQQT scattering amplitude yielding: 

 

mod

0.5, , 0.5, , , 0.5,

mod1
, 2 | |

1

mod1
0.5 /22

1

( , ) ( )

' (cos )

cos exp[ ( ; , )] (cos )

a a

a

a a a

concur

j m j m

m

m m concurm

a j j a j a

g p C

j g

d i p P

 

 

 

 

    



       



    



 

 

. (3.10) 

The relation between the MQQT (and RQQT) apse frame scattering amplitude 

and the collision frame differential cross section, 
1
2

mod

, ,
( )

j j
d

d

 





  
, are given in Eqs. 

(3.A.7) and (3.A.11) (Section 3.A of the Appendix). Upon integration over the full 

range of scattering angles one obtains the related integral collision cross sections 

1
2

mod

, ,j j 


  
. 

3.3.2 Differential and integral rotationally inelastic cross sections 

The MQQT, RQQT and exact QM rotationally inelastic spin-orbit manifold 

conserving NO (X, v=0)-He inelastic DCSs, for the transitions 1
2
, 1j      

1
2
, 1j      and 1

2
, 1 1.5 11.5, 1j j            at Ecol=508 cm-1, are 

shown in Fig. 3.5. The exact QM DCSs obtained from the HIBRIDON code were 

provided by Kłos et al. [57]. The rapid oscillatory structures present in the QM DCSs 

at small scattering angles for 5j   arise from diffraction effects, which are not 

accounted for in either RQQT or MQQT. In place of the QM diffraction pattern, the 

QQT DCSs exhibit a sharp peak at 0  , due to a dramatic difference in weighting 

factors between β and   , which for 5j    supersedes the maximum in the 

classically allowed (p = 1)    range by orders of magnitudes. This difference 

decreases with increasing Δj, as the peak in the DCS at 0   becomes relatively 

less significant [72]. The QM DCS calculation utilizes the full PES, while the RQQT 

simplifies the PES to a rigid hard shell given by ( ,cos )sum R colV R E  . The MQQT 
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instead reduces the full PES with a hard shell PES contour, which is set equal to the 

amount of collision energy provided by the component of the incoming momentum 

vector directed anti-parallel to the surface normal, such that 

 2( ,cos ,cos ) cossum R colV R E   .  (3.11) 

Figure 3.5 shows that all RQQT NO(X)–He DCSs with 6j   are typically 

smaller than the exact QM DCSs in the classically allowed (p=1) forward scattered 

region. It is this difference, which becomes most substantial for the parity changing 

4j   inelastic transitions, that stimulated the development of the MQQT DCS 

model, for which PES contours range from ( ,cos ) 0sum aV R     for a glancing 

( cos 0   ) collision down to ( ,cos )sum a colV R E    for a head on ( cos 1    ) 

collision. The effective larger size of the ellipsoidal potential at small scattering 

angles acts to increase the DCS in this region, reducing the discrepancy between the 

MQQT and QM results.  

Figure 3.5 also shows that the p=1 range of the MQQT DCSs (particularly for 

the parity changing rotationally inelastic transitions for 5j   ) provide a much 

better approximation to the QM data than that provided by the RQQT. MQQT 

preserves the generally good agreement between RQQT and QM for transitions with 

5j  . 

Since it is the magnitude of the 1(cos )nC   first order Legendre polynomial 

expansion coefficient (depicted in Fig. 3.A, Section 3.B of the Appendix), which 

varies the most at the low perpendicular collision energies for which | cos | 1  , 

the enhancement of the MQQT DCSs with respect to the RQQT DCSs continues up 

to scattering angles as large as 120º. This effect is by far the largest for the classically 

allowed p=1 parity paired 1 1
2 2
, 1 , 1j j          and 1

2
, 1j      

1.5 11.5, 1j       DCSs in Fig. 3.5.  

In Section 3.B of the Appendix it is argued that the angular dependence of the 

MQQT and RQQT inelastic DCSs are independent of 0 ( )nC   . All other 

(cos )nC 
  

coefficients shown in Fig. 3.A (Section 3.B of the Appendix) remain 

essentially stationary when 2 1cos 326colE cm    or when 13j   . The near 

stationary nature of these coefficients for apse frame angles β ≥143º underlies the 

similarity between the MQQT and RQQT DCSs at scattering angles θ that  
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Figure 3.5: The QM HIBRIDON (solid lines), MQQT (dashed lines) and RQQT 

(dotted lines) DCSs for the NO( )+HeX  transitions 1 1
2 2
, 1 , 1j j         

and 1
2
, 1 1.5 11.5, 1j j            at a collision energy of 508cm-1. The 

exact QM DCSs are scaled to the regular QQT model DCSs. The black dotted 

vertical line separates the classical forbidden p =2,   range of scattering angles 

from those that are classical allowed p=1 ,   . 

 

correspond to β ≥143º. More specifically, this similarity ought to persist for the full 

range of   wherever 143    e.g., for 12j  .  

To facilitate the visual comparison of the MQQT and RQQT DCSs with the 

QM data, the latter are multiplied by a numerical factor chosen such that all QM 

ICSs are scaled to the RQQT values. The MQQT and RQQT DCSs shown in Fig. 

3.5 are very close to one another for parity conserving 8j   transitions, implying 

that the n=1, and n=4 ( )nC   coefficients (shown in Fig. 3.A, Section 3.B of the 

Appendices) are of minor importance only in determining these DCSs. 

The rotationally inelastic DCSs of the classically forbidden p=2 range of 

   

508 cm-1

 1.5j   2.5j   3.5j

  5.5j   6.5j   7.5j

  8.5j

  

   

  9.5j  10.5j  11.5j

Modified QQT

Regular QQT

QM HIBRIDON 

f2f for j’=1.5-11.5

  4.5j

  0.5j



f2e for j’=0.5

Fig 6
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scattering angles i.e. from 0     to     (within which β decreases from 

180     to    ), follows from similar expressions to those defining the 

classically allowed p=1 region of the DCSs for which θ ranges from 180    to 

  . In contrast to the p=1 range, the p=2 range of the MQQT and RQQT DCSs 

exhibit the best agreement when    and become most dissimilar if   . 

The absolute value of the p=2 phase shift of the QQT scattering amplitude is smaller 

than the corresponding p=1 phase shift, as specified by Eq. (3.A.4) (Section 3.A of 

the Appendix). Additionally Eq. (3.A.15) causes the classically forbidden part of 

the low Δj QQT DCSs to peak sharply at θ=0 and thereafter to drop strongly with θ. 

This classically forbidden region provides an analogue to the diffractive contribution 

to the QM DCSs in the forward scattered direction. For transitions with 5j  , Eq. 

(3.B.1) (Section 3.B of the Appendix) brings about a slower drop-off of the QQT 

DCSs in the classically forbidden region     which has no obvious QM 

equivalent, and is best regarded as an artifact. However, the inclusion of the 

classically forbidden part of the DCSs results in only a minor change in the flux 

normalization coefficients 
mod

fluxC  in Eq. (3.A.11) and Eq. (3.A.12) (Section 3.A of 

the Appendix). Similarly, the classically forbidden forward scattered artifact peak in 

the QQT DCS leads only to a marginal contribution to the total inelastic cross section.  

Although the Vsum PES of the NO(X)-He rotationally inelastic collision system 

consists of a shallow well followed by a compressible repulsive wall, the difference 

between the RQQT and MQQT DCSs is mostly limited to near forward scattering 

angles and was found to become marginal for Δj > 6. All anisotropic 0 (cos )nC   

Legendre coefficients shown in Fig. 3.A (Section 3.B of the Appendix) become 

nearly stationary when 
2cos ( 7.5)colE E j     or for 117.04    . For 

transitions with 7.5j 
  

one has cos cos(117.04 )    , which implies that the 

MQQT DCSs become essentially identical to the RQQT DCSs. This is because the 

anisotropic terms of the NO(X)-He PES do not vary significantly over the range 

1 1( ' 7.5) 105.36 ( , ) 508sum RE j cm V R cm     .  

Figure 3.6 compares the j   dependence of all 
1
2

j    1      

1508colE cm  MQQT NO(X) – He ICSs with those obtained from RQQT and 

exact QM calculations. At low values of j , all ICSs show pronounced oscillatory  
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Figure 3.6: Comparison between the QM (▼), modified QQT (■) and regular QQT 

(●) quantum state resolved rotationally inelastic integral cross sections for NO-He 

at a collision energy of 508 cm-1. Note that as in Fig. 3.5 the Δj=0 cross section 

corresponds to an 1 1       transition while for all others 1 1       . 

Because of the MQQT hard shell PES approximation ignores the most prominent 

long range 2 2( ) (cos )RV R P   term of the Vsum PES, their difference with QM ICSs 

maximizes for the 0.5,  1 2.5,  1j j         transition. The similarity of the 

MQQT and RQQT ICSs at 10j 
  

complies with the similarity of the DCSs 

shown in Fig. 3.5. 

 

structures, which disappear with increasing j'. At low j  , especially for parity 

changing 
/2( 1) 0j      transitions, the rotationally inelastic MQQT ICSs are 

larger than the RQQT ones, which reflects the less pronounced maximum in the 

RQQT DCSs. The agreement between the MQQT and exact QM ICSs is less 

convincing, as expected [19], than that obtained for the scattering angle dependence 

of the DCSs. The MQQT hard shell PES approximation accounts only for the hard 

shell repulsive 2 (cos )nC    expansion coefficient and lacks the contribution 

(present in the full QM treatment) of the anisotropic attractive long range 

2 2( ) (cos )RV R P   term of the Vsum PES [43]. This contribution causes the QM ICS 

for the transition 0.5,  1 2.5,  1j j          to become around twice as 

j

Fig 7
f2f for j’=1.5-11.5

f2e for j’=0.5
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large as the MQQT and RQQT ICSs. In Fig. 3.4 where the QM DCS was scaled to 

the RQQT ICS, this contribution is reflected in the enhanced forward scattering of 

the QM DCS with respect to the MQQT and RQQT DCSs. 

3.4. Conclusions and Outlook

The MQQT of the rotationally inelastic collision problem developed in the present 

study employs a modified hard shell potential contour, defined as 
2( , ) cossum R colV R E    , which depends on the polar angle β between the surface 

normal a and the incoming momentum vector k. It provides a potential barrier which 

is just large enough to avoid penetration. The MQQT DCSs were found to reproduce 

the QM DCSs obtained on the full PES more exactly than those obtained from the 

existing RQQT. In RQQT ( , )RV R 
 
is approximated by a single hard shell contour 

( , )R colV R E   so that the same hard shell PES is encountered for both a glancing 

impact and a head on impact. Interesting, except for lower Δj inelastic transitions the 

MQQT was found to produce quite similar DCSs to those obtained via the RQQT. 

Even at these lower values of Δj, the overall structure of the MQQT DCSs resembles 

the exact QM results obtained for the He + NO(X, j = ½) collision system. The 

similarity of the scattering angle dependence of RQQT, MQQT and exact QM state 

resolved rotationally inelastic DCSs at higher Δj (and for lower Δj, excluding forwards 

directed scattering angles) has been shown to relate to the specific properties of the 

state of the art ab initio He + NO(X, v=0) PES [43], which assumes the bond length 

of NO molecule remains fixed at its equilibrium length r = re . The anisotropic 

Legendre coefficients (cos )nC 
 

become essentially stationary for potential energy 

contours 
1( , ) 326RV R cm  , while the isotropic coefficient 0 (cos )nC  , related to 

the effective size of the ellipsoid, increases steeply with 
2cos  . 

Recently Cappelletti and co-workers provided experimental and quantum 

chemical evidence that charge transfer (CT) occurs between the molecular collision 

partners H2O-Ne, Ar, Kr, Xe, H2 and NH3-H2 at distances in the well region of the 

PES, causing the molecules to adiabatically adapt their bond geometry in a way that 

enhances the attractive intermolecular interaction [77-82]. This model was based on 

potential parameters obtained from the experimentally observed collision energy 

dependence of the glory amplitude of the integral collision cross section, and from 

CT calculations based on a general theoretical model which reproduces very 

accurately the collision cross sections obtained at the CCSD(T) level using large 

basis sets [80]. The CT contribution to the intermolecular PES was found to depend 
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strongly on the molecular orientation (i.e.
R ) [82] and increases with the proximity 

of collision partners [80]. The calculated CT contribution for the H2O-RG complex 

were found to be almost negligible for He-H2O but increased strongly with the mass 

of the RG atom [59]. These CT contributions to the intermolecular PES were taken 

into account in the ab initio PESs employed to predict the quantum state selected 

experimentally observed H2-H2O,-HDO and-D2O rotationally inelastic DCSs [35, 

38, 83]. 

Whether the unpaired electron in the π* orbital of the NO(X) molecule is able 

to participate in electron transfer to a RG atom at distances smaller than the well 

region has not yet been explored. The theoretically predicted values of the rate 

constants of depolarization of selected NO (X2Π½ , v=0, j) levels in a thermal bath of 

Ar atoms computed on the highest quality UCCD(T) PESs [44], (as obtained by 

Alexander with NO bond length fixed at its equilibrium value), were found to be 

significantly less than those obtained from experimental observation [46]. This 

discrepancy between experiment and theory is still to be explained.  

Examples of experimental quantum state resolved rotationally inelastic DCSs 

for which MQQT could offer additional insight are:  

1) Hexapole quantum state selected NO scattered from He at Ecol=510 cm-1 (63.2 

meV) [33]. 

2) Hexapole quantum state selected OH scattered from Ar at Ecol=500 cm-1 (62.0 

meV), and from He at Ecol =460 cm-1 (57.0 meV ) [39]. 

3) Electronically resonant quantum state specific excited NO (v = 0, N = 0, A2Σ+) 

scattered from Ar [37], He [84, 85] and Ne [85, 86] at respectively Ecol =855 cm-1  

(230 meV), Ecol =382 cm-1 (47.4 meV ) and Ecol =488 cm-1 (60.5 meV). 

4) Asymmetric top H2O supersonically cooled down to its para and ortho 

rotational ground states scattered from He at Ecol =429 cm-1 ( 53.5 meV) [35, 36].  

5) H2O and its isotopomers scattered from He, and from para j=0 and ortho j=1 

H2 at collision energies around 500 cm-1 (62 meV) [35, 38, 83].  

