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Precision spectroscopy of light atomic systems allows the sizes of nuclei to be 

probed with high accuracy. Surprisingly, different experiments of this type in the 

hydrogen atom have yielded conflicting results, a problem that has since 

become known as the proton radius puzzle.

The work described in this thesis seeks to probe the size of the helium nucleus 

instead, using helium atoms in the metastable state. To achieve this goal, small 

atomic ensembles are laser cooled to less than a microkelvin above absolute 

zero and trapped in the focus of an intense laser beam. By carefully tuning the 

wavelength of the trapping laser to a so-called magic wavelength, the 

distorting influence of the trap laser on the spectroscopy measurement can be 

canceled. By performing ab initio calculations of the atomic polarizability, a 

promising magic wavelength is found in the ultraviolet part of the spectrum and 

a powerful laser system is constructed to operate a trap at this wavelength. 

Using this trap, the frequency of radiation required to drive an exceedingly 

weak transition is measured with extreme accuracy. Thus the single most 

accurate spectroscopic measurement in the helium atom to date is realized, 

probing the size of its nucleus at sub-attometer precision.
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Chapter 1

Background

Named after ῾Ηλιος, the greek titan god of the sun, the helium atom has played
a starring role in the development of modern physics. The unraveling of its elec-
tronic structure pioneered by Heisenberg and perfected by Hylleraas marked
the coming-of-age of quantum mechanics while its liquefaction by Kamerlingh
Onnes kickstarted the field of low-temperature physics. The work in this thesis
is built upon the impressive developments these fields have seen over the last
century. In order to provide context to the present work, this chapter will give
a brief overview of the current state of research in these fields. This chapter
is structured as follows: section 1.1 introduces the field of ultracold atoms in
general, and how it pertains to helium and precision spectroscopy in particu-
lar. Section 1.2 will give an overview of the theory of the helium atom, while
section 1.3 gives a summary of experimental tests of this model. Section 1.4
introduces the proton radius puzzle and summarizes the current state of nu-
clear finite size measurements in helium which are the main motivations for
the work in this thesis. Finally, section 1.5 outlines the work done as part of
this thesis.

1.1 Ultracold atoms

In order to understand what is typically meant by the term “ultracold”
in the context of atomic physics, consider a dilute gas comprised of particles
that obey quantum mechanics. As the temperature of the gas decreases, the
thermal de Broglie wavelength increases and the wave-like character of the
particles becomes more apparent. For particles with a short range interaction
potential, such as the van der Waals potential between atoms, the average
wavelength of the particles can become much larger than the (effective) range
of the interactions between them. In this limit the collision energy of two
atoms is insufficient to support two-particle collisions with non-zero angular
momentum and thus only collisions involving no angular momentum (s-wave)
are allowed. In this limit, known as the s-wave limit, the scattering properties
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1. Background

of atoms do not depend on the details of the molecular potential which can
be effectively described as a zero-range hard-sphere potential characterized by
its effective hard-sphere radius commonly referred to as the s-wave scattering
length1.

In the 1980s and 1990s, benefitting from improvements in laser technol-
ogy, many techniques for cooling atoms were developed which allowed atomic
gases to reach the s-wave regime. This culminated in the 1997 Nobel prize
in physics which was awarded to Chu, Cohen-Tannoudji and Phillips [1–3] for
their contributions to this field. Further innovations allowed cooling to even
lower temperatures where the effects of quantum statistics dominate the be-
haviour of the gas. In this regime there is a profound distinction between
particles with integer spin (bosons), and half-integer spin (fermions), which
results in very different thermodynamic properties. For their observation of
the associated phenomenon of Bose-Einstein condensation, a quantum phase
transition originally predicted by Einstein [4], the 2001 Nobel prize in physics
was awarded to Cornell, Wieman and Ketterle [5, 6].

Ultracold He∗

Today, research on cold atoms is a diverse and thriving field. Laser cooling
techniques have been applied to many atomic species and even some molecules,
pursuing a wide range of scientific goals. The species considered in this work,
metastable helium (He∗), has some peculiarities that are not commonly en-
countered in other species [7]. Most of these stem from the fact that the atoms
are in a metastable state which has a long natural lifetime of 8000 s and also
(by atomic physics standards) an enormous internal energy of 19.82 eV. This
internal energy is enough to ionize a collision partner in a process known as
Penning ionization which must be suppressed by spin-polarizing the gas in or-
der to reach appreciable densities (see section 2.1). On the other hand it allows
for electronic detection methods which achieve a very high time resolution and
signal to noise ratio compared to methods commonly used with other atomic
species.

Due to its unique properties, He∗ has been used in some remarkable ex-
perimental work. The first demonstrations of Bose-Einstein condensation of
4He [8, 9] were in fact already of considerable importance since, given the
Penning-ionization problem, it was not obvious that this was even possible.
Not much later the fermionic isotope 3He∗ was also cooled to quantum degen-
eracy [10]. The electronic detection methods available for He∗ have allowed
a number of elegant demonstrations of effects originally studied in quantum

1An important exception is the case of scattering between identical fermions for which scat-
tering into partial waves with even angular momentum (which includes s-wave scattering)
is forbidden.
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1.2. Theory of the helium atom

optics. These include the Hanbury-Brown and Twiss effect for bosons and
fermions [11, 12], the Hong-Ou-Mandel effect [13], and Wheeler’s delayed choice
experiment [14]. Besides at the VU in Amsterdam, there are groups actively
engaged in research with ultracold He∗ at the Institut d’Optique in Palaisau,
Australian National University (ANU) in Canberra and at the university of
Vienna.

Precision spectroscopy of cold atoms

Another important feature of He∗ is that the electronic structure of helium
is simple enough that very accurate ab-initio calculations are still feasible (see
section 1.2). This is a unique feature for atoms that can be cooled to such
low temperatures2. Despite the absence of ab-initio calculations to test, preci-
sion spectroscopy of optical transitions in ultracold atoms is a very active field
these days because these transitions can be used to realize extremely precise
atomic clocks, beating the most precise Cs fountain clocks by orders of magni-
tude [19, 20]. Precision spectroscopy of helium stands to gain a lot from these
developments. In this regard the group at the VU has played a pioneering role,
measuring forbidden transitions in ultracold He∗ [21, 22]. The work in this the-
sis is a continuation of that work, implementing an important technique used
in optical lattice clocks known as the magic wavelength optical dipole trap (see
section 1.5).

1.2 Theory of the helium atom

In contrast to the hydrogen atom, the non-relativistic Schrödinger equation
for the helium atom is not analytically solveable. The reason for this is that
the Hamiltonian is not factorizable with respect to the individual electrons and
its two-electron eigenfunctions are not simply the product of single-electron
wavefunctions. Nevertheless, even the earliest approximate methods that were
developed during the formalization of modern quantum mechanics in the 1920s
were quite succesfull in predicting properties of the helium atom where the
old Bohr-Sommerfeld quantum theory had failed. For this reason the helium
atom has been an important testing ground for theoretical methods and has
played a pivotal role in the development of the description of multi-electron
systems. Modern theoretical methods and computer power can now solve the
non-relativistic system to essentially arbitrary precision.