6) Hexapole quantum state selected NO(X) scattered from Ar at Ecol =530 cm-1 

(66 meV) [25, 45] and from Ne at Ecol=540 cm-1  (68meV) [74], These latter 

experimental results offered an additional level of detail by including the scattering 

angle dependent alignment of the rotational angular momentum of the NO molecule 

following a rotationally inelastic collision [87], and were all found to agree well with 

quantum mechanically exact and QQT predictions [44, 88, 89]. 

7) Most recently, hexapole quantum state selected ND3 scattered from He at 

Ecol=430 cm-1 (51.8 meV) [90] and quantum state selective rotationally inelastic 
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DCSs of the reactive CH3 and CD3 radicals scattered from He at 425 cm-1 (52.7 meV) 

and 440 cm-1 (54.6 meV) respectively [76].  

It is expected that in the near future, as pioneered by Tkáč et al [90], such studies 

will become possible over an extended range of experimental collision systems 

which may be even more chemically distinct than those explored thus far [25-27, 31-

39, 41, 42, 45, 70-72, 74, 75, 83, 84, 86, 91]. The modified QQT model proposed in 

this work is presented as a potentially valuable tool by which further insight can be 

obtained into the nature of the collision energy dependent quantum mechanical 

interference phenomena that play an important role in molecular rotationally 

inelastic scattering events. The QQT treatment is quite versatile, being applicable to 

any collision between a particle and a linear or (a)symmetric top rotor, provided that 

the collision energy employed is significantly greater than the attractive interactions 

existing between the two particles. Because it directly calculates the differential 

cross-section from the scattering amplitude, without recourse to the intermediate of 

the scattering matrix produced by most quantum mechanical methods, it also offers 

an alternative physical insight into the scattering problem, which may be of use in 

the interpretation and understanding of the collision dynamics. 

In summary, the Modified QQT provides additional insight into the relation 

between the Vsum NO(X)-He PES and the rotationally inelastic quantum state 

resolved QM exact DCSs, by quantifying the effective shape of the equivalent hard 

shell  PES experienced by the atom-diatom system during the course of the 

collision. The differences between the rotationally inelastic RQQT and MQQT DCSs 

and ICSs are expected to be more dramatic when the anisotropy of the repulsive PES 

contour exhibits a more significant dependence on the effective collision energy. 

There is a substantial variety of linear and non linear molecules for which quantum 

state resolved DCSs for collisions with Rare gas atoms or quantum state selected 

target molecules have been (or are being) explored. Modified QQT will prove a 

useful and numerically inexpensive tool to acquire insight into the repulsive regions 

of the PES that are most instrumental in determining the scattering dynamics, and 

most responsible for any differences observed between the theoretically predicted 

and experimentally observed DCSs.  
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Appendices

3.A Explicit expressions for the MQQT phase shift, flux normalized 

scattering amplitude, DCSs and ICSs. 

The MQQT phase shift is defined (as in RQQT, but distinct from QM) as the phase 

difference between (1) the path of the incoming wave k which is (inelastic) scattered 

from the shell at the impact position 
mod (cos ;cos )S aR    into an outgoing wave k' 

and (2) the virtual reference path in which the incoming wave k is scattered at 

0R S  into an unperturbed outgoing wave k' which leads to [72] 

 mod mod

0.5 ( ; , ) ( , ) (cos ; ) ( , ) ( ; )j j a a S ap p K p R              mod

S
a R , (3.A.1) 

in which, 

 
2

1

21 2

( , ) [ ( 1) ]

| cos | ( 1) | cos |

p

p

j

K p k k

k k E




 



 





  

   
, (3.A.2) 

the so called kinetic factor, which depends only on p and β and 

 
mod modˆ( ; ) ( ) (cos ; ) (cos ; )cos( )S a a a S a R aR R            mod

S
a R , (3.A.3) 

denotes the surface normal projected PES contour radius vector, which depends both 

on a  and β in the case of MQQT and solely on a  in the case of RQQT because 

mod(cos ) (cos ; 180 )reg

S a S aR R      . 

Note that only paths (differentiated by the polar angle a ) from an initial and 

to a final rotational state scattered into the same β, p and a  apse frame parameters, 

are allowed to interfere with each other. Eqs. (3.A.1), (3.A.2) and (3.A.3) jointly 

imply: 
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0.5
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 

. (3.A.4) 

The apse frame MQQT scattering amplitude follows as: 

 

mod

0.5, , 0.5, , , 0.5,

mod

mod
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, , 0.5, | ( ; )

  exp[ ( ; , )] | 0.5, , 0.5,
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a geom a
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g p

j m g

i p j m

 
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  

   
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     
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. (3.A.5) 
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The MQQT fixed-molecule scattering amplitude for a particular j=0.5 to j’ 

transition, extends from that of a RQQT fixed-molecule transition [72]: 

 mod mod mod

0 ( ) 0.5( ; , ) ( ; )exp[ ( ; , )]E E j a geom a j j ag p g i p           , (3.A.6) 

where 

 
mod mod mod

1 2( ; ) | cos | ( ; ) ( ; )geom a a ag          , (3.A.7) 

denotes the geometric scattering amplitude. The MQQT hard shell principal radii of 

curvature 
mod

1 ( ; )a     and 
mod

2 ( ; )a     differ from the RQQT values by 

depending on β, while the MQQT phase shift mod

0.5 ( ; , )j j a p   
 exhibits a different 

dependence on β [22, 24]. 

To obtain the MQQT apse frame scattering amplitude, the product of 

mod

0 ( ) ( ; , )E E j ag p     and , , 0.5, ,( , ) ( , )
a aj m a a j m a a    

      is integrated over the 

full range of the spherical angles of the molecular axis ( a  and a ): 

 

2 1

mod mod
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  , (3.A.8) 

It is only when that a am m  the integral of the product of the NO rotational 

wave functions of Eq.(3.A.8) is not necessarily equal to zero. The product of the two 

wavefunctions can be contracted to [22, 24] 

 
 

, , 1/2, , ,
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/24 2
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a a a aj m a a j m a a m m
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

  

 

  

 

 

.  (3.A.9) 

Note that the ma conserving Eq. (3.A.9) is proportional to the Legendre 

polynomial (cos )n aP   where n denotes the parity pair number 

 / 2n j    . (3.A.10) 

Consequently the dependence upon β and p of the 1   , j = ½ MQQT DCSs 

scattered into the parity pair 1    , 0.5j n    and 1     , 0.5j n    

rotationally excited states are similar [22, 24, 25, 33, 45, 57, 58, 71, 74]. The 

rotationally inelastic apse frame DCS corresponding to scatterings from the 

1 1
2 2
,  ,  aj m     initial rotational quantum into the 

1
2

, ,aj m     rotationally 

exited quantum state is then given by 



Chapter 3. The modified QQT of NO-He scattering 

64 
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0.5, ,( , ) | ( , ) |
j j

norm j j
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d
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 
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

  

   , (3.A.11) 

where 
mod

normC  denotes the normalization factor which ensures that the total collision 

cross section summed over all the rotational states is equal to the geometric ICS 
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, (3.A.12) 

where the geometric DCS in the case of 
1
2

j   follows from 
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

  . (3.A.13) 

The integral quantum state resolved rotationally inelastic modified QQT ICS is 

given by 

 

mod0
0.5, ,mod
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To transform a MQQT or RQQT apse frame DCS into a collision frame DCS 

one employs [72]： 
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. (3.A.15) 

The smallest scattering angle    of the p=1 range for which ( )
i fd

d






  

remains classically allowed matches the largest scattering angle θ of the classically 

forbidden p=2 range. At    
cos

0
cos

d

d




  and so ( ) 0

i fd

d







  [72]. 

Moreover the classically forbidden but Feynman path allowed p=2, θ range gives 

rise to a sharp maximum of all rotationally inelastic QQT DCSs at 0   because 

the denominator of Eq. (3.A.15) reaches its minimum, 
2[ ]k k . The value of θ>0 

at which the QQT DCSs maximizes again increases with j’ [72]. The forward 
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peaking in the classically forbidden region at 0   of all MQQT and RQQT DCSs 

is an unphysical artifact especially for 
5

2
j  . The exclusion of the p=2 classically 

forbidden region leads only to a 4.3% increase of the (close to unity) value of 

mod 1.276normC   0.2414Mod

geom  (Ǻ2) and to an even smaller 3.1% raise of the RQQT 

counterpart value 1.238reg

normC  and 0.2121reg

geom   (Ǻ2). 

3.B Legendre expansion coefficients 

The Legendre expansion coefficients of a contour of the Vsum PES ( ; )Mod

S aR    were 

numerically obtained from Eq. (3.B.1) below or from Eqs. (3.C.2) and (3.C.10),  

 

1

2 1

2

1

(cos ) cos ( ; ) (cos )Modn
n a S a n aC d R P    



  . (3.B.1) 

Eq. (3.B.1) applies to the case of a smooth convex MQQT PES contour for 

which the functionality ( )R a   is valid, which holds for all MQQT He-NO(X) PES 

contours with 
min 101.45convex     . The partially concave contours of the He-

NO(X) hard shell PES in the case of min90 101.45convex       are reminiscent of 

the so called “rabbit ears” that dominate the softer repulsive parts of the full NO-He 

PESs [43]. The node between these “ears” near cos 0R   corresponds to the node 

of the π* lobe of the anti-bonding unpaired electron orbital of the NO molecule [43]. 

The one electron π* lobe charge density is deemed to be much lower than that 

provided by the closed shell electrons of the NO(X) molecule. This leads to a Pauli 

repulsion softening at the π* lobe parts of the He-NO(X) PES, which remains absent 

at the node of the π* lobe at cos 0R  . The Legendre expansion coefficients in this 

example of partially concave contours were obtained numerically by the choice of a 

proper integration path specified by Eqs. (3.B.1) and (3.C.2). The vertical dotted 

lines in each panel of Fig. 3.A indicate the minimum value of 
2coscolE  , at which 

a 
1
2

j j  
  

transition becomes energetically allowed. The particular value of 

2coscolE 
 
at which each j  transition becomes allowed is indicated below the 

horizontal axis, and the corresponding apse angle β is shown just above the upper 

horizontal axis. The 0 ( )nC   curves depicted in Fig. 3.A range between about -0.3  
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Figure 3.A: The dependence of the modified QQT Legendre polynomial expansion 

coefficient (cos )nC   of NO(X)-He at Ecol =508 cm-1 on the fraction of the collision 

energy available for rotational excitation 
2coscolE   . The dashed vertical lines 

denote the energetic threshold at which the rotationally inelastic transition j  is 

energetically allowed. Note that the upper horizontal scale marks also the values of 

β. In the case of Δj 0  and ε'= ± ε at one has 2    [24]. 

 

and 0.69 bohr. All ( )nC 
 
curves were found to depend most strongly on β in the 

concave range min90 101.45convex       . The ( )nC 
  

curves become nearly 

stationary for larger β or exhibit a weak linear slope in their dependence upon 

2cos   . The low order even C2 and C4 and odd C1 and C3 coefficients, are the 

dominating anisotropic coefficients of the NO(X, v = 0)-He MQQT shell PES. Note 

that the actual value of the (by far largest) C0 coefficient relates solely to the 

rotationally elastic scattering DCS. Its actual value is irrelevant for the sought after 

rotationally inelastic MQQT DCSs.  
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which includes collisions that probe partially concave PES contours, the absolute 

values of the four dominant Cn hard shell Legendre coefficients decrease rapidly if 

2coscolE    increases. Note that at this particular range it is only the 2j   

inelastic DCSs that are energetically allowed. In more detail, the prescription of Eq. 

(3.2) restricts the probing range of the partially concave Vsum PES contours to: 

2 1cos 20colE cm   , 1 2 15.016 cos 20colcm E cm     and 113.38 cm   

2 1cos 20colE cm   respectively for the 0j  , 1j   and 2j   (in)elastic 

DCSs. All /2 (cos )n jC       expansion coefficients obtained in this lower PES 

concave range of 2 10 cos 20colE cm    were found to join perfectly with those 

obtained from the "upper" PES contour range 120 cm 
2coscolE   1508 cm . 

As can be seen from Fig. 3.A, at this upper range, the C2 and also the much smaller 

valued C5 and C6 coefficients remain nearly constant, while the absolute values of 

C1 and C3 and C4, decrease with increasing 
2cos   . Moreover, by definition at 

2cos 1   the MQQT Cn coefficients are identical to those of RQQT. 

 3.C The Legendre moments and the scattering amplitude of a 

partially concave shell 

To apply the MQQT and RQQT of the rotationally inelastic collision problem onto 

a partially concave PES contours Eqs. (3.A.2) and (3.A.3) do not suffice. As was 

already noted in Section 3.2, the He-NO(X) PES contours given by 

 
mod 2{ [cos (cos ); ]} cosS a R colV R E    ,  (3.C.1) 

turn out to be partially concave for min90 101 45convex     . .  

For convenience we define the generalized function 

 
mod

0 ( ) , . 0.5, .

[cos (cos ); , , , , , , ]

( ; , ) ( , ) ( , )
a a

a R a

E E j a j m a a j m a a

F p j m n

g p  

    

      

    

 
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, (3.C.2) 

and 

 
2 1

2

[cos (cos ); , 0, , , , , ]

( ; ) (cos )

a R a

Modn
S a n a

F p j m n

R P

    

  

 


, (3.C.3) 

which represent respectively the integrand of Eq. (3.A.8) in the range of 

min90 convex    . 
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A concave curvature maximum occurs for the particular ( )waist

a R   at which 
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a R
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d

d
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d
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 ,

cos{ [cos ]}
0

cos

a R

R

d

d

 



 
  (3.C.4) 

where Δ denotes an arbitrary positive infinitesimal small number. Convening to the 

definition given in Section 3.3.1 this (local) concave curvature maximum is called a 

"waist" for brevity. In our NO(X) + He example there is maximally up to one such 

waist permitted for each of the 10 508sumV cm   PES contours. The functionality 

cos (cos )a R 
 
for the example of β = 90°, depicted in Fig. 3.B, shows that the PES 

contour mod (cos ; 90 )S RR       exhibits a concave interval that ranges from 

cos 0.1219R     to cos 0.1482R    or from 97.00R     to 81.59R     at 

which cos a   varies between cos 0.0855a     and cos 0.0933a     or a  

between 94.90º and 81.59º. Note this concave range covers a ≈5.5° range of R , at 

which a  varies by only 0.45°. Moreover note that the selected β=90º apse angle of 

Fig. 3.B designates the extreme case of a glancing collision which scatters into θ=0 

direction, for which only the 0, 1j         transition is classically allowed. 