2The simplest neutral atom, hydrogen, has been cooled to quantum degeneracy [15], but the
associated experimental difficulty is such that it doesn’t really benefit precision spectroscopy.
Currently the most accurate spectroscopic measurements still rely on more basic atomic
beam techniques [16–18].
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1. Background

In order to develop insight into the helium atom it is useful to study the
Schrödinger equation for a two-electron system in some detail. The equation
must be solved for a wavefunction ψ in the coordinates ~r1 and ~r2 of the electron
positions3 and is given by[
− ~

2me

(
∇2

1 +∇2
2

)
− e2

4πε0

(
Z

|~r1|
+

Z

|~r2|
− 1

|~r1 − ~r2|

)]
ψ(~r1, ~r2) = Eψ(~r1, ~r2),

(1.1)
where me is the electron mass and Z = 2 is the atomic number of helium. In
a straightforward perturbative approach the Hamiltonian between the square
brackets in equation 1.1 is divided into a separable part H0 and an interaction
part HI . The general form is then

H0 =

2∑
i=1

[
−~∇2

i

2me
− Ze2

4πε0|~ri|
+ V (ri)

]
, (1.2)

HI =
e2

4πε0|~r1 − ~r2|
− V (r1)− V (r2), (1.3)

where V (r) is an arbitrary central potential. The simplest choice is to omit
this potential altogether (V (r) = 0) so that the eigenfunctions of H0 are simple
hydrogen-like wavefunctions. More accurate results are obtained with a central
potential that phenomenologically incorporates screening of the nuclear charge
by the other electron as was originally done by Heisenberg [23].

Regardless of the choice of central potential, the eigenfunctions of H0 are
products of single electron wavefunctions unlm(r) which, like the eigenfunc-
tions of the hydrogen atom, are spherically symmetric and characterized by
quantum numbers n, l and m. Furthermore, the doubly excited states turn out
to have energy higher than the helium ionization potential and are therefore
unstable [24]. This means that the (anti-)symmetrized eigenfunctions of H0

can be written as4

ψ±(r1, r2) =
1√
2

(u100(r1)unlm(r2)± unlm(r1)u100(r2)) . (1.4)

The wavefunctions with positive sign are symmetric under the exchange of the
two electrons and are collectively known as the parahelium states while the
anti-symmetric wavefunctions are known as orthohelium states.

3Because of the spherical symmetry of the problem, the actual number of degrees of freedom
is actually three instead of six. Variational basis sets often use Hylleraas coordinates s =
|~r1|+ |~r2|, t = |~r1| − |~r2| and u = |~r1 − ~r2|.

4The only exception is the ground state wavefunction which is simply ψ+(r1, r2) =
u100(r1)u100(r2).

4



1.2. Theory of the helium atom

0

20

21

22

23

24

E [eV]

1S 1P 1D 3S 3P 3D

(1s)2

1s2s

1s2s

1s2p

1s3s
1s3s

1s3p 1s3p1s3d

Singlet states

(para-helium)

Triplet states

(ortho-helium)

He+

1s2p

58.4 nm

668 nm

1557 nm 1083 nm

588 nm707 nm 389 nm
728 nm 502 nm

1s4p

1s5p

1s4s

1s5s

1s4d

1s5d

1s3d

1s4p

1s5p

1s4s

1s5s

1s4d

1s5d

t=8000s

t= 20 ms

J=0

J=1

J=2

Figure 1.1: Level scheme of the 4He atom. The parahelium states have total spin 0
(singlet) while the orthohelium states have total spin 1 (triplet) so that transitions
between them are dipole forbidden. A number of optical transitions are indicated
including the doubly forbidden 2 3S → 2 1S transition that is especially relevant in
this thesis. The inset shows the fine-structure splitting of the 2 3P state.

The full wavefunction including electron spin needs to be antisymmetric
under the exchange of the electrons in order to satisfy the Pauli exclusion
principle. The parahelium states must therefore be combined with an antisym-
metric (singlet) spinor, while the orthohelium states have a symmetric (triplet)
spinor. The effect of the perturbation Hamiltonian HI is to lift the degeneracy
between the ortho- and parahelium states, causing the latter to be somewhat
higher in energy than the former. This can be seen in fig. 1.1 which shows
the helium level scheme along with some of the important radiative transitions
that can be observed.

An important consequence of the orthohelium-parahelium divide for spec-
troscopy is the fact that the dipole operator cannot change the spin state and
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1. Background

therefore radiative transitions between orthohelium and parahelium are dipole
forbidden. Furthermore, the dipole operator also requires a change in parity
which does not occur for transitions between S-states. The practical conse-
quence of this is that the first two excited 2 1S and 2 3S states cannot easily
decay to the ground state and are metastable with natural lifetimes of 20 ms
and 8000 s respectively. The next excited 2 3P state only decays into the 2 3S
state, providing a closed transition.

Although it gives a physically intuitive picture, the perturbative approach is
rather slow to converge because HI is a rather large term. Modern calculations
of the non-relativistic energy eigenvalues instead use a variational approach pi-
oneered by Hylleraas [25–27]. With a properly chosen basis set and modern
computer power the non-relativistic energies can nowadays be numerically eval-
uated to essentially arbitrary precision, as was perfected by Drake [28].

Higher order terms

Equation 1.1 is not yet a full description of the helium atom because a
number of terms are still missing in the Hamiltonian. The first omission is
that the nucleus is assumed to be stationary while in actuality the nucleus
also moves in reponse to the movement of the electrons. This movement is
very small however because of the small ratio of the electron mass to the mass
of the nucleus me/M(4He) ≈ 1.37 × 10−4, or me/M(3He) ≈ 1.82 × 10−4 for
3He. The effect can therefore be accurately accounted for by expanding the
Hamiltonian into powers of me/M . The terms in this expansion are called
recoil correction terms.

The other omission is that equation 1.1 is, as mentioned, not correct in the
relativistic limit. A physically intuitive justification of using the non-relativistic
Hamiltonian is that the binding energy of the atom is small compared to the
rest energy (i.e. mass) of the electron. This ratio is typically expressed in terms
of the fine structure constant

α =

√
2hcR∞
mec2

≈ 1

137
. (1.5)

To correct for relativistic effects, the Hamiltonian can be expanded in powers
of α. The leading order correction is the expectation value of the Breit-Pauli
Hamiltonian [24] which in turn is derived from the Dirac equation. This term
is the first to introduce a coupling term between the electron spins, the orbital
angular momentum and the nuclear spin for 3He∗. As such it lifts the degener-
acy between the different angular momentum states, producing a (hyper)fine
structure splitting. This splitting is shown for the 2 3P0,1,2 states in the inset
of fig. 1.1.
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1.2. Theory of the helium atom

The theory of quantum electrodynamics (QED) predicts that the vacuum is
not truly empty but rather that virtual particles can appear and disappear. The
relativistic corrections beyond the first order must also consider interactions
with these vacuum fluctuations. In the hydrogen atom these interactions lift
the degeneracy between the 2 S1/2 and 2 P1/2 states which was measured by
Lamb [29], providing the first experimental confirmation of QED theory. The
QED corrections are therefore often called Lamb-shifts.

Taking into account all these interactions, the energy of any state of the
helium atom can be written as a double expansion series in α and me/M
according to

Etot = hcR∞

∞∑
i=0

∞∑
j=0

αi
(me

M

)j
E(i,j). (1.6)

The E(0,0) term corresponds to the non-relativistic energy and because R∞ ∝
meα

2 this term is sometimes referred to as the meα
2 order contribution5. The

most advanced calculations of this type have been performed by Drake [30],
and more recently by Pachucki and Yerokhin who have evaluated all terms in
this series up to order meα

6, (m2
e/M)α6, (m3

e/M
2)α4, and (m4

e/M
3)α2 [31].

These calculations are typically accurate to a few MHz for the first excited
states based on the estimated magnitude of the higher order terms.

Nuclear size shift

A final correction to the energies arises from the fact that the nucleus is not
a point particle. Therefore, at distances shorter than the radius of the nucleus,
the Coulomb potental felt by the electron is reduced. Because the radius of the
nucleus (R(4He) ≈ 1.681(4) fm and R(3He) ≈ 1.973(14) fm) is several orders
of magnitude smaller than the Bohr radius (a0 ≈ 52.9 pm) the electron density
can be assumed constant over the nucleus. The nuclear finite size effect is then
a contact interaction given by

Ze2

6ε0

〈
2∑
i=1

δ(ri)

〉
〈R2

N 〉 =
2π~cZα

3

〈
2∑
i=1

δ(ri)

〉
〈R2

N 〉. (1.7)

The expectation value of the delta function operator characterizes the overlap
of the electrons with the nucleus. This overlap is largest for S-states but very
small for states with non-zero orbital angular momentum. For the S-states of
hydrogen-like ions the overlap is given by

〈δ(r)〉 =
Z3

πn3a3
0

. (1.8)

5The first relativistic contribution is actually second order in α, corresponding to the meα4

term, from then on every order contributes.
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1. Background

From these equations it can be deduced that the 1S ground state of the hydro-
gen atom experiences a nuclear size shift of about 1.24 MHz (rp ≈ 0.88 fm).
For the hydrogen-like He+-ion, with a larger nucleus and higher Z, this shift is
about 71 MHz. The addition of another electron to make neutral helium adds
another 30 MHz to this shift for the 1 1S ground state [31].

The nuclear size shift is dominantly a non-relativistic effect but it is smaller
in magnitude than many of the high-order QED corrections. Additionally,
high precision calculations must take a number of higher order corrections to
equation 1.7 into account. One of these is the so-called two-photon exchange
term [32] which is negligibly small for electronic helium but becomes the dom-
inant theoretical uncertainty for muonic systems [33]. At present the theory
of the helium atom is not yet accurate enough to resolve the nuclear struc-
ture directly but only via the isotope shift. Calculations of this shift can take
advantage of the fact that operators that do not depend on the mass, radius
or spin of the nucleus are common between different isotopes and can be ne-
glected. The isotope shift can therefore be calculated to much higher precision
allowing the extraction of the difference between the squared nuclear charge
radii of different isotopes.

1.3 Comparison with experiment

A recent review by Pachucki compares precision spectroscopy experiments
and QED calculations [31]. The 1 1S0 ground state ionization energy is chal-
lenging to accurately determine by experiment because of the deep UV light
source that is required. The most accurate precision spectroscopy experiment
starting from the ground state measured the transitions to the 4 1P1 and 5 1P1

states at 52.2 nm and 51.5 nm respectively [34]. The extracted ionization en-
ergy, accurate to 1 × 10−9, is in agreement with theory but a factor 6 more
accurate. Interestingly though, there is significant disagreement with the next
most accurate determination using the 1 1S0 → 2 1S0 two-photon transition
at 120 nm [35].

The long lifetime of the metastable 2 1S0 and 2 3S1 states (20 ms resp.
8000 s) provides a multitude of opportunities for precision spectroscopy in
a more accessible wavelength range. Frequency metrology on many dipole
allowed transitions has been performed, as shown in table 1.1. In addition
two of the dipole-forbidden intercombination lines have been measured using
the ultracold He∗ setup at the VU. Except for 1 1S0 → 2 1S0 transition, the
measured transition frequencies agree with QED calculations by Pachucki and
Yerokhin. The ionization energies of the 3D levels which were not considered
by Yerokhin and Pachucki but were calculated by the group of Drake to an
accuracy of 20 kHz. Because of this high accuracy these energies are sometimes
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1.3. Comparison with experiment

Table 1.1: Summary of high-precision spectroscopy measurements in the helium atom.

Transition Wavelength Ref.
1 1S0 → 4, 5 1P1 52.2 nm and 51.5 nm [34]
1 1S0 → 2 1S0 2×120 nm [35]
2 3S1 → 2 3P0,1,2 1083 nm [36–38]
2 1S0 → 2 1P1 2058 nm [39]
2 3S1 → 3 3D1 2×762 nm [40]
2 1S0 → 3 1D2 2×1009 nm [41]
2 3P0 → 3 3D1 588 nm [42]
2 1P1 → 3 1D2 668 nm [43]
2 3S1 → 2 1P1 887 nm [22]
2 3S1 → 2 1S0 1557 nm [21], chapter 6

used as anchor points for determinations of the ionization energies of other
levels. A number of recent experiments have found significant discrepancies
involving these levels however, and Pachucki and Yerokhin have suggested that
these calculations need further investigation.

Another important target for spectroscopy is the fine structure splitting of
the 2 3P state. The different intervals have been measured using laser spec-
troscopy [44–46], as well as microwave spectroscopy [47, 48]. An important
systematic effect in these measurements that for a long time was overlooked is
quantum interference with far off-resonant transitions [49]. Correcting for this
effect has resolved a number of discrepancies between different experiments.
The fine structure intervals are especially sensitive to the value of the fine struc-
ture constant and have been used to determine this constant with an accuracy
of 20 ppb [45], in agreement with the most accurate determinations [50, 51]
and mainly limited by theory.

Other tests: Natural lifetime, polarizability and cold collisions

Besides energy levels theory predicts other properties of the helium atom
that can also be tested experimentally. For example, the transition dipole mo-
ment between different states can be calculated, and the sum of these moments
to lower states predicts the natural lifetime of a state. Two recent experiments
have measured both the extremely long lifetime of the 2 3S1 state [52], and the
extremely short 2 1P1 state natural lifetime [22], both in good agreement with
theory.

A different property of the atom that can be calculated from theory is the
linear response of an atom to an applied electric field, also known as the po-
larizability. One of the earliest tests of this kind was done using the tensor
polarizability of the 2 3S1 state which produces an energy shift depending on
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1. Background

the relative orientation of the atom’s spin and the electric fields. In 1968 the
tensor polarizability of this state was predicted to appear as a result of relativis-
tic corrections [53] and was measured shortly afterward [54] in good agreement
with calculations. More recently, a tune-out wavelength, a wavelength where
the total polarizability vanishes, for this state was predicted at 413 nm [55]
which allowed a very sensitive test of polarizability calculations. This wave-
length was measured to high accuracy [56] and advanced calculations including
first-order relativistic and recoil corrections still found a significant discrepancy,
indicating that the experiment is sensitive to QED correction terms.

In order to describe collisions between two or more helium atoms it is nec-
essary to know their molecular potential, which can be calculated ab-initio.
Laser cooling of He∗ below the s-wave limit has allowed for very precise tests
of these potentials. The least bound state of the 5Σ+

g molecular potential that
describes collisions between spin polarized 2 3S1 atoms was measured to high
accuracy using photo-association spectroscopy [57]. This measurement could
then be used to finetune the ab-initio calculation of this molecular potential [58]
and determine the s-wave scattering length to be 142.0(1) a0. Other molec-
ular potentials, which can become relevant in spin-mixtures, were calculated
ab-initio by Müller et al. [59] with lower accuracy and have been used to make
other predictions [60], including Feshbach resonances [61]. Experimental inves-
tigations of mixtures where these potentials are relevant have found no serious
discrepancies [62, 63], but also no Feshbach resonances [64].

1.4 Measuring nuclear finite size effects

The nuclear finite size effect given by equation 1.7 is a small effect com-
pared to many of the terms contributing to the Lamb shift. Nevertheless it has
recently become a more prominent target for spectroscopy because of anoma-
lous results in atomic hydrogen. This discrepancy has become known as the
proton radius puzzle and has been a major motivation for the work on which
this thesis is based. This section will introduce the puzzle, present the current
state of nuclear-size related experiments in the helium atom, and describe the
route to improvement that has been the driving idea behind the work in this
thesis.

The proton radius puzzle

Due to the simplicity of the hydrogen atom its energy level structure can
be calculated with extremely high precision [65]. These calculations involve
several free parameters and in practice it is the experimental uncertainty in
the determination of these parameters that limits the accuracy of the calcula-
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1.4. Measuring nuclear finite size effects

tions. Of these parameters the Rydberg constant R∞ = α2mec/2h is by far
the most important but the proton radius rp also contributes significantly to
the uncertainty. The other parameters, the fine-structure constant α and the
proton-electron mass ratio mp/me, have a very minor effect because they can
be determined to very high accuracy in independent experiments [50, 66].