Eq. (3.2) shows that for kinematic reasons the apse angle β range which permits the 

1
2

j j    rotational transition MQQT restricts its impact onto hard shell PES 

contours for which: 

 1 cos cos ( ) ( ) / colj E j E        , (3.C.5) 

Since the 
mod (cos ;cos )S RR    contours were found to be purely convex only if 

min 101.45convex     or mincos cos 0.2079convex    , the range of partially concave 

PES contours is limited to  

 
10.2079 cos cos ( ) ( ) / 508j E j cm        , (3.C.6) 

or 

  1

minarccos ( ) / 508 101.45convexE j cm       . (3.C.7) 
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Figure 3.B: The relation between cos a  and cos R  of the modified He-NO(X) 

hard shell contour 
mod (cos ;cos 0)S RR     given by  , 0sum RV R   . The concave 

waist of this particular contour is the largest one among the modified shell contours 

of the He-NO(X) collision system. The function cos (cos )a R  , as shown in the 

figure, reaches a local maximum 
,maxcos 0.0855a    (indicated by a red dashed 

vertical line) at 
1

cos( ) cos( ) 0.1219R R      (indicated by a black horizontal 

arrow). Thereafter cos (cos )a R    decreases monotonically till 2cos 0.0523R   

(indicated by a black arrow)  a local minimum 
,mincos 0.0993a    (indicated by 

a red dashed vertical line) is reached. Having passed this minimum cos (cos )a R   

increases monotonically passing the local maximum 
,maxcos 0.0855a     at 

3cos 0.1482R   to its largest allowed value of cos 1R  . Concave waists in the 

He-NO(X) contours persist up to 
mod[cos ;cos( 102 )] 0.208S RR       . 

 

Since 1
2

cos ( ) 0j     , 3

2
cos ( ) 0.0995j      and 5

2
cos ( )j  

0.1626    are all larger than and 5

2
cos ( ) 0.2227k j       is smaller than 

mincos 0.2079conv    , only the rotationally (in)elastic DCSs to the 
1
2

j   , 
3

2
j   

and 
5

2
j    final rotational states, are influenced by the concave part of a PES 

contours at forward scattering angles with cos 0.2079   . Upon the substitution 

of Eq. (3.2) into Eq. (3.3) one obtains: 

 cos sin   . (3.C.8) 
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The substitution of the values 
5

2
cos ( )k j     into Eq. (3.C.8) results in 

collision frame cutoff angles of
1
2

( ) 0j      , 
3

2
( ) 5.71j       and 

5

2
( ) 9.36j     . 

As the modified hard shell PES is partially concave in the range 

90 101.45     provisions have to be taken to ensure that 
mod[cos ( ); ]S a RR     

is assigned to a unique value of cos a . To meet this requirement, as shown for the 

β=90º example of Fig. 3.B, the modified QQT hard shell PES, is divided into the 

following intervals of cos a : 

a) 11 cos ( ) cos [cos ( )]a R a R        

where 1cos [cos ( ; )]a R j     denotes the local maximum of cos a  that occurs 

at 1cos ( 90 ) 0.1219R       in Fig. 3.B, which shifts towards a larger value when 

one increases β. The first local maximum disappears if β > 102°. 

b) , 1 2cos [cos ( )] cos ( ) cos [cos ( )]a R a R a R          

where 2cos [cos ( ; )]a R j     denotes the local minimum of cos a  that occurs 

at 2cos ( 90 ) 0.0523R      in Fig. 3.B, which shifts towards the local maximum 

when one increases β. The first local minimum disappears if 101.45   .  

c) 2 3cos [cos ( )] cos ( ) cos [cos ( )]a R a R a R          

where 3cos [cos ( ; )]a R j     denotes the value of cos a  that coincides with 

the local maximum 1cos [cos ( )a R   , but occurs at a larger value of 3cos ( )R   

than that of 2cos ( )R   .The difference between 3cos ( )R    and 2cos ( )R   

decreases when increasing the value of β. The coincidence with the local maximum 

disappears if 101.45   . 

d) 3cos [cos ( )] cos ( ) 1a R a R       

To facilitate a numerically exact outcome for the integral of the function 

[ ,cos (cos ); , , , , , ]a R aF i p j m     
  

in the range of 90 101.45      of the 

modified hard shell PES, the integration path is divided into one of three partial 

integrals, the boundaries of which are chosen according to the prescriptions of a), b) 

and c) and d). The summation of these partial integrals results in the integrals 
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 1
2

mod

min min, , , ,
( , ) [ 1; , , ', , , , 0]

a a

convex convex

aj m j m
g p I i p j m n

 
     

  
     , (3.C.9) 

and 

 
min min( , ) [ , , ', , , , ]convex convex

n aC p I p j m n        , (3.C.10) 

and 

 

1

1

2

min

cos{ [cos ( )]}

2 1
min2

1

cos{ [cos ( )]}

min

cos{ [cos ( )]}

[ , , ', , , ]

cos [cos (cos ); , , ', , , ]

cos [cos (cos ); , , ', , , ]

co

a R

a R

a R

convex

a

convexn
a a R a

convex

a a R a

I p j m n

d F p j m n

d F p j m n

d

  

  

  

  

     

     





 


   



  







2

1

min

cos{ [cos ( )]}

s [cos (cos ); , , ', , , ]

a R

convex

a a R aF p j m n
  

     


  




. (3.C.11) 
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A Quasi Quantum treatment (QQT) of the rotational inelastic NO(X)-He collisions 

in the pure Hund’s case (a) spin orbit state conserving transitions is extended to the 

mixed Hund’s case spin orbit state conserving and changing transitions. To enable 

this extension a polar and azimuthal angle dependent intermolecular hard-shell PES, 

SRRSS ERV ),,(  , has been developed. The DCSs and ICSs calculated by QQT are 

compared with those obtained from QM exact calculations onto a full R-range ab 

initio PES. The rotationally inelastic scattering of NO(X) from He presents a 

paradigm for the rotationally inelastic scattering at a thermal collision energy of 

molecules residing in a   electronic rotational eigenstate. 

 

 

  

4. A Quasi Quantum Treatment of the Spin-

Orbit state changing and conserving 

rotationally inelastic NO(X)-He collisions  
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4.1 Introduction 

The Quasi Quantum Treatment (QQT) of the rotationally inelastic collision problem 

circumvents the elaborate step, required for QM exact numerical calculation of 

expanding the wave function into a summation of numerous spherical waves [1, 2, 

54]. It uses a kind of Feynman path integral method that exploits the path length 

differences originating from the difference orientations of an anisotropic molecule, 

which provides valuable physical insight into the distinct interference structures 

reflecting different sensitivities to various specific isotopic terms in the interaction 

potential, while requiring very little computational effort [22, 24, 25, 27, 72, 88, 92]. 

The QQT method introduced by Gijsbertsen et al. [22], succeeded for the first time 

to demonstrate a physical mechanism for the remarkable sign alternation of the steric 

asymmetry (SA) of the rotationally state resolved inelastic integral collision cross 

sections (ICSs) between even and odd changes in the molecular rotational quantum 

number j. More recently, Zhang et al. [72] revealed a QQT-derived scaling 

relationship between DCSs calculated at two different collision energies. This 

scaling performs extremely well to the more general QM calculation. Even the rapid 

oscillatory structures in the forward-scatted region, where the attractive part of 

potential is known to be important, were correctly accounted for. This successful 

application of the QQT collision energy scaling formalism reinforces the evidence 

that the NO-He rotationally inelastic DCSs depend sensitively on repulsive part of 

PES. This repulsive part is the most difficult to predict accurately from the ab initio 

calculations [54]. Furthermore, we modified the QQT method for the spin orbit state 

conserving collisions to consider the softness of the repulsive part of the anisotropic 

atom-molecule PES [92], in which the contour of the PES is chosen such that the 

height of the potential energy barrier is just large enough to reflect the incoming 

kinetic energy. The MQQT DCSs exhibit much better agreement with the QM DCSs 

than those obtained using regular QQT, particularly in the forward scattered direction. 

By quantifying the effective shape of the hard shell PES during the course of the 

collision, the modified QQT provides additional insight into the repulsive regions of 

the PES that are most instrumental in determining the scattering dynamics.  

The He + NO(X) rotational inelastic collision problem presents a paradigm for 

the rotational inelastic scattering of a rare gas atom from a NO(X) molecule residing 

in a particular rotational level of its π  open electron eigenstate. The projection 

quantum number Λ = 1  of the NO unpaired electronic orbital angular momentum 

L, and also the projection quantum number 1
2

 =   of the electron spin S onto the 
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internuclear axis commute both with the Hamiltonian of NO(X2Π) molecule, which 

leads to two distinctive spin-orbit states; the lowest-lying 2

1/2Π  state with 

1
2

+ =     and the ~123 cm-1 higher energy residing 2

3/2  state with 2
3 . 

The wave function of NO may be written as a product of an electronic orbital 

part | ,n   , an electronic spin part | ,S    and a rotational part | , ,j m   as 

1
2

| , | , | , ,n S j m        [60]. The spatial inversion operator, sp
i   commutes 

with the rotational Hamiltonian of NO(X) molecule as [ , ] 0ROT spH i . At each 

rotational level of , j , one has the possibility to form a rotational eigenstate with 

even or odd parity. For reasons of compactness, | , ,j m   is written to indicate the 

NO rotational wave function. In the limit of Hunds case (a), the rotational eigenstates 

of NO(X), which are also eigenstates of sp
i , may be written as: 

 1

, , , 2
[ | , , | , , ]

j m
j m j m





       , (4.1) 

where the spectroscopic parity index or symmetry index = 1    express the 

relation between the geometrical properties of the unpaired electron and Λ- doublet 

levels which relates to the parity as [60] 

 /2( 1) jp   . (4.2) 

Note that a linear molecule as NO possesses only two rotational degrees of 

freedom. Its non-zero angular momentum projection quantum number Ω reflects the 

electronic part of its wave function.  

However, the Hund’s case (a) coupling scheme is only exact if j=0.5. As j 

increase, it starts to break down as L and S become uncoupled from the nuclear axis, 

and the rotational wave function of the 1 2   and 3 2   states will mix, and it 

becomes more accurate to write the rotational wave function for each spin-orbit 

manifold as [60]: 

 31
1 2 2

| , , , | , , , | , , ,j jF j m a j m b j m          , (4.3) 

 3 1
2 2 2

| , , , | , , , | , , ,j jF j m a j m b j m          , (4.4) 

where the probability amplitude 

 
2 21

2

1 1
1

2 4(   )  4
j

Y
b

j Y Y

 
  
    

  with  0

0

A
Y

B
 , (4.5) 
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 21j ja b  , (4.6) 

quantifies the degree of mixing between the spin-orbit ground 
2
1  and exited 

2
3  states. In our case of the NO (X2Π) molecule, its rotational eigenstate energy 

levels follow from [60]: 

 2 21 1 1 1
0 2 2 2 2

( ; ) [( )( ) 4( ) 4 ]iE F j B j j j Y Y        , (4.7) 

with Y=A0/B0, and A0=123.13 cm−1, and B0=1.6961 cm−1 [59]. The ± in Eq. 

(4.7) distinguishes between the upper spin-orbit manifold F2 (‘+’, mostly 2Π3/ 2) 

and the lower spin-orbit manifold F1 (‘−’, mostly 2Π1/ 2  ) as confirmed by Table 

4.1. 

In the present chapter a quasi-quantum treatment of rotational inelastic NO(X)-

He scattering is applied both for spin-orbit state conserving and exciting transitions, 

especially the quantum state resolved DCSs and ICSs of spin-orbit state exciting 

rotationally inelastic collision are for the first time predicted in the limit of mixed 

Hund’s case, in which Hund’s case (a) and case (b) are mixed together. The chapter 

is laid out as follows, the essentials of the two angular variables depending 

intermolecular Born-Oppenheimer adiabatic PES are described in Section 4.2.1 

There it will be shown that it is the equipotential curve that enables a numerical QQT 

calculation of the rotational quantum state resolved scattering amplitude. The QQT 

theory of the rotationally inelastic collision problem on spin orbit state conserving 

and changing transition is described in section 4.2.2 and 4.2.3 respectively. In section 

4.3 the QQT predicted rotationally inelastic differential and integral cross sections 

are compared with those obtained from QM exact calculations. This is followed in 

Section 4.4 by the conclusions. 

4.2 Quasi Quantum Treatment of the rotational inelastic 

collision problem

4.2.1 Hard shell anisotropic PES 

To help better understanding of the inelastic scattering of the NO molecule, it 

is helpful to consider its ground state electronic structure, as well as the 

features of the He–NO(X) interaction potentials. Description of the interaction 

between NO and a rare gas atom is quite complicated, from the fact that the 

ground state of the NO radical is of 2Π symmetry. In order to describe the He-

NO system one must construct two angle-dependent intermolecular Born-

Oppenheimer adiabatic potential energy surfaces. This is because the reflection 

operator with respect to the plane of the three nuclei commutes with the   
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Table 4.1: The mixing coefficients aj and bj and the corresponding energy of the F1 

and F2 rotational states of NO molecule [93]. 
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electronic Hamiltonian of the He–NO system, with the consequence that the 

electronic eigenfunction of the system will be symmetric or antisymmetric with  

respect to reflection in this plane. This leads to the A  symmetry 

configuration of the Born-Oppenheimer PES, ( )V A , in which the unpaired 

electron π-orbital of NO points in the plane of the three atoms, and the A  

anti-symmetric PES, ( )V A , in which the π-orbital of NO points perpendicular 

to the nuclear plane. At small intermolecular separations, R, the Pauli repulsion 

between the He atom and NO will be larger when the π-orbital lies in the plane 

of the three atoms, i.e. ( )V A  is more repulsive than ( )V A . Alexander [54, 

94] has shown that half the sum and half the difference of these two potentials are given 

by 
1

( , ) ( ) ( )]
2

sumV R V A V A   [  and 
1

( , ) ( ) ( )]
2

difV R V A V A   [  respectively. 