Turning this problem around, one can assume that theory is correct which
implies that R∞ and rp can be determined via accurate spectroscopy of atomic
hydrogen6. Such a measurement has important consequences for metrology
because R∞ acts as a fulcrum for other physical constants. The most accurately
measured transition in hydrogen (in fact, one of the most accurately measured
transitions of any atom outside of atomic clock species) is the 1S1/2 → 2S1/2

two-photon transition which has been measured with a relative accuracy of
4.2×10−15 [16, 67]. However, because the proton radius adds a second unknown
to the problem, it is necessary to measure at least one other transition to fix
both parameters.

Many other transitions in hydrogen have been measured [68–70] but none
have achieved the same accuracy as the 1 S1/2 → 2 S1/2 transition. The
accuracy on rp obtained from elastic electron-proton scattering [71] is similar
to the uncertainty from spectroscopy so it does not help much to constrain R∞.
An alternative to improving the accuracy of spectrosopy is to measure rp to
much higher accuracy so that it can be fixed. This was an important motivation
for precision spectroscopy on the 2 S1/2 → 2 P3/2 transition in muonic hydrogen
(µH) where the electron is replaced by a muon. This elementary particle is
identical to the electron apart from its far higher mass (mµ/me ≈ 207) which
means that its wavefunction is much more confined and has a factor (mµ/me)

3

larger overlap with the nucleus (equation 1.8).
When researchers at the Paul Scherrer Institute in Villigen performed this

ambitious experiment they found a surprise however. Using the Rydberg con-
stant as input their measurements found an extremely accurate value for the
proton radius that was significantly smaller than what was at the time the
most accurately known value [72, 73]. This discrepancy has become known as
the proton radius puzzle and, if confirmed, implies there is a difference between
the muon and electron other than mass. This would be a direct violation of the
principle of lepton universality which is one of the key assumptions in the stan-
dard model of physics. As of 2018, the puzzle remains unsolved with the latest
CODATA recommended value for rp (which explicitly excludes the muonic hy-

6In practice the Committee on Data for Science and Technology (CODATA) includes the
transition frequency measurements as well as electron-proton scattering data as input data
for a least squares fit for all physical constants together (including α and mp/me) [66].
This is a somewhat opaque procedure because it is difficult to retrace how strongly different
experiments contribute but it does yield the most accurate results provided that the input
data is correct.
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Figure 1.2: The proton radius puzzle. The muonic results are represented by the
red line and uncertainty band, indicating the results from muonic hydrogen [72, 73],
and the red poiont which indicates the result of muonic deuterium [74] corrected
with the differential nuclear charge radius as measured in electronic hydrogen and
deuterium [66]. The latest CODATA recommended value [66] (blue line and uncer-
tainty band) explicitly excludes the muonic data and relies primarily on the com-
bined electron-proton scattering data [75], and hydrogen spectroscopy (black points),
H spect. is the CODATA regression excluding the e-p scatt. data. Note that the
combined CODATA value is not simply the weighted average of these data because of
other regression parameters. The green points are hydrogen spectroscopy measure-
ments more recent than the latest CODATA recommended value [17, 18].

drogen result) disagreeing with the muonic hydrogen result at a significance of
5.6σ [66] as shown in figure 1.2.

The muonic hydrogen experiment and theory have been subjected to ex-
tensive scrutiny since the first publication. A follow-up experiment in muonic
deuterium (µD) also found a significantly smaller deuteron radius [74]. New,
more accurate experiments in regular (non-muonic) hydrogen have been in-
conclusive, with one recent experiment finding agreement with µH [17], while
another confirms the CODATA value [18]. Furthermore, the analysis of world
data for electron-proton scattering used by CODATA [75] is inconsistent with a
“small” proton radius and although alternative analyses have found consistency
with the µH result [76–78], these are highly controversial [79].

The persistence of the proton radius puzzle has led to extensions of the
research on muonic atoms to other species. Besides the already mentioned
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1.4. Measuring nuclear finite size effects

measurements on µD, experiments are also ongoing to measure the Lamb shift
in the muonic helium ion (µ 3,4He+), aiming to determine the radius of the
alpha particle (4He nucleus) and the helion (3He nucleus) with sub-attometer
accuracy [80]. The accuracy in this determination is expected to be limited not
by the accuracy of the experiment but by the uncertainty in the calculation of
the two-photon exchange term [33]. In order to find out if a “helium nucleus
puzzle” exists this value will need to be compared with accurate experiments
in regular (non-muonic) helium.

The size of the helium nucleus

Based on his analysis of the world data for elastic electron scattering, Sick
derived the rms charge radii of the 4He and 3He nuclei (1.681(4) fm resp.
1.973(14) fm) [81]. The total nuclear finite size shift corresponding to these
radii is smaller than the uncertainty in the most accurate QED calculations
of transition frequencies but becomes the dominant source of uncertainty in
calculations of the isotope shift. By measuring the isotope shift and using the
accurately known radius of the 4He nucleus as an anchor point the charge radii
of other isotopes can be determined.

A number of different experiments have measured isotope shifts to deter-
mine differential nuclear charge radius. One such measurement was performed
at Argonne National Lab in Illinois using the exotic radioactive isotopes 6He
and 8He (half lives 807 ms resp. 119 ms) on the 2 3S1 → 2 3P0,1,2 transi-
tions [82, 83]. These experiments found that the nuclei have small charge radii
(mostly determined by protons) compared to their total “matter” radii (pro-
tons and neutrons). This indicates that the neutrons are located relatively far
from the nuclear center compared to the protons, a feature characteristic of
so-called “halo” nuclei.

The (squared) nuclear charge radius difference between the stable isotopes
3He and 4He as determined by electron scattering is 1.066± 0.06 fm2 [81] but
can be measured to considerably higher accuracy in spectroscopic measure-
ments of the isotope shift. The first experiments of this kind measured the
isotope shift on the 2 3S1 → 2 3P0,1,2 transitions. The nuclear finite size effect
on the isotope shift for this transition is 1212.2(1) kHz/fm2 compared to the
theoretical centroid frequency for a point-like nucleus which has been calcu-
lated to an accuracy of 0.9 kHz [31]. The accuracy realized in the most precise
experiments on this transition is still experimentally limited however.

Shiner et al. measured the difference between the 2 3S1 → 2 3P2 transition
in 4He and the 2 3S

F=3/2
1 → 2 3P

F=1/2
0 transition in 3He to an accuracy

of 3 kHz [84]. Subtracting the hyperfine shift of the 2 3S
F=3/2
1 state [85],

this difference can be compared to theory to yield the nuclear charge radius
difference as δr2(3He − 4He) = 1.061(3) fm2. Cancio Pastor et al. performed
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Figure 1.3: Several isotope shift measurements determining the 3He to 4He nuclear
charge radius difference. All points are calculated according to the most recent iso-
tope shift calculations of Pachucki [31]. The blue points (Shin95, CP12, and Zheng17,
resp. [37, 38, 84]) are measurements of the 2 3S1 → 2 3P0,1,2 centroid frequency, while
the red points (vR11 and Reng18, resp. [21] and this work (chapter 6)) are measure-
ments of the 2 3S1 → 2 1S0 transition frequency. The grey error bar (CREMA [33])
indicates the expected error bar for muonic helium (the actual value has not yet been
published). For clarity, the much less accurate value determined in electron scat-
tering (1.066 ± 0.06 fm2 [81]) is not shown. Note that: (*) Zheng17 uses the 3He
transition frequency from CP12, (**) Reng18 uses the 3He transition frequency from
vR11, and (†) for CREMA only the errorbar is shown as the actual value has not yet
been published.

absolute optical frequency measurements on many different lines to determine
the centroid frequency of the 2 3S → 2 3P transitions for both isotopes, yielding
δr2(3He− 4He) = 1.069(3) fm2 [36, 37]. However, a recent measurement of the
2 3S → 2 3P centroid frequency in 4He found a 20σ discrepancy with the value
of Cancio Pastor et al., which strongly affects the determined nuclear charge
radius difference [38].

A significant problem for these measurements is the natural lifetime of the
2 3P0,1,2 states, limiting the spectroscopic linewidth to 1.6 MHz and therefore
the accuracy that can be attained experimentally. Another problem is quantum
interference [49], which can cause line shifts of the order of the currently realized
experimental accuracy. An attractive alternative is to measure the isotope
shift on the 2 3S1 → 2 1S0 transition instead. Although this transition is less
sensitive to nuclear size effects (214.66(2) kHz/fm2), the theoretical uncertainty
is smaller (0.19 kHz for a point-nucleus) [31]. In addition the transition is far
less susceptible to quantum interference effects and the 20 ms natural lifetime
of the 2 1S0 state gives it a very high quality factor of 2.4×1013. The downside
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is that the transition is doubly-dipole forbidden and therefore extremely weak
with an Einstein A coefficient A12 = 9.1× 10−8 s−1 [86].

The 2 3S1 → 2 1S0 transition was observed for the first time in the meta-
stable helium setup at the VU by van Rooij et al. [21]. They measured the
2 3S1 → 2 1S0 transition frequency in 4He to an accuracy of 1.8 kHz, and

the 2 3S
F=3/2
1 → 21S

F=1/2
0 transition in 3He to an accuracy of 1.5 kHz. Tak-

ing the difference and, like for the result of Shiner et al., correcting for the
hyperfine splitting of the 2 3S1 state in 3He [85], allows a determination of
the squared nuclear charge radius difference. The value found in this way is
δr2(3He−4 He) = 1.028(11) fm2 which disagrees by several standard deviations
with the results on the 2 3S1 → 2 3P0,1,2 transitions.

The discrepancy between van Rooij et al. [21] and Cancio Pastor et al. [37]
is 3.6σ (originally found at 4.0σ, the discrepancy has decreased somewhat as
a result of theory re-evaluations). The measurements by Zheng et al. [38] cast
serious doubt on this discrepancy however, and complementary measurements
in 3He are needed to resolve the problem. Nevertheless, this leaves the dis-
crepancy between van Rooij et al. and Shiner et al. [84] which, at 2.9σ, is
still significant. Provided that the discrepancy in electronic helium can be re-
solved, a comparison with muonic helium may provide more insight into the
proton radius puzzle. The experimental work on µ 3,4He+ has been completed
but as of the time of writing theoretical work necessary to extract the nuclear
charge radii is still ongoing. Figure 1.3 shows an overview of spectroscopic
determinations of the differential nuclear charge radius including the expected
uncertainty of the µ 3,4He+ determination [33].

1.5 Outline of this thesis

The main scientific goal of the work described in this thesis has been to per-
form an improved measurement of the 2 3S1 → 2 1S0 transition frequency in
order to investigate the discrepancy in the 3He-4He nuclear charge radius differ-
ence and hopefully to contibute to new insight into the proton radius puzzle by
providing an accurate benchmark to compare to the µ 3,4He+ measurements.
In order to achieve this goal, a number of improvements to the setup used by
van Rooij et al. [21] were implemented to improve the experimental precision
and to reduce systematic effects. The most significant of these improvements
have been an extensive upgrade of the frequency metrology infrastructure, and
the implementation of a magic wavelength optical dipole trap.

The remainder of this thesis will describe this work in detail and is struc-
tured as follows: Chapter 2 will explain the experimental setup in detail, de-
scribing the He∗ cooling beamline as well as the tools used to probe the atoms.
Particular attention is paid to parts of the setup that are new compared to ear-
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lier work on the setup. Chapters 3 through 6 were originally written as research
articles and have either been published in various journals or are currently un-
der review. Finally, chapter 7 summarizes the findings and their impact, and
gives an outlook at work that still needs to be completed.

Frequency metrology infrastructure

Since the measuremenst of van Rooij et al. [21], there have been two im-
portant additions to the shared frequency metrology infrastructure at the VU.
The first is a Cs-clock which has a higher accuracy at all timescales compared
to the previously used Rb-clock. The second is an ultrastable laser which can
act as a local oscillator in the optical frequency domain. Finally a new spec-
troscopy laser with a smaller intrinsic linewidth was purchased to drive the
2 3S1 → 2 1S0 transition. The laser was phase-locked to the ultrastable laser
in a transfer lock setup using the new hardware, allowing more accurate abso-
lute frequency measurements and strongly reducing the laser linewidth. This
setup is described in section 2.5, and also in more detail by Notermans [87].

The higher spectral resolution provided by a more narrow spectroscopy
laser allowed for the observation of a number of interesting physical effects
as described in chapter 3. The absorption lineshape was found to depend
strongly on quantum statistics and these effects were enhanced by the ac-
Stark shift. A published model for fermions provides good agreement with the
observed lineshape for 3He, and for bosonic 4He a published lineshape model
was extended to account for the ac-Stark shift effect. Finally, a Bragg-like
scattering effect was observed to produce a splitting of the 4He absorption line.

A magic wavelength trap

The most important systematic uncertainty encountered by van Rooij et
al. [21] was the trap induced ac-Stark shift. This uncertainty appeared be-
cause the long interaction time required to make the transition required the
atoms to be held in an optical dipole trap during the excitation. Because the
polarizability of the 2 3S1 level is different from that of the 2 1S0 level at
the 1557 nm wavelength of the ODT used in that experiment, the trapping
potential felt by the atoms is state dependent, causing a differential shift on
the transition. Furthermore, because the atoms are distributed over a finite
spatial extent inside the trap, the ac-Stark shift is position dependent, causing
additional broadening of the absorption lineshape, as shown in chapter 3.

A solution to these problems while still satisfying the requirement that the
atoms remain trapped during the excitation is to generate a trapping potential
that is identical for both states. This is possible because the polarizabilities of
both states independently vary as a function of trap laser wavelength. There-
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fore, at certain points the polarizabilities of both levels cross and the differen-
tial ac-Stark shift vanishes. These points are known as magic wavelengths and
they find application in highly accurate atomic clocks [88, 89] which are now
reaching accuracies far exceeding the best realizations of the SI-second [19, 20].

Chapter 4 describes calculations of the polarizabilities of the 2 3S1 and
2 1S0 states and identifies a number of magic wavelengths on the 2 3S1 → 2 1S0

transition. The most promising candidate wavelength from the perspective of
optical trapping was found at 319.815 nm. In order to generate a sufficiently
deep trap at this wavelength a sufficiently intense laser source was required.
Chapter 5 describes the laser system that was built for this purpose as well as
the first demonstrations of optical trapping with this system.

A new measurement of the 2 3S1 → 2 1S0 transition

Chapter 6 discusses an improved measurement of the 2 3S1 → 2 1S0 tran-
sition frequency in 4He that was performed using the innovations described
in earlier chapters. The new measurement is an improvement over the result
of van Rooij et al. [21] by an order of magnitude, and in addition accurate
measurements were performed of the precise magic wavelength position and
the scattering length between the 2 3S1 and 2 1S0 states. The final chapter
(chapter 7) gives a more detailed calculation and discussion of the extraction of
the nuclear charge radius difference and gives a quick overview of new measure-
ments in 3He which are currently underway at the VU. Finally, a number of
improvements to the experiment are proposed that may allow for measurements
of even higher accuracy.
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Chapter 2

Experimental setup

The setup used in this thesis has been built up by several generations of PhD
projects over the course of three decades. In order to provide context for the
current work, this chapter will first give a brief historical overview of the history
of the setup before discussing the technical details.