The spin orbit state conserving transitions are governed by the sum potential and the 

spin orbit state changing transitions are governed by the difference potential. Moreover, 

the accuracy of the NO(X)-rare gas atom ( , )sum RV R   and ( , )dif RV R   PESs 

improved over the years [43, 44, 65, 85, 94-96], which enhanced the accuracy of the 

theoretically predicted NO(X)–rare gas atom DCSs [25, 26, 33]. The most recent 

high-quality ab initio PESs of NO(X)-He, as obtained by Kłos et al. [43, 57], are 

applied in the present paper.  

Up till now we treated the rotational energy transfer as dominated by the more 

repulsive spin orbit state conserving interaction potential ( , )sum RV R . Following 

Alexander [54, 94], to also include the difference potential, an effective potential which 

replaces the two discrete potentials by one effective potential which contains an extra 

angular variable, the azimuthal angle R  has been used: 

 

( ,  ,  ) ( , ) ( , )cos  (2 )

1 1
( ) ( )] ( ) ( )]cos  (2 )

2 2

R R sum R dif R R

R

V R V R V R

V A V A V A V A

    



 

      [ [
, (4.8) 

As shown in Fig. 4.1, 0R   corresponds to the lobe in the three atoms of 

NO-He plane potential ( )V A  and / 2R   corresponds to the lobe-out-of-

plane potential ( )V A . 

The QQT method can be used to describe rotational inelastic collision between 

a molecule and a closed shell atom, when their interaction is approximated by one  
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Figure 4.1: A snapshot of an incoming He atom in collision with a NO molecule. 

The orientation of the molecular axis rNO together with the orientation of the π-orbital 

lobe of the unpaired electron of the NO molecule determines the strength of the 

intermolecular potential at each fixed value of intermolecular separations. Note that 

the blue arrow (the direction of vrel) typically does not reside in the plane of the three 

atoms [23]. 

 

anisotropic hard shell energy surface. In our case of NO(X)-He collision, previously 

only the PES contour of the Vsum potential equal to the collision energy 

( , )sum R SV R E   was taken into account. This contour can be described well the 

spin-orbit conserving transitions, where the electronic part carries a cylindrical 

symmetric electron density probability around the molecular axis, which makes R  

redundant. But for a spin-orbit changing transition, the pure Hund’s case (a) scheme 

breaks down. In the present paper, we will extend QQT to also include the Vdif 

potential. This is accomplished by introducing a potential energy surface that not 

only depends on the polar angel R  but also on the azimuthal angle R . For the 

first time QQT is applied to predict the quantum state resolved DCSs and ICSs of 

spin-orbit state exciting rotationally inelastic collision between a He atom and the 

NO(X) molecule. The hard shell contour of PES ( , )R R SR   is given by the 

function: 

 ( , , )R R SV R E   , (4.9) 

in which ES is set equal to 508 cm-1 collision energy considered in this study. The 

schematic representation of the hard shell is depicted in Fig. 4.2, shows that the shell 

is not cylindrical anymore. 
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For 0R   and for / 2R  , as shown in Fig. 4.3, the hard shells 

correspond to respectively the potentials ( )A RR   and ( )A RR  . As can be seen 

from the figure, the ( )A RR   potential is not purely convex. In our previous 

paper [72] we explicitly assumed that the hard shell was convex. This requirement 

is not as strict as it seemed, this will be shown later. 

The vectors and angles relevant for the hard shell collision problem are depicted 

in Fig. 4.4. Most of those vectors have been described in previous work [22, 24, 25, 

27, 72, 88, 92], only those relevant to the current study are summarized here. In the 

case of a hard shell, momentum transfer is restricted to the direction perpendicular 

to the area of the surface, only the component of k parallel to the normal n̂  plays 

a role in the transfer of the translational energy into rotational energy. In QQT one 

addresses the rotationally inelastic collision problem in the so-called kinematic apse 

frame, in which the quantization axis points along the kinematic apse vector 

a k k  . For a hard shell, the apse points along the normal n̂  of the surface. 

Here the k and k’ denote the relative wave-vectors before and after the collision 

respectively. They define a scattering plane. The apse lies in the scattering plane 

where it makes an angle β with k. The apse determines the apse frame  , ,a a aX Y Z  

with ˆ
a Z a  and a k k Y . 

The molecular frame  , ,r r rX Y Z   is determined by the molecular axis, 

N̂OrZ r , and by the orientation of the π-electron lobe, 
r

X , which is assumed to 

points in the direction of this electron lobe. R is the displacement vector pointing 

from the centre of mass of the hard shell to the point of contact. The apse a and R 

make the polar angles a   and R   with respect to the molecular axis N̂Or   and 

their azimuthal angle with respect to this axis are a  and R  respectively. For the 

effect of the collision on the hard shell it is irrelevant whether (in the body fixed 

frame) the scattering plane is rotated around the apse a as long as the apse remains 

the same. Therefore the azimuthal angle a  of molecular axis N̂Or  with respect to 

the apse is irrelevant and the projection of the angular momentum along the apse is 

conserved. 
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Figure 4.2: Three-dimensional schematic representation of the He-NO(X), non-

cylinder symmetric hard shell PES which depends both on R  and R . 

 

 

 

Figure 4.3: The anisotropic hard shell He-NO(X) PES given by 

1508),,(  cmRV RRS    at =0R   and = 2R   , which corresponding to 

( )A RR   and ( )A RR  , is plotted in solid red and blue dashed line respectively. 

The ( )A RR    shell is totally convex but ( )A RR    is concave at R   is 

nearly / 2 . The black dash lines denote one De Broglie wave length apart from 

the minimum hard shell radius at Ecol=508 cm-1 with λD =1.152 a0. 
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Figure 4.4: Depicts the spatial ),( RRSR   and portrait an impact position vector 

(the point of contact) on the shell as well as its apse vector and the spherical angles

aa  , . In the case of an arbitrary hard shell, the apse a is no longer in the molecular 

frame determined by N̂Or  and R. 

 

Note that in the case of pure Hund’s case (a), the QQT spin orbit state conserving 

transitions depends onto the PES of Vsum and not onto the PES of Vdif, hence the hard 

shell does not contain the term that relates to the potential variable a  . The 

cylindrical symmetry of the hard shell implies that N̂Or , R and a must all reside in 

the same plane. However, in the case of a spin orbit state changing transition, the 

hard shell is not cylindrical symmetric. As shown in Fig. 4.4, the vectors N̂Or , R, 

and a are in general not in one plane. Only when 0a   or π, the vector N̂Or  is 

parallel to the scattering plane (the plane containing k, k', and a). 

The molecular frame and the apse frame do not share the same origin. The 

apse frame has its origin in the point of contact and the molecular frame in the center 

of mass of the molecule. When comparing orientations, we will implicitly 

transport the apse frame along the vector R to the origin of the molecular frame. 
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If we need to emphasize this explicitly we will refer to this translated apse frame as 

the apse prime frame  , ,a a a
  X Y Z . 

The molecular frame  , ,r r rX Y Z  follows from the apse prime frame 

 , ,a a a
  X Y Z  through a rotation over the Euler angles ( , , )a a a   . As shown in R. N. 

Zare’s “Angular momentum” monograph [60], the molecular frame can be made to 

coincide with the apse prime frame by three successive rotations: 1) A 

counterclockwise rotation a  about rZ , this carries rY  axis into the line of nodes. 

2) A counterclockwise rotation a  about the line of nodes. This carries the rZ  

axis into the a
Z  axis, where the nodes represent the crossing line between the two 

planes composing of X and Y axis. 3) A counterclockwise rotation of a  about 

( )a r
Z Z . This carries the rY  axis into a

Y  axis. In Fig. 4.4 we choose 0a  , that 

means the line of nodes is taken to coincide with a
Y , in which case the molecular 

axis N̂Or  is parallel to the scattering plane. 

In the case of spin-orbit conserving transitions, the hard shell of NO(X)-

He carries a convex shape everywhere. There is a unique relation between the 

direction of the apse â  in a point on the hard shell and the direction of the 

position vector R pointing to that point. Specifying the orientation of the molecular 

frame with respect to the apse frame then implies specifying the point of contact on 

the hard shell. However, this case is not globally true for the spin orbit state changing 

transitions, where the hard shell is not purely convex, as described in Figs. 4.2 and 

4.3, on the waist of the potential contour near 90 100a
   , the hard shell is 

partially convex and partially concave. Hence, it is impossible to assign the 

particular SR  a unique value of a  and a certain orientation can then be 

applicable to more than one point. One has to combine the contributions from the 

separate patches. This is however not a problem since the contributions from all 

points associated with a certain orientation have to be added together. Details 

have been described in our previous study [92]. 

4.2.2 QQT calculation in spin orbit state conserving transitions 

The QQT theory in spin orbit state conserving transitions has been described in 

previous study [22, 24, 25, 27, 72, 88, 92], only the essentials necessary about the 

methodology are given. As depicted in section 4.2.1, the spin orbit state conserving 

transitions are ruled by the potential Vsum, in which the QQT hard shell contour is 
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cylindrical symmetry. In QQT one address the rotationally inelastic collision 

problem in the so-called kinematic apse frame, in which the quantization axis points 

along the kinematic apse vector a.  

 ( )
     rel rela v v k k . (4.10) 

The magnitude of the outgoing wave vector is determined by the amount of 

collision energy transferred into rotational excitation of the NO(X) molecule 

( ) ( )ROT

j j ROT ROTE E j E j
   , which leads to 

 1 /ROT

j j colk k E E
    . (4.11) 

In contrast to the exact coupled channel QM solution of the collision problem, 

QQT provides a transition moment type expression for the scattering amplitude in 

which the spherical scattering angles   and   are replaced by the spherical 

angles of the kinematic apse β and α. 

For a transition from a specific initial state | i   to a specific final state |f , 

the apse frame scattering amplitude g(β) in spin orbit state conserving transition 

follows from: 
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1

1
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                          exp[ ( ; )] | , , ,
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             ( ) cos (cos )
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                            ( ; )exp[

soco
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j f j i a
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g i
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   

  

  


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





     

    

 






( ; )]a 

, (4.12) 

where ( )C   is a normalization constant to ensure the conservation of flux at each 

value of β, such that the QQT scattering amplitude is normalized with respect to the 

incoming flux. Within the QQT formalism, this coupling is expressed in terms of the 

phase shift, η, associated with each of the scattering paths considered within the 

integral over the angle β. The phase shifts are calculated via the expression 

 ( ; ) ( ) ( ) [ ] ( )cos( )f i a a S R R ak k R         
      

S
a R . (4.13) 

This phase shift is defined as the difference in phase between a path hitting the 

hard shell and an imaginary path which passes through the origin of the collision 

frame. 

Each of these paths is weighted by the so-called molecule fixed geometric 
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dimensionless scattering amplitude ( ; )geom ag    , which allows for the relative 

contributions made to the scattering amplitude for different orientation angles: 

 1 2

( ; )
( ; ) | cos | ( ) ( )

geom

a

geom a a a

a

d
g k k

d

  
      


  , (4.14) 

in which )(1 a   and )(2 a   denote the local radii of curvature of the 

cylindrically symmetric convex surface [24].  

Finally, the QQT state-to-state differential cross section (DCS) in the apse frame 

is given by: 

 
2

2

d 1
( , ) ( )

d

f i

i f

a

g
k


  





 . (4.15) 

The standard QM approach specifies the differential cross-section in terms of 

the collision frame spherical angles ( , )  , while the QQT provides the DCSs in 

terms of the angles ( , )   , defined with respect to the kinematic apse. These 

spherical angles may be chosen such that    . Hence, the apse frame and 

collision frame DCSs are related to one other according to 

  
d d dcos ( )

, ( , )
d d dcos

f i f i

a

   
   

  

 
 . (4.16) 

4.2.3 Extension QQT to the spin orbit state changing transitions 

Now that, the basic framework of the rotational inelastic collision problem have been 

described. It becomes possible to extend the inelastic scattering amplitude into the 

spin orbit state exiting transitions, which requires a polar angle R  and azimuthal 

angle R  dependent intermolecular hard-shell PES, ( , , )R R SV R E   , has been 

developed.  

The scattering amplitude for a single, fixed orientation of the molecular frame 

is given by ( , ; )i f a ag    . It has a phase part 
);,(  aafii

e 
, which provides 

the interference between the paths from different orientations of the molecular 

frame, where each of these paths is weighted by a so called geometrical scattering 

amplitude ( , ; )geom a ag    . Hence the molecule fixed scattering amplitude can be 

written as: 
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 ( , ; ) ( ) ( , ; )exp[ ( , ; )]i f a a geom a a i f a ag C g i            . (4.17) 

The phase shift of a spin orbit state changing transition generated at a particular 

point of impact onto the shell which denoted the spherical angles aa  ,  follows 

from:  

 ˆˆ( , ; ) ( , ) ( ) ( , ) ( , )i f a a S R R S R R S R Ra R k k a R R           
        (4.18) 

or  

 ( , ; ) ( ; ) ( , ; )sum dif

i f a a i f a i f a a              , (4.19) 

in which 

 ˆˆ( ; ) ( ) ( ) ( )sum

i f a S R sum Rk k a R R      
    , (4.20) 

and 

 ˆˆ( , ; ) ( ) ( , ) ( )cos(2 )dif

i f a a S R R dif R Rk k a R R         
     (4.21) 

where RS denotes the distance from the centre of mass of the molecule to the spatial 

position of the rare gas atom at the impact position on the shell which given by the 

spherical angles of 
R  and 

R , and as expected from our earlier remarks, the 

phase shift is independent of a . 

Next, we rewrite the Eq. (4.17) by 

 

( , ; ) = ( ) ( , ; )

exp[ ( ,; )]exp[ ( , ; )]

( ) ( ; )exp[ ( ,; )]
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 



 





 

 

  

. (4.22) 

Note that the factor ( ; )exp[ ( ; )]sum sum

geom a i f ag i       corresponds to the fixed 

molecule scattering amplitude ( ; )sum

i f ag   , which in the case of a spin orbit state 

conserving collision follows from the geometric scattering amplitude ( ; )sum

geom ag    

of the cylindrically symmetric hard shell ( )sum RR  , it only depends on a , while 
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the added factor 
( , ; )

exp[ ( , ; )]
( ; )

geom a a dif

i f a asum

geom a

g
i

g

  
   

 
   leads to the spin-orbital 

changing transition which depends both on a  and a . 