The metastable helium source, collimation, Zeeman slower and initial mag-
neto-optical trap (MOT) were first built by Rooijakkers [90]. This setup was
expanded by Tol [91] and Herschbach [92] who achieved a MOT of 109 atoms
and performed the first evaporative cooling experiments. Koelemeij [93] inves-
tigated magneto-optical trapping at the 2 3S → 3 3P transition at 389 nm,
in addition to the more common 2 3S → 2 3P transition at 1083 nm, to im-
prove the phase-space density in the MOT. Bose-Einstein condensation was
first achieved by Tychkov [94] in an improved vacuum chamber and magnetic
trap (mJ = +1 atoms). Stas [95], McNamara[96], and Jeltes [97] built up a
3He∗ recycling system and additional lasers, culminating in the realization of
a degenerate Fermi gas of 3He∗, as well as of a doubly degenerate Bose-Fermi
mixture of spin-polarized 4He∗ and 3He∗. In a collaboration with the Insti-
tut d’Optique in Palaisau, this unique combination of having fermionic and
bosonic species with a high internal energy allowed for an elegant demonstra-
tion of the Hanbury-Brown and Twiss effect for bosons and fermions in the
same setup [12].

After this work, attention was shifted to frequency metrology. Roozendaal
and van Rooij [98] implemented a more advanced computer program to con-
trol the experiment and realized an optical dipole trap (ODT) at 1557 nm.
The ODT allowed trapping of the other magnetic substates of He∗ and also
proved to be a good platform for precision spectroscopy of the 2 3S → 2 1S
transition. The transition was first observed and measured in this trap [21].
Significant improvements were made to the frequency metrology infrastructure
by Notermans [87], which partly overlapped with the work presented in this
thesis.
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2. Experimental setup

2.1 Laser cooling and magnetic trapping of He*

Optical setup

The optical setup was described in detail by Notermans [87]. Here I will
give a brief overview. The light used for manipulating, cooling, and imaging the
4He∗ atoms is derived from an ytterbium-doped fiber laser (NKT photonics).
The laser is locked to the 2 3S1 → 2 3P2 transition in a saturated absorption
setup. Once the laser is locked, the light is amplified to about 700 mW by
an ytterbium doped fiber amplifier (Nufern) and appropriately detuned and
distributed by a series of AOM’s as shown in figure 2.1. This setup provides
separate laser beams with the following functions: collimation, magneto-optical
trapping, optical pumping, Doppler cooling, slowing, and imaging.

For 3He∗, a separate laser, amplifier, and saturated absorption setup are

used, locking instead to the 2 3S
F=3/2
1 → 2 3P

F=5/2
2 transition. The light from

this setup is overlapped with the 4He∗ light, providing identical detunings,
power ratios, and alignment.
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Figure 2.1: Optical setup to generate the laser beams required for collimating, cool-
ing, trapping, and imaging He∗. Two separate lasers, saturated absorption setups,
and amplifiers are used for both isotopes. These are overlapped in-fiber and passed
through a network of accousto-optic modulators (AOMs) to provide the appropriate
power and detuning. Typical powers used for 4He∗ are indicated.

Source, collimation, and Zeeman slower

The He∗ source is unchanged from the original design [90, 99]. It consists
of a quartz tube with a tantalum needle electrode, a (non-conductive) boron-
nitride nozzle, and a skimmer 1 cm behind the nozzle. The tube is constantly
being filled with helium while a DC-discharge is drawn between the needle and
the skimmer. This discharge is typically run at a pressure of 2× 10−5 mbar in
the source chamber, a voltage of -2.7 kV, and a current of 7 mA. The boron-
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2.1. Laser cooling and magnetic trapping of He*

nitride nozzle is cooled with liquid nitrogen to reduce the velocity of the beam
exiting the skimmer to a most probable velocity of about 1100 m/s.

The beam coming from the source contains many atoms in states other
than the desired 2 3S1, and also has a rather high divergence. Both of these
problems are reduced by collimating and deflecting the beam. Resonant light is
applied from four directions transverse to the beam with a wavefront curvature
matching the trajectory of the atoms as they are being deflected. The light
force applied to the atoms in this way is highly state selective and reduces the
divergence of the beam considerably. To further improve the state-seclection,
the beam is collimated under a slight angle so that they by-pass a knife edge
that blocks the non-collimated parts of the beam.

When working with 3He∗, typically a mixture of 4He∗:3He∗ at a ratio of 4:1
is supplied to the source and the output of the turbopumps of the collimation
and source chamber are fed into a recycling system consisting of liquid nitrogen
cooled molecular sieves. This system severely reduces the rate of consumption
of the expensive and rare 3He∗ isotope.

After collimation and deflection, the atoms reach the “Zeeman slower” sec-
tion of the beamline. Here the beam is illuminated by a circularly polarized
laser beam from the opposing direction that optically pumps the atoms into
the high-field seeking m = +1 state. The light force applied by this laser beam
slows the atoms down but also pushes them out of resonance because of the
reduced Doppler shift. To combat this, a spatially varying magnetic field is
applied that induces a Zeeman shift exactly matching the reduction in doppler
shift. At the end of the 2 meter long coil, the velocity of the atoms is reduced
from 1100 to about 50 m/s, which is slow enough to capture them in a MOT.

Figure 2.2: Schematic side-view diagram of the He∗ beamline. Metastables are pro-
duced in the source chamber from a DC-discharge. The atomic beam is then colli-
mated by the interaction with a curved wavefront. The collimated beam is slowed
from about 1100 m/s to about 50 m/s in the Zeeman slower. Finally, the slowed
atoms can be captured in a MOT.
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Penning ionization

The workhorses of cold-atom physics have, for a long time, been the well-
established techniques of magneto-optical trapping (MOT) [100] and evapora-
tive cooling [101]. The high (19.82 eV) internal energy of metastable helium
presents a significant obstacle to the application of these techniques however.
The reason is that the internal energy leads to losses via the exothermal reac-
tions known as Penning ionization (PI), and associative ionization (AI)1:

He∗ + He∗ →
{

He + He+ + e− (PI)
He+

2 + e− (AI)

Together, these processes induce a two-body loss rate for unpolarized 2 3S1

atoms of ∼ 10−10 cm3s−1. In the presence of resonant laser light, this rate is
enhanced even further to 10−8 − 10−9 cm3s−1 by coupling to the 2 3P level,
for which the Penning ionization-dominated two-body loss rate constant is
∼ 10−7 cm3s−1. This severely reduces the densities achievable in a MOT. Rel-
atively large numbers of atoms can still be laser cooled however, by increasing
the detuning from resonance and therefore the MOT volume [102].

By definition, a high atomic density is required to reach quantum degener-
acy, and it would seem that the loss rates associated with Penning ionization
render this completely unfeasible. It was realized early on however [103], that
the Penning ionization rate (in the absence of resonant light) is reduced by
four orders of magnitude in a spin-polarized gas of He∗ atoms. The reason for
this is that two spin-polarized 4He∗ atoms (m = +1) have a total spin of 2,
while the total spin of the reaction products cannot exceed 1 because of the
spinless ground state of 4He. Eventually, spin conservation is broken by higher
order terms (mainly due to the spin-dipole interaction) which do produce a fi-
nite coupling between Penning ionizing molecular potentials, but the loss rate
associated (∼ 2 × 10−14 cm3s−1) is no longer a hindrance for reaching high
densities.