Then the fixed molecule scattering amplitude denotes as: 

 ( , ; ) ( ) ( ; ) ( , ; )sum sobr

i f a a i f a i f a ag C g G           , (4.23) 

where 

 ( , ; ) [ ( , ; ) / ( ; )]exp[ ( , ; )]sobr sum dif

i f a a geom a a geom a i f a aG g g i              , (4.24) 

In the apse frame, geometric scattering amplitude ( , ; )geom a ag    , equals to

( , ; )i f a ag   
, is independent of the initial and of the final rotational state, when 

squared, should be equal to the “geometrical” differential cross section for a fixed 

molecule: 

 1 2( , ; ) ( , ; ) | cos ( , ) ( , ) |
geom

geom a a a a a a a a

a

d
g γ χ β k γ χ β k

d


     


  , (4.25) 

The geometrical differential cross-section was expressed in the local radii of 

curvature ρ1 and ρ2, because of the more general shape of the current hard shell, 

we now express the molecule fixed geometrical cross-section in terms of the 

Gaussian curvature 
21/1 K  [97]: 
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Since the incoming quantum state  amj ,|
2
1   provides an isotropic 

distribution around the molecular axis, the geometrical differential cross section for 

a hard shell is then obtained by integrating Eq. (4.25) over all possible orientations 
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of the molecular frame, taking into account the weight for each orientation, 
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  
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  
   . (4.27) 

To result the spin-orbital changing scattering amplitude ( )sobr

i fg 
 in the 

apse frame, one has to integrate the molecule fixed scattering amplitude  

);,( βχγg aafi  over all the possible orientations of the molecular frame (angles 

aa χγ ,  and a ), while taking into account the probability amplitudes for those 

orientations in both the initial and in the final rotational wave function: 
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(4.28) 

The coupling wave function for the spin orbit state conserving transition has 

been derived before [24, 72] and the same way is followed to get the coupling wave 

function for the spin orbit state changing transitions by the addition of another 

integration angle a  [97]. The scattering amplitude ( )sobr

i fg   follows from [97]: 

In the case of 1 :  
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and in the case of 1 : 
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, (4.30) 

in which the 
n

0,2 ( )ad   is a reduced Wigner rotation matrix element.  

Comparing with the scattering amplitude for the spin orbit state conserving 

transitions, one notice that the Legendre polynomials (cos )n aP   in Eq. (4.12) 
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are replaced by the associated Legendre polynomials 
n 2

0,2 ( ) ( )a n ad P   times 

cos(2χa) in Eqs. (4.29) and (4.30). Moreover, the initial coefficients and 

symmetry index are different. The scattering amplitude for the spin orbit state 

changing transitions is composed by scattering amplitude of the spin orbit  state 

conserving transitions governed by the Rsum potential, which is only depends on 

a  and multiply by another factor. 

As we discussed in section 4.1, in previous studies QQT presumed pure Hund’s 

case (a) rotational eigenstate wave functions which holds only for a NO(X) molecule 

that resides on the j=0.5 rotational ground state and remains close to an exact 

approximation at 1
2

   when 7.5j  . At larger j’, the 1
2

   and 3

2
   spin 

orbit manifold of the NO(X) rotational wave functions mix significantly. This mixing 

process leads to rotational eigenstate wave functions that either belong to the lower 

F1 or to the upper F2 spin-orbit manifold.  

Then in the mixed Hund’s case, the QQT scattering amplitude of the rotationally 

inelastic transition from NO(X)  state to the F1 spin orbit manifold should 

become: 
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
 (4.31) 

And the QQT scattering amplitude of the rotationally inelastic transition from 

NO(X)  state to the F2 spin orbit manifold is given by: 
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 (4.32) 

4.3 Results and Discussion

4.3.1 Differential cross section  

The differential cross sections are calculated by using the QQT method in both the 

pure and mixed Hund’s case coupling scheme at a collision energy of 508cm-1 for 

the rotational inelastic scattering of NO(X) from He. These results are compared 

with those obtained from a QM exact calculation respectively for spin-orbit state 

conserving and changing collisions as displayed in Figs. 4.5 and 4.6. 

The QQT spin-orbit state conserving and spin-orbit state excited DCSs are in 

,
2
1j

,
2
1j
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reasonable agreement with the QM data, reproducing well the relative maxima and 

minima present in DCSs. Since QQT does not include the diffractive contributions 

to its rotational inelastic scattering amplitude, its rotational inelastic DCSs for 

'/ 2 6n j      lack the near forwards 36    intensity. All DCSs display a 

marked dependence on the final rotational state. The agreement between the QM and 

QQT DCSs is poorest at low scattering angles for low values of j’. And for most of 

the outgoing states, the resulting QQT phase shift for both the spin-orbit state 

conserving and changing transitions shift the position of the interference structures 

to somewhat larger scattering angles compared with those predicted using QM exact 

calculations. This is to be expected, as the forward scattering angles are classically 

forbidden in the hard shell model and the QQT model unable to take diffraction 

effects into consideration. Most importantly, the attractive part of the potential plays 

a more important role at glancing, low energy transfer collisions, where the hard 

shell approximation is no longer valid. At larger scattering angles, or for higher 

values of final rotational state, the agreement between the QQT model calculations 

and exact QM theory is substantially improved, suggesting that the approximation 

of the PES by a hard shell becomes reasonable.  

The QQT results more backward scattering for spin orbit state changing 

transitions than that for spin orbit state conserving transitions. This is attributed to 

the weakly attractive nature of the spin-orbit state conserving potential, sumV  , 

coupled with the steep repulsive wall at short atom-molecule distances. In contrast, 

the difference potential, difV  , which is responsible for spin–orbit state changing 

collisions, has considerably more attractive character and hence more softer, so it is 

reasonable to assume that attractive interactions play a more important role in the 

spin orbit state changing DCSs than in the spin orbit state conserving case. Hence, 

one expects the spin orbit state changing collisions would be not so well described 

by hard shell model. 

The so called “parity pairs” for each outgoing rotational state with identical 

/ 2n j     are grouped in Figs. 4.5 and 4.6. As shown by Gijsbertsen et al. [22], 

the ‘parity pairs’ in adjacent j’ final states exhibit a similar dynamical behavior. 

Except for a different pre-factor, they are expected to yield similarly shaped DCSs. 

In the limit of pure Hund’s case (a), this behavior is consistent with the outcome of 

QQT calculation both for spin orbit state conserving and changing transitions.  
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Figure 4.5: Comparision of the spin orbit state conserving DCSs for 

2

1/2NO(X , 0, 0.5) Hev j    from QM calculations (black), QQT calculations in 

pure Hund’s case (a) (green) and QQT calculations in mixed Hund’s case (red) at 

collision energy of 508 cm-1. The solid lines correspond to parity conserving, dashed 

lines correspond to parity changing transitions. 

 

 

Figure 4.6: The same as for figure 4.5 but for spin-orbit changing transitions. 
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However, in the case of mixed Hund’s case, the QQT results show distinct 

differences between parity paired DCSs especially in spin-orbit state changing 

transitions. Since the anisotropy of a spin-orbit state conserving ( , )sum RV R   PES of 

NO(X)-He is about an order of magnitude larger than that of spin-orbit state 

changing ( , )dif RV R    PES. The magnitude of a spin orbit manifold conserving 

rotationally inelastic scattering amplitude 1 1
2 2
, , , , ,a a

soco

j m j m
g

      
  is also much larger 

than that of a spin-orbit state changing scattering amplitude 31
2 2
, , , , ,a a

sobr

j m j m
g

      
. On 

the other hand, in our case of j’<13 and gives from table 4.1, 0.98ja    and 

0.18jb  , bj is relatively small with respect to aj. Then according to Eq. (4.32), the 

magnitude of 31
2 2
, , , , ,
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a a
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j j m j m
a g

 

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 

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  can 

become comparable. The interference between the two terms separates the parity 

pairs. In the case of spin orbit state conserving transitions as follows from Eq. (4.31), 

the magnitude of 1 1
2 2
, , , , ,a a

soco

j j m j m
a g

      
  is much larger than that of 
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j j m j m
b g

 

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. Hence, the latter term renders minor influence on the final 

results. This explains the similar behavior of parity pairs for spin-orbit state 

conserving transition in the case of mixed Hund’s case. Consequently, the DCS of a 

rotationally inelastic transition from the 1
2
,j   initial rotational state to a final 

2 , ,F j   rotational state is more sensitive for its mixed Hund’s case character than 

that to a final 1, ,F j    rotational state. 

4.3.2 Integral cross sections 

Figures 4.7 and 4.8 compare the parity pair / 2n j     dependency of the 

ICSs resulting from the QM and QQT calculations at a collision energy of 508cm-1 

for spin-orbit conserving and changing transitions. The amplitude of the oscillations 

at small n, implies a propensity for parity conservation. The QQT resulting ICSs are 

found to agree reasonable well to those from QM calculations both for spin-orbit 

conserving and changing transitions. At low n, the ICSs for spin-orbit state changing 

transitions are much smaller than those for their spin-orbit state conserving 

counterparts. Moreover, the QQT resulting ICSs are much smaller than those 

predicted by the QM calculations., which reflect the differences between the Vsum 

and Vdif PESs. The difference potential Vdif is generally weaker and softer than the 

average potential Vsum. It is therefore not surprising that the QQT method which is 
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based on the hard shell approximation is unable to result a large enough cross section 

for spin-orbit changing collisions.  

 

 

Figure 4.7: Comparison between QM (Black) and QQT in pure Hund’s case (a) 

(green) and QQT in mixed Hund’s case (red) ICSs for NO(X)-He collisions at Etr = 

508cm-1 at the particular parity pair number n for spin-orbit conserving transitions. 

 

 

Figure 4.8: The same as for figure 4.7 but for spin-orbit changing transitions. 
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4.4 Conclusions 

The QQT is extended rotational inelastic scattering problem from spin-orbit state 

conserving transitions in pure Hund’s case (a) to spin orbit state changing and 

conserving transitions in mixed Hund’s case. The introduction of the azimuthal angle χ 

results a three-dimensional ( , , )V R    PES. Taking the NO(X) + He collision system as 

a paradigm, state-to-state differential cross sections of spin orbit state conserving and 

changing rotational transitions as obtained by QQT and QM numerical calculations have 

been discussed in detail. The qualitative success of the QQT model suggests that the 

outcome of rotational inelastic collision is mainly determined by the repulsive part 

of the potential except for the most forward diffractive scattering angles (classically 

forbidden in the hard shell model). The extension of the QQT model which includes 

the contributions from the spin-orbit changing potential, Vdif, provides a valuable 

insight into the underlying mechanism of the rotational inelastic scattering process, 

and as such provides a focus for future work. 
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State-to-state inelastic collision cross sections are calculated with the quantum-

mechanical close-coupling method for the conversion of para-H2 into ortho-H2 

induced by collisions with O2. Two hyperfine coupling mechanisms in asymmetric 

O2-H2 collision complexes cause para-ortho H2 conversion: i) a different Fermi 

contact interaction for the two H nuclei from different spin densities at these nuclei, 

and ii) a different magnetic dipole-dipole coupling between the electron spin of O2 

and the spins of the two H nuclei. The Fermi contact interaction is evaluated 

numerically by ab initio electronic structure calculations for a large number of 

geometries of the O2-H2 complex, the magnetic dipole-dipole coupling can be simply 

calculated for any geometry. Theoretical para-ortho conversion rate coefficients for 

different temperatures are obtained from the state-to-state cross sections calculated 

at collision energies ranging from 2 to 2000 cm-1; they are compared with 

experimental data measured at room temperature in O2-H2 gas mixtures. 

 

  

5 
 

2 
5. Close-coupling calculations of Para-Ortho H2 

conversion rates by H2-O2 collisions 
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5.1 Introduction 

Hydrogen, H2, exists in two different forms: para-H2 and ortho-H2. Since under most 

circumstances the conversion between these species is extremely slow, they can be 

considered as different molecules. Para-H2 has nuclear spin I = 0, which corresponds 

to a nuclear spin wave function that is antisymmetric under permutation of the 

nuclear coordinates, and ortho-H2 has spin I = 1, which corresponds to a symmetric 

nuclear spin wave function. Since protons are spin I = ½ fermions and the total H2 

wave function has to be antisymmetric under permutation of the nuclear coordinates, 

para-H2 has only even values of the rotational angular momentum j, while ortho-H2 

has only odd values of j. The j = 0 ground state of para-H2 is lower in energy by 

about 120 cm-1 than the j = 1 ground state of ortho-H2. Still, so-called normal 

hydrogen, n-H2, consists of 75% of ortho-H2 and 25% of para-H2 even at very low 

temperature, because the conversion of ortho-H2 into para-H2 is extremely slow. This 

ratio of 3:1 corresponds to the nuclear spin multiplicities of 3 and 1 for the I = 1 and 

I = 0 wave functions, respectively.  

Pure para-H2 can be produced at liquid hydrogen temperature (20 K) by leading 

normal H2 over an iron-containing catalyst, which accelerates the conversion of 

ortho-H2 into the more stable para-H2. Without the catalyst the conversion is very 

slow and the pure para-H2 which is thus produced, can be kept in specially coated 

gas cylinders for weeks, even at room temperature. An important application is the 

para-hydrogen induced polarization (PHIP) of nuclear spins in molecular systems 

[98], which provides enhancements of NMR signals for various nuclei in magnetic 

fields of modern NMR spectrometers by up to 4-5 orders of magnitude. One of the 

major driving forces for the development of the field of hyperpolarization in 

magnetic resonance is its potential application in human MRI research and possibly 

in medical diagnostics [98-100].  

Also paramagnetic species such as O2 can act as a catalyst to accelerate para-

ortho or ortho-para hydrogen conversion. O2 is one of the rare small molecules with 

a non-zero spin ground state. Because of the two unpaired electrons in their anti-

bonding π* orbitals, O2 molecules have a 
3

g

  triplet electron spin ground state and 

thus are paramagnetic. In 1933, Farkas and Sachsse [101] first reported that in the 

presence of molecular oxygen para-hydrogen is converted into normal hydrogen at 

room temperature with a considerable rate.  