These considerations have far-reaching consequences for ultracold He∗ ex-
periments. The MOT stage, which requires cycling between different magnetic
substates, should aim to limit the atomic density as much as possible. If, as is
often the case, densities higher than those achieved in the MOT-stage are de-
sired, the atoms should be prepared and remain in the spin-stretched m = +1
(or m = −1) state.

1In practice, no distinction is made between these processes and both are referred to as
“Penning ionization”.
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Magneto-optical and pure magnetic trap

After the Zeeman slower, the atoms enter the main chamber which is at
ultrahigh vacuum (pressure 4× 10−11 mbar or 1.0× 10−10 mbar during opera-
tion). Here two coils in an anti-Helmholtz configuration generate a quadrupole
magnetic field. The slow atoms entering this field are illuminated from six sides
by circularly polarized laser beams, red-detuned from the 2 3S → 2 3P tran-
sition. This configuration, which is known as a magneto-optical trap (MOT),
causes the atoms to preferentially interact with the laser beam that pushes
them back toward the quadrupole field center. Only in the center itself do
the atoms interact with all beams equally in a configuration known as (red)
“optical molasses”, which cools the atoms.

In order to limit the density in the MOT and reduce losses via Penning
ionization, the He∗ MOT employs relatively large beams of 3 cm diameter
(limited by the 2-inch optics used), and a relatively large detuning of -35 MHz.
The quadrupole field applied by the anti-Helmholtz coils has an on-axis gradient
of ∂B

∂z = 2∂B∂ρ = 22 G cm−1. The MOT is typically loaded for about 4 seconds,

yielding 4×108 atoms at a temperature of 0.56 mK. This configuration is chosen
to optimize the number of atoms eventually cooled to quantum degeneracy.
Table 2.1 gives an overview of some of the relevant experimental parameters
at different stages of cooling.

When a sufficient number of atoms are loaded into the MOT, the cloud is
transferred to a Ioffe-Pritchard cloverleaf-type magnetic trap which is described
in detail by Tychkov [94]. Essentially, this trap creates a strong local minimum
in the magnetic field which acts as a deep potential well for atoms with positive
magnetic moment. The confinement in this trap can be made much higher than
in the MOT and by employing the spin-stretched m = +1 state, the atoms are
resistant to Penning ionization, allowing much higher densities. In order to
optimize the transfer efficiency the magnetic trap is deliberately made more
shallow using an additional power supply (the “small current” supply) and, as
a side effect of this, has a relatively high field minimum of ∼ 20 G. Furthermore
the 4He∗ (3He∗) atoms are optically pumped into the m = +1 (m=+3/2) state
during the transfer using a 2 ms pulse of circularly polarized light.

After the transfer, the increased density and heating from optical pumping
have raised the temperature compared to the MOT. To combat this, a laser
beam is applied to perform 1D-Doppler cooling [104] for about three seconds.
Because this process depends on reabsorption of spontaneously emitted light,
the starting density needs to be sufficient. At this stage the trap typically
contains about 1.8 × 108 atoms at a temperature of 0.13 mK. The density of
the cloud is then further increased by reducing the current delivered by the
second power supply which reduces the magnetic field minimum to ∼1 G and
compresses the magnetic trap.
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Table 2.1: Table of some of the relevant atomic properties and experimental pa-
rameters during different stages of cooling. All settings are optimized to produce
the highest number of atoms at quantum degeneracy in the optical dipole trap
(ODT). Transfer time between different stages is ≤0.5 seconds.

Laser cooling property 4He∗ 3He∗

Cooling transition 2 3S1 → 2 3P2 2 3S
F=3/2
1 → 2 3P

F=5/2
2

Wavelength 1083.33064 nm 1083.46246 nm
Natural linewdith (Γ/2π) 1.62 MHz
Saturation intensity 1.67 W m−2

MOT
Detuning -35 MHz
Gradient (∂B∂z = 2∂B∂ρ ) 22 G cm−1

Loading time 4 seconds 0.5 seconds
Number of atoms (typical) 4× 108 6× 107†

Temperature (typical) 0.56 mK 0.6 mK†

1D Doppler cooling
Doppler cooling time 3 seconds
Number of atoms (typical) 1.8× 108 6× 107†

Temperature (typical) 0.13 mK 0.3 mK†

Evaporative cooling and transfer to ODT
Evaporation time 7.2 seconds 5.4 seconds
Number of atoms (typical) 5× 106 1× 106

Critical/Fermi Temperature Tc ≈ 1.1 µK TF ≈ 1 µK
Temperature (typical) 0.2 µK 0.4 µK

† Diagnostic reference measurements using 4 seconds of MOT loading leading to
a greater amount of 3He∗ captured. When sympathetically cooling with 4He∗ the
stated MOT loading time is used and less 3He∗ atoms are captured.

At this high density collisions between atoms are frequent, allowing the
atoms to quickly rethermalize after being brought out of thermal equilibrium.
This allows forced evaporative cooling by applying a radiofrequency field that
resonantly couples the m = +1 to the m = 0 state, causing them to be lost
from the trap. The rf-frequency starts out very high (50 MHz) so that the
only atoms resonant with the rf-field are at a high Zeeman shift and carry a
high energy. After removing these high-energy atoms, less energy per atom
is available and the energy distribution rethermalizes to a lower temperature.
By ramping the rf-frequency down to ∼ 3 MHz over the course of 7 seconds,
the temperature is reduced to ∼ 0.2 µK and a Bose-Einstein condensate of
106 − 107 atoms is produced.
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2.2. Detection

For 3He∗ in the spin-polarized hyperfine F = 3/2,mJ = +3/2 state, mag-
netic trapping and Penning ionization suppression work just as well as for
4He∗. However like all identical fermions spin-polarized 3He∗ does not scatter
via s-wave collisions. As a consequence, thermalization of an ultracold 3He∗ is
extremely slow compared to 4He∗ and evaporative cooling of a pure 3He∗ cloud
is not possible. For this reason cooling of 3He∗ is always performed in a mixture
with 4He∗. During the evaporative cooling stage, the 3He∗ atoms thermalize
via collisions with 4He∗ atoms, a process known as sympathetic cooling. This
process is aided by the fairly large interspecies scattering length of 27 nm and
the fact that due to its hyperfine structure the Zeeman splitting for 3He∗ is
smaller (by a factor 2/3) than for 4He∗, causing the losses from evaporative
cooling to be born exclusively by the latter isotope. As a consequence much
less 3He∗ is needed in the MOT stage.

2.2 Detection

The main ultrahigh vacuum chamber has multiple means of detection in
place. The most important of these are (1) absorption imaging, (2) the unbi-
ased micro-channel plate (neutral MCP) detector, and (3) the biased ion-MCP.
These different methods allow for the extraction of different but complemen-
tary information on the trapped gas. Absorption imaging is useful for probing
of the atoms in situ, while the neutral MCP allows the measurement of a time-
of-flight (TOF) profile with high time resolution, as well as a high signal to
noise ratio. The ion-MCP measures ions instead of neutral atoms, which al-
lows state-dependent and dynamic information. Below I give a description of
the essential elements of each of these detection methods.

Absorption Imaging

Absorption imaging is a very versatile technique that is ubiquitous in cold-
atom experiments. The basic idea is to illuminate the atom cloud with a
resonant laser beam and image the shadow cast by the atoms.