Two mechanisms contribute to the O2 catalyzed para-ortho hydrogen conversion: 

magnetic dipole-dipole coupling and Fermi contact interactions. The magnetic 
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dipole-dipole coupling mechanism was proposed in 1933 by Wigner [102]. Actually, 

he stated that an inhomogeneous magnetic field is created by the magnetic moment 

of an O2 molecule, and the spins of the two protons in H2 couple to this field. The 

field is different at the positions of these protons, depending on the distance between 

and the orientations of the H2 and O2 molecules. He estimated the frequency of 

collisions between the molecules and the time they stay close to one another, 

calculated the difference in dipole-magnetic field coupling at a reasonable 

intermolecular distance, and thus obtained an estimate of the conversion rate. In 1995 

Minaev and Agren [103] proposed another mechanism for para-ortho hydrogen 

conversion in collisions with O2. They explained that by the exchange interaction of 

the H2 electrons with the open-shell O2 molecule a small amount of the 3

u

  triplet 

exited state of the H2 molecule is mixed into its 1

g

   ground singlet state. This 

induces spin density at the H nuclei, which gives rise to a Fermi contact interaction 

[104, 105]. In asymmetric collisions the spin density is different at the two nuclei 

and also the Fermi contact interactions are different. Based on some simple 

electronic structure calculations they estimated that for H2-O2 the Fermi contact 

interaction mechanism is more effective about two orders of magnitude than 

Wigner’s magnetic dipole-dipole coupling mechanism. We found a mistake in their 

calculations, however, and estimate that both mechanisms are about equally effective. 

Wigner already showed that the difference in magnetic dipole-dipole coupling 

depends on the intermolecular distance as R-4 and is therefore more effective at long 

range, while the difference in Fermi contact interaction depends on the overlap 

between the electronic charge clouds of H2 and O2, which decays exponentially with 

their distance R and is therefore more effective at short range. 

Recently, in view of the importance of para-hydrogen in NMR, the rate of 

conversion of para-H2 into a thermal equilibrium mixture was re-measured by 

Wagner [106] in gas mixtures of H2 and O2 with different relative concentrations. He 

determined the conversion rate coefficient near room temperature (292K) to be 

1 18.27 1.3 L mol min  .  

The objective of the present research is to investigate this rate coefficient 

theoretically by means of calculations based on first principles. State-to-state 

inelastic collision cross sections and rate coefficients of para-ortho H2 conversion by 

collisions with O2 are calculated by the quantum mechanical close-coupling (CC) 

approach, based on the four-dimensional H2-O2 potential surface obtained from ab 

initio electronic structure calculations by Kalugina et al. [28]. Both mechanisms, 
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magnetic dipole-dipole coupling and Fermi contact interaction are included, with the 

latter also obtained from ab initio electronic structure calculations. In section 2, we 

describe the two coupling mechanisms in more detail. Section 3 summarizes the 

theory of time-independent scattering calculations and gives the computational 

details. The calculated cross sections and rate coefficients are presented and 

discussed in section 4, and our conclusions follow in section 5. 

5.2 Mechanisms of Para-Ortho Hydrogen Conversion

5.2.1 Fermi contact interaction 

When H2 interacts with the open-shell molecule O2, the exchange interaction 

between the molecules induces spin-density also on H2 and leads to a Fermi contact 

interaction [104, 105] with both nuclei of H2. For asymmetric structures of the O2-

H2 collision complex this Fermi contact interaction is different for the two H nuclei, 

which makes these nuclei inequivalent and gives rise to para-ortho H2 transitions. 

The Hamiltonian that describes the Fermi contact interaction is given by [103] 

 2
3 1 1 2 2[ ( ) ( ) ( ) ( ) ]FC e p B NV g g H H H H       I S I S , (5.1) 

where  and  e pg g   are the g-factors of electrons and protons, respectively, and

 and B N    are the Bohr magneton and nuclear magneton. The spin-densities 

1( )H  and 2( )H  are the electron spin-density at nuclei H1 and H2, which are 

calculated by electronic structure calculations with the program MOLPRO for many 

different geometries of the O2-H2 collision complex. The calculations are performed 

at the complete active space self-consistent field (CASSCF) [107] and the multi-

reference configuration interaction (MRCI) [108] level of theory. The MRCI method 

is better but more expensive. The operators ( ) ( )iH iI I  represent the nuclear spins 

of H1 and H2, S the electron spin of O2 with the quantum numbers S = 1 and Ms = 

–1, 0, 1. 

When the spin-densities 1( )H   and 2( )H   are different, the summation 

over nuclei H1 and H2 can be split into terms in which the spatial and spin parts of 

the operator individually are symmetric and antisymmetric under the permutation 

P12 that interchanges the nuclei H1 and H2 

   
  

2
3

1
2 1 2 1 2

1
2 1 2 1 2

        { ( ) ( ) ( ) ( )

      ( ) ( ) ( ) ( ) }.

FC e p B NV g g

H H H H

H H H H

 

 

 

  

  

   

I I S

I I S

 (5.2) 
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The antisymmetric spin factor  1 2( ) ( )H H I I S  couples the I = 0 and I = 1 

nuclear spin functions of para and ortho H2, the antisymmetric geometry dependent 

space factor  1 2( ) ( )H H    is anisotropic and couples the corresponding 

rotational states with even and odd j. So, the product of these antisymmetric factors 

in the operator gives rise to para-ortho H2 conversion. The symmetric operator term 

only couples the states within the para and ortho manifolds, but is negligible in 

comparison with the anisotropic terms in the O2-H2 interaction potential and will 

therefore be neglected. The antisymmetric term, expressed in spherical components 

is 

  1
3 1 2( ) ( ) ( 1) [ (1) (2)] .m

FC e p B N m m m

m

V g g H H S I I           (5.3) 

Since the spin-density on H2 is caused by exchange effects, it depends 

exponentially on the distance R between the centers of mass of O2 and H2. 

5.2.2 Magnetic dipole-dipole interaction  

The O2 molecule, with its two unpaired electrons in π* electron orbitals and total 

spin S = 1, has a magnetic dipole moment. This magnetic dipole moment gives rise 

to an inhomogeneous magnetic field, which for asymmetric structures of the O2-H2 

collision complex is different at the positions of two H2 nuclei. The magnetic dipole 

moments of the H2 nuclei couple with this field. Equivalently, this coupling is 

expressed as a magnetic dipole-dipole coupling between the electron spin of O2 and 

the nuclear spins of the protons in H2. This mechanism for para-ortho hydrogen 

conversion was already proposed in 1933 by Wigner [102], who also estimated the 

rate of para-ortho H2 conversion in collisions with O2 by means of simple model 

considerations. The magnetic dipole-dipole coupling Hamiltonian is, in spherical 

components 

 
2

3 (2)0

1 , ,

1 2 130 ˆ( ) ( )
4 I S

S I

dd e p B N i m i M M

S Ii M m M

V g g R C R I i S
M m M


 







 
    

 
  , (5.4) 

where 0  is the vacuum permeability. We assume that the magnetic moment of O2 

is localized at 
2  Or , the O2 center of mass, and the vectors 

2  ( )i i OR r H r  connect 

the positions r(Hi) of the protons of H2 with 
2  Or . The expression in large brackets 

is a 3-j symbol and 
(2) ˆ( )m iC R   are Racah-normalized spherical harmonics which 

depend on the polar angles ˆ
iR . 
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Again omitting the symmetric part of Eq.(5.4), the magnetic dipole-dipole 

coupling reads 

0

(2) (2)

1 2

, ,

30

2 4
1 2 1

         ( ) ( ) (1) (2) ,
S I I

I

dd e p B N

m m M M M

Ms m M S I

V g g

T R T R S I I
M m M


 


 

 
         

 


 (5.5) 

with the rank 2 dipole-dipole interaction tensors 

 
(2) 3 (2)ˆ ˆ( ) ( )m i i m iT R R C R . (5.6) 

Since the distance between the two hydrogen nuclei is small in comparison with 

the distance R between the H2 and O2 centers of mass, the difference 
(2) (2)

1 2( ) ( )m mT R T R is small and behaves nearly as the derivative of R-3. Hence, the 

magnetic dipole-dipole coupling effectively depends on the O2-H2 distance as R-4. 

5.2.3 Para-ortho H2 spin conversion 

As we discussed in Eqs. (5.3) and (5.5), only the antisymmetric terms in the 

interaction Hamiltonian give rise to para-ortho H2 conversion. This is shown in the 

following simple derivation. 

In para-H2, the nuclear spins are antiparallel and form a singlet state with nuclear 

spin I = 0, which corresponds to the wave function 

  
1

(1) (2)- (1) (2)       for  = 0, = 0
2

II M     , (5.7) 

that is antisymmetric under P12. In ortho-H2 the spins of the two protons are parallel 

and form a triplet state with total nuclear spin quantum number I = 1, with the three 

nuclear spin wave functions 

  

(1) (2)                                 for  =1, = 1

1
(1) (2)+ (1) (2)       for  =1, = 0

2
(1) (2)                                for  =1, = 1

I

I

I

I M

I M

I M

 

   

  

. (5.8) 

The two states for each of the H nuclei 1 and 2 with spin I = 1/2 are represented 

by the eigenfunctions α and β of the spin operator Iz: 
1

2
zI    and

1

2
zI    . 

The corresponding shift operators act on the spin eigenfunctions as 

 ,        ,         0,        0I I I I            . (5.9) 
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By acting with the shift operators on the wave function of para-H2 in Eq.(5.7), 

we get 

 

 

 

1
[ (1) (2)] (1) (2) (1) (2)

2
1

(1) (2) (1) (2)
2

2 (1) (2)

I I    

   

 

  

  

 

, (5.10) 

 

 

 

1
[ (1) (2)] (1) (2) (1) (2)

2
1 1 1 1 1

(1) (2)+ (1) (2)+ (1) (2)+ (1) (2)
2 2 2 22

1
(1) (2) (1) (2)

2

z zI I    

       

   

 

 
  

 

 

, (5.11) 

 

 

 

1
[ (1) (2)] (1) (2) (1) (2)

2
1

(1) (2) (1) (2)
2

2 (1) (2) .

I I    

   

 

  

 



. (5.12) 

We define the normalized spherical components 0 zI I  and 1.I   The relations 

between the latter operators and the shift operators I  are 

 1

1

2
I I   . (5.13) 

So when we act on the I = 0 nuclear spin wave function of para-H2 we get 

  1 1

1
[ (1) (2)] (1) (2) (1) (2) (1) (2)

2
I I          , (5.14) 

    0 0

1 1
[ (1) (2)] (1) (2) (1) (2) (1) (2) (1) (2)

2 2
I I            ,(5.15) 

  1 1

1
[ (1) (2)] (1) (2) (1) (2) (1) (2)

2
I I          . (5.16) 

which are exactly the I = 1 nuclear spin wave functions of ortho-H2. 

Summarizing, the antisymmetric terms in the interaction Hamiltonians with the 

nuclear spin operators Im(H1) - Im(H2) convert the nuclear spin wave functions of H2 

from para- into ortho-H2 
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  I I[ (1) (2)] =0, =0 =1, =m mI I I M I M m  . (5.17) 

Hence, the matrix elements of the antisymmetric spin factors in the interaction 

Hamiltonians are 

   ,=1, (1) (2) =0, =0
II m m I M mI M I I I M  

   . (5.18) 

In addition to the matrix elements over the nuclear spin functions of H2 we need 

the matrix elements of the electron spin operators mS  over the spin wave functions 

=1, SS M  of the O2 molecule. Using equation (5.13), but now for the spherical 

components mS , we easily find that 

 0 ,=1, =1, 
S SS S M M SS M S S M M 

  , (5.19) 

and 

 , 1=1, =1, 
S SS S M MS M S S M   

  . (5.20) 

We did not explicitly include the spin wave functions in the channel basis in our 

scattering calculations. Instead, we used the above matrix elements for the spin parts 

of the Fermi contact interaction and magnetic dipole-dipole coupling terms. Our 

scattering program could not handle the 1m    components of the dipole-dipole 

coupling tensor
(2) ˆ( )m iT R , so we included only the most important term with m = 0 

and the spin wave functions for which this component of the magnetic dipole-dipole 

coupling operator in Eq. (5.5) has a non-zero matrix element. 

5.3 Scattering Calculations

In the present work, we consider the conversion between para- and ortho-H2 in 

rotationally inelastic O2-H2 collisions 

 
2 1 2 2 2  1 2 2O ( ) para-H ( ) O ( ) ortho-H ( )n j n j    . (5.21) 

where the quantum numbers n1 and j2 denote the rotational levels of O2 and H2, 

respectively. Molecular oxygen, O2, with its 3

g

  electronic ground state has total 

molecular angular momentum j defined through the Hund's case (b) coupling 

 1j n + S . We neglect the electron spin-spin coupling within the O2 molecule and 

the coupling of the O2 spin S with its rotation, so we describe the O2 rotational states 

with the quantum number n1. Since 16O nuclei are bosons with spin I = 0 and the 

electronic ground state wave function of O2 is antisymmetric under interchange of 



5.3 Scattering calculations 

 

103 
 

the O nuclei, only rotational states with odd n1 are allowed by the Pauli principle. 

The channel basis in our closed-coupling scattering calculations contains the O2 

states with n1 = 1 – 21, the para-H2 states with j2 = 0, 2, and the ortho-H2 states with 

j2 = 1, 3. We wish to compute rate coefficients up to room temperature, so we 

considered the O2 initial states with 1 1 15n    and the para-H2 initial states with j2 

= 0 and 2 that have a substantial population at room temperature. Rotational state-

to-state cross sections and rate coefficients were calculated for the para-ortho H2 

transitions 2 20 1,3j j    and 2 22 1,3j j   . 

5.3.1 Theoretical methods 

Molecular scattering can be described by the time-independent coupled-channels 

scattering equations [61, 109-113]. With the inclusion of the spin couplings 

described above, the Hamiltonian of O2-H2 can be written in body-fixed coordinates 

as [114] 

 

2 2

2 22 2

1 2 1 2

2 2

H O 1 2

( ) 2( )ˆ
2 2

ˆ ˆ ˆ ˆ ˆ ( , , , )BF BF BF

FC dd

H R
R R R

H H V R V V

 

  

    
  



    

J n j n j J

, (5.22) 

where 
2 2 2 2H O H O/ ( )m m m m     is the reduced mass of the O2-H2 complex, 

1 2  J n j l  is the total angular momentum of the H2-O2 complex, and l is the 

end-over-end angular momentum of the rotation of the molecules around each other. 

We assume the molecules to be rigid with rotational constants 
2HB  and 

2OB  and 

the monomer Hamiltonians are 
2 2

2

H H 2
ˆ ˆH B j   and 

2 2

2

O O 1
ˆ ˆH B n  . The interaction 

between the molecules is described by the anisotropic potential 1 2
ˆ( , , , )BF BF BFV R    . 

The vector R with length R connects the centers of mass of the O2 and H2 monomers. 

The polar angles 
1 1( , )BF BF   and 

2 2( , )BF BF   define the orientations of the O2 and 

H2 monomer axes with respect to the body-fixed frame with its z-axis along R and 

2 1

BF BF BF     . The operators FCV   and ddV   are the Fermi contact interaction 

and the magnetic dipole-dipole coupling Hamiltonians as defined above. 

In the scattering calculations, the potential energy surface expressed in body-

fixed coordinates is expanded in terms of coupled spherical harmonics as [114] 
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BF BF BF BF
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m m

   

   


 
  

 




 (5.23) 

where 
1 2, , ( )l l l R  are the radial expansion coefficients, the functions , ( , )l mY    are 

spherical harmonics, and the expression in large brackets is a 3-j symbol. Because 

both diatomic molecules are homonuclear, only even l1 and l2 contribute.  

The CASSCF and MRCI calculations to obtain the spin densities ( )iH  in the 

Fermi contact term are similar to those for the potential. The spin-density at each 

nucleus of H2 is calculated for a number of geometries sufficient to make an 

expansion of ˆ
FCV  and ˆ

ddV  similar to that in Eq. (5.23) and compute the expansion 

coefficients. Notice that l1 is still even, but l2 is odd now because the spatial operators 

in ˆ
FCV  and ˆ

ddV  of Eqs. (5.3) and (5.5) are antisymmetric under the permutation 

P12. Hence these terms couple the even j2 wave functions of para-H2 with the odd j2 

wave functions of ortho-H2. 

To solve the time-independent Schrӧdinger equation ˆ( ) 0qH E     with 

the Hamiltonian of Eq. (5.22), the coupled-channels wave function is expanded 

 
1

 ( )q p pq

p

U R
R

   , (5.24) 

in the body-fixed channel basis functions given by [114] 

 
1 1 2 2

1 2

1 2 12 , 1 1 , 2 2
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( )

1 1 2 2 12 ,

, , , ; , ( , ) ( , )

                                              , ; , ( , ,0)

BF BF BF BF

p n m j m

m m

J

M K

n j j K J M Y Y

n m j m j K D

    



 

  


,(5.25) 

where 
1 1 2 2, 1 1 , 2 2( , ) and ( , )n m j mY Y     are the rotational states of the molecules O2 

and H2, 1 1 2 2 12, ; ,n m j m j K   is a Clebsch-Gordan coefficient, 12 1 2 j n j   is the 

vector sum of the rotational angular momenta of O2 and H2, and K and M are the 

body-fixed and space-fixed projections of the total angular momentum J of the 

system, respectively. 

By substituting the expansion of Eq. (5.24) into the Schrӧdinger equation and 

multiplying from the left with the channel basis function 
'p  one obtains a set of 

coupled differential equations 
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2

' '2
ˆ( )  ( )p q p p pq

p

U R W U R
R

 





 , (5.26) 

the coupling operator Ŵ  is 

 
2 2

1 2 1 2
H O2

( ) 2( )ˆ ˆ ˆ ˆ2
2

[ ]W E H H V
R




    
      

2 2
J n j n j J

, (5.27) 

with 1 2
ˆ ˆ ˆ ˆ( , , , ) FC ddV V R V V     . 

Solving the coupled-channels equations of Eq. (5.26) with the appropriate 

asymptotic boundary conditions leads to the S-matrix, which contains all the 

scattering information. The state-to-state integral cross sections are calculated from 

the T-matrix as [111] 

 
12 12

12 12

2
( )

, , ;  , , 2
, , , ,1 2

1
(2 1)

(2 1)(2 1)

J

i f i j l f j l

j l j l Ji

J T
n j k


  

 

 
 

 , (5.28) 

where i and f label the initial and final states n1, j2 and n1’, j2’, respectively, ki is the 

wave number of the incoming channel with collision energy Ec. The T-matrix is 

related to the S-matrix through T = I – S, where I is a unit matrix. 

By integrating the state-to-state cross sections over a Boltzmann distribution of 

collision energies, one can obtain the thermal rate coefficients at temperature T 

 
1
2

1 2 1 2 1 2 1 2, , , ,3 3 0

8
( ) ( ) ( ) exp( ) c

B

E

n j n j n j n j c c ck T

B

k T E E dE
k T






      , (5.29) 

where kB is the Boltzmann constant. The cross sections and rate coefficients of 

particular interest in the present study are those in which the initial states belong to 

para-H2 with even j2 and the final states to ortho-H2 with odd j2. The corresponding 

cross sections and rates are smaller by many orders of magnitude than those for 

which the transitions change only the rotational states of O2 and H2 within the same 

para- or ortho-H2 manifold. 

The rate coefficients for the reverse transitions are related by the detailed 

balance conditions 

 1 2 1 2

1 2 1 2 1 2 1 2

, ,1 2
, , , ,

1 2

(2 1)(2 1)
( ) exp( ) ( )

(2 1)(2 1)

n j n j

n j n j n j n j

B

E En j
k T k T

n j k T

 

    

 


  
, (5.30) 

with  

 
1 2 2 2, 1 1 O 2 2 H( 1) ( 1)n jE n n B j j B    ,  (5.31) 
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where 
1 2,n jE   is the energy of the rotational levels, while

2HB  and
2OB  are the 

rotational constants of H2 and O2, respectively. 

By summation of the state-to-state cross sections and rate coefficients over all 

final 1n   states of O2, we obtain the total cross sections and rate coefficients for 

transitions from a specific initial state n1, j2 to final state 2j . 

 
1 2 2 1 2 1 2

1

21

, , ,

1

( ) ( )n j j c n j n j c

n

E E    


 , (5.32) 
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, , ,

1

( ) ( )n j j n j n j

n

k T k T   


 . (5.33) 

After Boltzmann averaging these rate coefficients over different initial n1 and j2 

states and sum over all the final 2j   states, we get the total para- to ortho-H2 

conversion rate coefficients as follows 
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
, (5.34) 

where 
1 2 1 2(2 1)(2 1)n jg n j    is the degeneracy of the n1, j2 rotational levels.  

5.3.2 Computational details 

All the calculations on H2-O2 collisions were carried out by the close-coupling (CC) 

method, and based on the four-dimensional (4D) potential of Kalugina et al. [28]. In 

order to check our calculations, we first performed CC calculations of the cross 

sections and rate coefficients for para-para ( 2 20 2j j    ) and ortho-ortho (

2 21 3j j   ) H2 transitions. The results agree very well with those of Kalugina 

et al. [28]. Here we did not include the para-ortho coupling terms, so there is no para-

ortho-H2 conversion. As far as we know, para-ortho H2 conversion rates in collisions 

with O2 have not previously been calculated, except by Wigner in 1933 who made 

an estimate based on a simple model for the collisions. However, as we mentioned 

in the introduction, they are of great interest in view of the importance of the PHIP 

method to increase NMR signals. Except with the potential of Kalugina et al. [28] 

we also performed calculations with an unpublished H2-O2 potential surface of 

Dawes obtained by private communication. The differences with the results based 
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on the Kalugina et al. potential are insignificant. 

The rotational constants of H2 and O2 adopted here are 
2

1

H 59.3  = 398 cmB   and 

2

1

O 1.437 6= 676  cmB   , respectively. The reduced mass of the system is μ =1.896 

amu. The calculations were carried out at collision energies ranging from 2 to 2000 

cm-1 in order to evaluate state-to-state rate constants up to T = 300K. Convergence 

checks were performed to ensure that the limiting values for n1,  j2, and J do not 

affect the results. The maximum value of the total angular momentum J is set 

differently depending on the collision energy, with the largest value of J being 130. 

The maximum value of the O2 rotational quantum number n1 is 21 to ensure 

convergence of the first 8 (up to n1=15) rotational levels of O2. The second order 

differential equations were solved with the renormalized Numerov algorithm [115, 

116] for the propagation of the wave function on an equidistant grid in R with 288 

points ranging from 4.5 to 50 a0. 

The cross sections and rate coefficients were computed with different para-ortho 

couplings included: 

1. only the Fermi contact interaction calculated at the CASSCF level,  

2. only the Fermi contact interaction calculated at the MRCI level, 

3. only magnetic dipole-dipole coupling,  

4. both the Fermi contact interaction from MRCI calculations and the magnetic 

dipole-dipole coupling. 

We also performed calculations on the reverse ortho-para H2 conversion process 

by using initial j2 = 1 states and final states with j2 = 0 and 2. The results were 

compared with those obtained from detailed balance conditions, see equation (5.30), 

and were found to agree very well.  

5.4. Results and Discussion

5.4.1 State-to-state cross sections 

Figures 5.1 and 5.2 show state-to-state integral cross sections for the H2 transitions 

2 20 1j j    and 2 22 1j j   , respectively, as a function of the collision 

energy ranging from 2 to 2000 cm-1 from initial rotational levels of O2 with 

1 1,5,9,13n   into final rotational levels with 1 1 21n   . Note that also higher 

rotational excitations of H2 ( 2 20 3j j    or 2 22 3j j   ) were taken into 
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account in the calculations, but since the corresponding cross sections are very much 

smaller than those for transition to 2 1j  , we do not show these results here.  

Let us take the 1 1  transition, shown in Fig. 5.1, as an example. This curve 

depicts the cross section for para-ortho H2 transitions from 2 20 to  1j j   that is 

elastic in O2: from 1 11 to  1n n  . Notice that no para-ortho H2 conversion occurs 

until the collision energy is sufficiently high to surmount the excitation threshold, so 

for this1 1  transition the channel opens up when the collision energy is larger 

than
2

1

H2 120 cmB   . As for the 1 3  transition, it starts at higher energy because 

it needs more energy to surmount also the excitation threshold of O2. With increasing 

O2 rotational excitation the channels open later. The first column of Table 5.1 shows 

the energies at which each channel opens for transitions from the initial 

21 1, 0jn    state to all the final rotational states 1 21 21, 1n j    considered. 

For higher initial states of O2 or H2, less collision energy is needed, because the 

system gains energy from de-excitation, as shown in the second column of Table 5.1. 

When the gain energy is larger than the excitation barrier, the energy threshold 

vanishes, such as for 1 12 29, 0 1, 1n nj j       or 1 12 21, 2 1, 1n nj j       

transitions. In general, the cross sections of the elastic 1 0n   transitions of O2 

contribute most to the total cross sections and the inelastic contributions decrease as 

1n  increases. One may also notice a series of resonances in the cross sections at 

low collision energies because of the influence of the attractive potential [117, 118]. 

They have little effect on the rate coefficients except at very low temperatures, which 

we did not consider. 

In Fig. 5.3 we present the total cross sections from the specific initial states n1 = 

1, 5, 9, 13, j2 = 0 to final states with 2 1j   by summation of the state-to-state cross 

sections over all final 1 1 21n    states through the use of Eq. (5.32). Figure 5.4 is 

similar to Fig. 5.3, for the initial state of H2 with j2 = 2. The general behavior of these 

total cross sections is similar to that of the state-to-state cross sections. The amplitude 

of resonances tends to be smaller for higher initial n1 states. For higher collision 

energies, the total cross sections for different initial n1 values become almost equal. 
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Figure 5.1: State-to-state para-ortho H2 conversion cross sections from close-

coupling calculations for O2-H2 collisions from initial states with n1 = 1, 5, 9, 13 and 

j2 = 0 into the individual final states with 1 1 21n    and 2 1j  . 
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Figure 5.2: Same as Fig. 5.1, for the initial state of H2 with j2 = 2. 
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Figure 5.3: Total conversion cross sections from the specific initial states with n1 = 

1, 5, 9, 13 and j2 = 0 to final states with 2 1j   by summation of the state-to-state 

cross sections over all final 1 1 21n    O2 states. 

  

10
2

10
3

10
-13

10
-12

10
-11

10
-10

10
2

10
3

10
-13

10
-12

10
-11

10
-10

10
0

10
1

10
2

10
3

10
-15

10
-10

10
0

10
1

10
2

10
3

10
-13

10
-12

10
-11

10
-10

Collision energy (cm-1) Collision energy (cm-1)

T
o

ta
l 

C
ro

ss
 S

ec
ti

o
n

 (
an

g
2
)

n1=1 n1=5T
o

ta
l 

C
ro

ss
 S

ec
ti

o
n

 (
an

g
2
)

Collision energy (cm-1) Collision energy (cm-1)

T
o

ta
l 

C
ro

ss
 S

ec
ti

o
n

 (
an

g
2
)

n1=9 n1=13T
o

ta
l 

C
ro

ss
 S

ec
ti

o
n

 (
an

g
2
)

Fig 3



Chapter 5. Close-coupling calculations of H2-O2 collisions 

112 
 

 

 

 

 

 

 

 

 

Figure 5.4: Same as Fig. 5.3, for the initial state of H2 with j2 = 2. 
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Table 5.1. Energies where different 21 2 1, ,n nj j   transition channels open. n1 and 

j2 denote the rotational quantum numbers of O2 and H2, respectively. 

 

 

5.4.2 Rate coefficients 

The rate coefficients 
1 2 2, ( )n j jk T  of para-ortho H2 conversion in collisions with O2 

molecules for transitions from a specific initial rotational state n1, j2 to all final states 

with given 2j were calculated from the state-to-state cross sections through the use of 

equations (5.29) and (5.33). In these calculations we considered the 

2 20 1,3j j    and 2 22 1,3j j    transitions between the rotational states 

of para- and ortho-H2. In order to check the relative importance of the two coupling 

mechanisms and the effect of the different methods to calculate the Fermi contact 

term, we also calculated the rate coefficients separately for the Fermi contact term 

and for the magnetic dipole-dipole coupling term. Since the rate coefficients vary 

only slightly for different initial states of O2, we use n1=1 as an example.  

1,0 → 1,1 118.68 5,0 → 1,1 78.42 

1,0 → 3,1 133.06 5,0 → 3,1 92.80 

1,0 → 5,1 158.93 9,0 → 3,1 3.67 

1,0 → 7,1 196.31 9,0 → 5,1 29.54 

1,0 → 9,1 245.20 13,0 → 11,1 46.80 

1,0 → 11,1 305.58 13,0 → 15,1 202.06 

1,0 → 13,1 377.46 1,2 → 13,1 21.42 

1,0 → 15,1 460.85 1,2 → 15,1 104.81 

1,0 → 17,1 555.73 5,2 → 15,1 64.55 

1,0 → 19,1 662.12 9,2 → 17,1 73.18 

1,0 → 21,1 780.01 13,2 → 19,1 47.30 

2 21 1, j jn n , 
1 2 1 2, ,n j n jE  2 21 1, j jn n , 

1 2 1 2, ,n j n jE  

Table 1
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Table 5.2 lists the rate coefficients for the H2 transitions from 2 0,2j    to

2 1,3j   . It shows that the rate coefficients for rotational excitation of H2 from

2 20 and  2j j     to 2 3j    are much smaller than those for the transitions to

2 1j   . Mode 1 and mode 2 label the results with the Fermi contact interaction 

calculated at the CASSCF and MRCI levels of theory, respectively. The more 

expensive and accurate MRCI level yields smaller values than those calculated at the 

CASSCF level. The Fermi contact mechanism does not make a more important 

contribution than the magnetic dipole-dipole coupling mechanism (mode 3) 

proposed by Wigner, for 2 20 1j j     transitions it is even smaller. This 

contradicts the conclusion of Minaev et al. [103], but we saw already that they 

strongly underestimated the magnitude of the dipole-dipole coupling term. In the 

final calculations we included both coupling mechanisms simultaneously. We found 

that the cross sections and rates are even larger than the sum of the individual 

contributions, because of positive interference effects. 

We also checked the detailed balance relation in Eq. (5.30), by computing rate 

coefficients for reverse transitions. The results, illustrated in Fig. 5.5, show that the 

rate coefficient 
3,1 1,0 ( )k T

  for the transition 1 2 1 23, 1 1, 0n j n j       

multiplied by the factor 
1,0 3,11 2

1 2

(2 1)(2 1)
exp( )

(2 1)(2 1) B

E En j

n j k T

 

  
  perfectly matches the 

rate coefficient 
1,0 3,1( )k T

 for the transition 1 2 1 21, 0 3, 1n j n j      . This is 

a good check for the convergence and accuracy of our calculations. 

Figure 5.6 shows the integrand 
1 2 1 2, ,( ) ( ) exp( )c

B

E

c n j n j c c k T
f E E E      of the 

rate coefficients in Eq. (5.29) for the 1 2 1 21, 0 1, 1n j n j       transition as a 

function of the collision energy, for temperatures T =100, 200 and 300 K. The 

integrand becomes higher and broader with increasing temperature. Wigner [102] 

assumed that the dipole-dipole coupling is effective for a certain time when the H2 

and O2 molecules are close to each other. The higher the temperature, the faster they 

fly and the shorter the time they stay together. So Wigner proposed two counteracting 

effects for the temperature dependence of the rate coefficients. First, when the 

temperature is lower the coupling acts for a longer time, so one would expect that 

the cross sections are larger. On the other hand, sufficient kinetic energy is needed 

to surmount the energy threshold of about 120 cm-1 for the conversion of j = 0 para-

H2 into j = 1 ortho-H2. This implies that when more fast para-H2 molecules are  
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Table 5.2: Rate coefficients for rotational excitation of H2 (j2 = 0, 2 to 2 1j  , 3) by 

collisions with O2 (for initial state n1 = 1) by consideration of the Fermi contact term 

(mode 1 or 2) and the magnetic dipole-dipole coupling (mode 3) separately. The rate 

coefficients are summed over all final states with 1 1 21n   . 

 

 

present, collisions are more effective, because these molecules have sufficient energy 

to convert. From our results, shown in Figs. (5.1-2, 5.6), it follows that all the way 

from 10K to room temperature, the rate coefficients increase with temperature. So 

clearly, in our studied range of temperatures, the second effect is dominant. 

Finally, the rate coefficients of para-ortho H2 conversion in collisions with O2 

molecules are calculated with the inclusion of both the Fermi contact and magnetic 

dipole-dipole coupling with the use of Eq. (5.34). The results are shown in Fig. 5.7 

for temperatures ranging from 10K to 300K. We used the calculated inelastic cross 

sections to obtain the rate coefficients for the first 8 (n1 = 1–15) initial rotational 

levels of O2 in collisions with para-H2 (j2 = 0, 2). The rate coefficients plotted in blue 

are summed over all the final rotational levels 1 1 21n   , 2 1 3j   , and thermally 

averaged over all the initial levels of both the O2 and H2 molecules. Wagner [106] 

experimentally determined the para- to ortho-H2 conversion rate constant by 

collisions with O2 near room temperature (292K) to be 8.27±1.3 L mol-1 min-1. Our 

final theoretical result is 4.68 L mol-1 min-1, somewhat smaller than the experiment 

value, but in our calculations we only included the m = 0 component of the magnetic  

n1=1, j2=0 --> j2’=1 n1=1 , j2=0 --> j2’=3

mode 1 mode 2 mode 3 mode 1 mode 2 mode 3

T=100 0.414738 0.324563 0.452107 T=100 8.06E-07 5.57E-07 3.64E-07

T=200 1.367548 1.068496 1.59148 T=200 0.000367 0.000263 0.000158

T=300 2.324621 1.817698 2.762125 T=300 0.003875 0.002961 0.001611

n1=1, j2=2 --> j2’=1 n1=1 , j2=2 --> j2’=3

mode 1 mode 2 mode 3 mode 1 mode 2 mode 3

T=100 0.950293 0.707738 0.20856 T=100 0.002157 0.001604 0.000424

T=200 1.256541 0.938785 0.320427 T=200 0.058683 0.043777 0.011278

T=300 1.625563 1.21994 0.456355 T=300 0.222929 0.167087 0.043497

Table 2
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Figure 5.5: Check of the detailed balance relation in Eq. (5.30). Black curve 

with open circles: righthand side of Eq. (5.30) with the rate coefficient for the 

transition ( 1 2 1 23, 1 1, 0n j n j      ). Red curve with stars: lefthand side of Eq. 

(5.30) with the rate coefficient for the reverse transition 

( 1 2 1 21, 0 3, 1n j n j      ). 

 

dipole-dipole coupling in Eq. (5.5). We are currently extending our scattering 

program to include all components of the magnetic dipole-dipole coupling tensor. 

The para-ortho H2 conversion couplings are very small in comparison with the 

anisotropic terms in the O2-H2 interaction potential that lead to rotationally inelastic 

collisions and we can use the scattering states of para- and ortho-H2 calculated with 

the full anisotropic potential and compute the para-ortho conversion cross sections 

in the first-order Born approximation. 
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Figure 5.6: Integrand of the rate coefficients in Eq. (5.29) for the

1 2 1 21, 0 1, 1n j n j      transition at temperatures T =100, 200 and 300K.  
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Figure 5.7: Rate coefficients as a function of T calculated with both the Fermi 

contact and magnetic dipole-dipole couplings included, summed over all the final 

states 1n   and 2j   and thermally averaged over the initial n1 = 1–15 states of O2. 

Black curve for initial j2 = 0, red curve for initial j2 = 2. The blue curve shows the 

final result obtained by thermal averaging also over the initial H2 states with j2 = 0 

and 2. 

 

5.5 Conclusion

We present state-to-state cross sections and rate coefficients of para-ortho H2 

conversion by collision with paramagnetic O2 molecules from converged close-

coupling quantum scattering calculations for initial states with n1 = 1–15 of O2 and 

j2 = 0–2 of H2 and final states with 1 1 21n    and 2 1 3j   . Both mechanisms for 

para-ortho conversion are included, i.e., the magnetic dipole-dipole coupling 

between the electron spin of O2 and the nuclear spins of the protons in H2 and the 

Fermi contact interaction from the spin-density in H2 induced by O2. Contrary to the 

assertion of Minaev et al. [103] that the Fermi contact mechanism should be much 

more effective than the magnetic dipole-dipole coupling mechanism proposed by 

Wigner [102], our results indicate that both mechanisms are about equally important 

for the conversion rate. Wigner [102] considered two counteracting effects for the 
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temperature dependence of the rate coefficients: i) at higher temperature the 

molecules move faster and there will be less time for the coupling to be effective, 

which should decrease the rate, and ii) on the other hand, a higher rate might be 

expected at higher temperature, because more molecules in the gas have sufficient 

energy for the conversion of j = 0 para-H2 to j = 1 ortho-H2. Our results show that all 

the rate coefficients increase with the temperature up to at least 300K. So, we clearly 

find the second effect to be dominant. Finally, we compare our rate coefficients at 

room temperature (292K) with the value measured by Wagner [106] on O2-H2 gas 

mixtures with different concentration ratios. Our calculated para-ortho H2 

conversion rate is slightly smaller than the experimental value, but we did not include 

all components of the magnetic dipole-dipole coupling yet. Further calculations will 

be performed with an extended version of our close-coupling scattering program in 

which all components of the dipole-dipole coupling tensor can be included through 

the first-order Born approximation. 
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6.1 Summary 

This thesis describes theoretical studies of atom-molecule and molecule-molecule 

rotationally inelastic collisions. Rotationally inelastic scattering of molecules, 

involving the transfer of energy and momentum, plays an important role in many 

physical and chemical reactive and non-reactive processes. Quantum state-to-state 

resolved differential cross section and integral cross section provide the most 

detailed information about the specifics of these collision processes. The goal of this 

work was to investigate some specific benchmark cases of scattering calculations by 

both the quasi-quantum treatment and the fully quantum mechanical close-coupling 

methods, in the hope to provide insight in the dynamical mechanisms occurring in 

molecular collisions. 

Chapter 2 describes the collision energy dependence of the rotationally inelastic 

differential cross-sections associated with an atom-diatom scattering processes. 

Within a quasi-quantum treatment, we derive a series of analytic expressions that 

strictly describe the collisional energy dependence, and we show that these 

relationships also approximately hold for the rigorously calculated quantum-

mechanical DCSs. This allows the designation of particular (energy-dependent) 

scattering angle ranges, which can be associated with specific features of a state-of-

the-art ab initio PESs. Although example calculations are shown for the NO+He 

system, the work presented here is easily extended to any atom-diatom collision 

system. 

Chapter 3 presents a modified QQT method to study NO-He rotationally 

inelastic scattering at a collision energy of 508 cm-1. As we know the regular QQT 

approximates the potential energy surface as a hard shell contour extracted from the 

Vsum potential corresponding to the collision energy. But this approximation has the 

6 
 

2 
6. Summary and outlook 
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limitation that it cannot distinguish glancing or head-on collisions. For glancing 

collision, rarely collisional energy is transferred into rotational energy, while for 

head-on collision, almost all the energy is transferred. In the modified QQT, the PESs 

is taken as a series of stepped hard-shell contours, which is set equal to the amount 

of collision energy transferred into rotational excitation. By this way, different kinds 

of collisions correspond to different hard shells. The integral and differential cross 

sections calculated by modified QQT produce a much better agreement with exact 

QM results than those obtained by regular QQT, particularly in the forward scattered 

direction. 

Chapter 4 describes an extension of the quasi-quantum treatment of NO-He 

inelastic scattering from spin-orbit state conserving transitions in pure Hund’s case 

(a) to spin-orbit changing transitions in mixed Hund’s case. The quantum state-to-

state resolved integral and differential cross sections in both spin-orbit state 

conserving and changing transitions are obtained by QQT and QM methods. This 

extension of the QQT model provides insight into the underlying mechanism that 

brings about the spin-orbit state excitation and as such offers a focus for future work. 

Chapter 5 presents the rate coefficients of para-ortho H2 conversion in collision 

with O2 molecules. State-to-state cross sections for collision-induced rotational 

excitation of both H2 and O2 molecules are calculated by the fully quantum-

mechanical close-coupling method. Both mechanisms that can convert para-H2 into 

ortho-H2, i.e., magnetic dipole-dipole coupling and Fermi contact interaction are 

considered. The theoretical para-ortho H2 conversion rate coefficients are compared 

with the experimental data at room temperature, thus obtaining good agreement. 

6.2 Outlook  

The quasi-quantum treatment of inelastic scattering could be extended to a wider 

variety of colliders, such as diatomic radicals OH [67, 91, 119-124], HCl [31, 75], 

CO [9, 31, 75, 125], N2, O2 [126-129], polyatomic molecules NH3 [130-135], H2O 

[123, 136, 137] and their isotopomers, which have been studied in both experiment 

and theory. QQT theory is still in its infancy, hence there is a wide area for further 

application and development. 

The dominating repulsive properties of the NO-He collision system PESs do 

not hold for all systems and collision energies. Brouard et al. recently reported 

rotational alignment effects of NO-Ar inelastic scattering in both experimental [87] 

and theoretical [88] studies. Calculations of the differential cross sections were also 
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performed at low collision energy 15 meV and 30 meV. These two cases provide an 

attractive example to study the abilities of the scaling rule on the more attractive 

PESs, which might work reasonably well for the scaled DCSs from 63 meV down 

to 30 meV. Moreover at the same collision energy, the De Broglie wavelength of the 

NO-Ar collision system is about a factor of 2 smaller compared to that of NO-He. 

This enhances the sensitivity to the details of the NO-Ar system PESs which offers 

an interesting aspect to study. 

In chapter 4, the Hund’s case (a) approximation was employed to treat the NO-

He rotationally inelastic collision scattering problem, but for j values larger than 6.5, 

this approximation might no longer be applicable, especially for spin-orbit state 

changing transitions. The eigenstate rotational wave functions in the mixed Hund’s 

case ought to be applied. The mixed Hund’s case is also essential for the CH and OH 

diatomic molecules. These phenomena open doorways for research to further 

develop QQT theory. 

In the future, it may become possible to take into account the full PES QQT in 

the rotationally inelastic collision problem. Contrasting to previous studies in regular 

or modified QQT, the full PES QQT accounts fully for the softness of the ab initio 

potential energy surface. By application of curved Feynman scattering trajectories, 

the approximation of the hard shell model can be improved. One may expect this to 

enhance the accuracy especially of predicting the dynamical behavior governed by 

attractive potentials. 

As for the fully quantum mechanical method, the calculations have become as 

accurate as experiment for several three–atom and even for some four-atom systems 

in recent years [8, 14, 16, 18, 129]. Collisions between more complex molecules 

form still a challenge to study. We still have a great deal to learn in terms of 

understanding the molecular dynamics at its most fundamental level. 
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