The imaging setup consists of a collimated laser beam that illuminates the
atoms from the bottom2. The beam is then imaged onto a camera via a one-
to-one imaging setup. The InGaAs photodiode based camera (Xenics Xeva-
1.7-320) has 320 by 256 pixels 30× 30 µm2 in size. The imaging beam has an
intensity which is low compared to the saturation intensity (Isat/I ≈ 10) such
that the Lambert-Beer law holds. The intensity profile falling onto the CCD

2When the neutral MCP is used, it blocks the imaging beam. When imaging it is moved out
of the way via an in-vacuum translation stage.
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is then related to the input intensity of the beam as

Iout(x, y) = Iin(x, y)e−σan(x,y), (2.1)

where n(x, y) is the column density of the atoms, and σa is the (effective) pho-
ton absorption cross section. In order to be independent of the input intensity
profile of the beam which may change over time, a second image, Iprobe(x, y)
is taken shortly (typically 300 ms in the quantum degenerate regime) after the
first image Iabs(x, y) to provide a reference. The camera also picks up stray
light and a pixel dependent dark current which is measured by taking a third
image, Ibg(x, y) with the imaging light blocked. The normalized transmission
can now be calculated as

Iout(x, y)

Iin(x, y)
=

Iabs(x, y)− Ibg(x, y)

Iprobe(x, y)− Ibg(x, y)
. (2.2)

Further improvement of the signal can be gained by using a “Fringe removal
algorithm”[98]. This algorithm constructs a synthetic “optimal” Iprobe(x, y)
as a linear combination of multiple previously obtained probe images. The
optimal combination is found by fitting to the edges of the Iabs(x, y) image,
where no atoms are present. In practice this procedure improves the signal to
noise ratio of the images, and also removes artifacts that result from distortions
such as diffraction fringes in Iprobe(x, y) that are not reproduced in Iabs(x, y).
Figure 2.3 shows the different stages of image processing.

From the normalized transmission image the atomic column density is re-
constructed as

n(x, y) =
1

σa
ln

(
Iout(x, y)

Iin(x, y)

)
. (2.3)

Absorption imaging can thus in principle be used to determine the absolute
number of atoms if σa is known exactly. In practice, performing a calibration
of the MCP detector (see next subsection) turns out to be more reliable how-
ever, as the exact cross section depends on the details of temperature, light
polarization, and internal state. See Tol [91] for a detailed analysis on this.

The main advantage of absorption imaging is that it allows in-situ imag-
ing, providing an indispensible tool during the alignment of, among others, the
optical dipole trap (ODT) beams. It also allows for a number of expansion
measurements which are useful in characterizing the trap. One is the measure-
ment of the trap frequencies by inducing an oscillation inside the trap, letting
the atoms oscillate for a variable time, and observing in which direction they
fly when the trap is suddenly switched off. The other is the measurement of
relative populations in the three magnetic substates via a Stern-Gerlach mea-
surement. See van Rooij [98] for detailed descriptions of these techniques.
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2.2. Detection

Figure 2.3: Different image processing stages of an in-situ absorption image of a BEC
trapped in the (320 nm) dipole trap. a) Raw absorption image. b) Corresponding
probe image. c) Atomic column density recovered from these images according to
equation 2.3. d) Atomic column density image including the fringe removal algorithm.
The algorithm uses a total 139 probe images (including b)) taken on the same day.

Neutral MCP detection

The high internal energy of He∗ atoms allows for detection methods not
available to most other species. When a He∗ atom hits a metal surface, its
internal energy of 19.82 eV is more than enough to overcome the work function
of the material, causing the release of an electron upon impact. This single
electron can then be amplified in an electron multiplication process to produce
a detectable current. This general process is the basis of many types of particle
detector. He∗ experiments typically use a micro-channel plate (MCP) detector
because of its large active area and large number of channels.

After performing an experiment on a trapped cloud of atoms, the remaining
atoms are released from the trap, allowing the cloud to expand and fall freely.
These atoms can be detected if they hit an MCP detector (Hamamatsu F4655)
located at a distance of 17 cm directly below the trap. This detector consists of
an array of small electron multiplication channels with a high (∼ 2 kV) voltage
across them. The detector is shielded by a grounded grid so that no electric
field emanates from the device, and the detector does not affect the path of
particles falling onto it. Although in principle the detector is sensitive to any
particle with sufficient energy, the device is meant to detect He∗ atoms and is
therefore referred to as the neutral MCP detector.

The high signal-to-noise ratio and time resolution of the MCP detector allow
the measurement of the time-of-flight (TOF) profile of the ballistically expand-
ing gas, from which many relevant experimental parameters can be deduced by
fitting this signal with an appropriate fit function. The time-dependent signal
on the MCP is given by

SMCP (t) = NatomsGΦ(t), (2.4)

where Natoms is the total number of atoms in the trap, and G is the net
gain of the MCP (including quantum efficiency) which needs to be calibrated
against a known number of atoms. The last time this was done [98], a gain of
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Figure 2.4: Normalized flux Φ(t) according to the Maxwell-Boltzmann distribution
at a temperature of 0.5 mK (blue line), 0.13 mK (orange line), and at 1 µK (green
line, decreased by a factor 1000 for clarity). Respectively, these temperatures roughly
correspond to those achieved in the MOT, after Doppler cooling, and at the onset of
quantum degeneracy where quantum statistics start to play a role.

1.4 × 10−9 V s was found at an MCP voltage of 1.9 kV. The normalized flux
of atoms Φ(t) represents the time dependent probability for a single atom to
collide with the active surface of the MCP. Assuming the detector is positioned
directly below the cloud it still depends on the height h = 17 cm of the trap
above the MCP, the total active surface area which is circular with radius
r0 = 7.25 mm, and also, crucially, on the (thermodynamic) distribution of the
atoms in the trap.

MCP flux models

The most basic thermal distribution of atoms in a trap is the Maxwell-
Boltzmann distribution. For this distribution the normalized flux is given
by [94]

ΦMB(t) =
g√

2πσth(t)

t2 + t20
2t

exp

(
− (h− gt2/2)2

2σth(t)2

)(
1− exp

(
− r2

0

2σth(t)2

))
,

(2.5)
where g is the acceleration due to gravity, σth(t) = t

√
kBT/m is the size of the

ballistically expanding cloud, and t0 =
√

2h/g is the free-fall time for a body
initially at rest. Figure 2.4 shows the normalized flux for several temperatures
commonly encountered in the He∗ setup. The Maxwell-Boltzmann distribution
is a good approximation of the flux when the phase space density is low. As
the gas approaches quantum degeneracy (typically at T . 1 µK), the effects
of quantum statistics start to become important, and the Bose-Einstein or
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Fermi-Dirac distribution must be used instead. Figure 2.5 shows the difference
between these distributions. For bosons the normalized flux is given by [94]

ΦBose(t) = g3(z)−1 g√
2πσth(t)

t2 + t20
2t
×[

g5/2

(
ζ exp

(
− (h− gt2/2)2

2σth(t)2

))
− g5/2

(
ζ exp

(
− (h− gt2/2)2 + r2

0

2σth(t)2

))]
,

(2.6)
where gn(z) =

∑∞
k=1 z

k/kn are the so-called polylogarithm functions, and ζ =
exp(µ/kBT ) is the fugacity of the gas, with µ the chemical potential of the
(thermal) gas. For fermions, a Fermi-Dirac distribution is used instead which
gives a flux expression which can be found by making the substitution gn(u)→
−gn(−u) into equation 2.6. In the classical limit3 µ → −∞ therefore ζ → 0.
As the phase space density increases the chemical potential increases until it
approaches zero (or a finite positive value for the degenerate Fermi gas).

For fermions, this expression remains valid in the limit T → 0, where the
chemical potential becomes equal to the Fermi energy (µ = EF ) [105]. For
bosons, the chemical potential tends to zero as T → 0, and the point where
it becomes lower than the lowest energy eigenstate of the system defines the
critical temperature for Bose-Einstein condensation (Tc ≈ 0.94~ω̄N1/3, where
ω̄ is the average trap frequency, and N is the number of atoms [106]).

For interacting particles, the ideal Bose gas is not a good approximation
below condensation, where the mean-field energy of the BEC must be consid-
ered. In our experiments, the BEC is well described by the Gross-Pitaevskii
equation in the Thomas-Fermi limit [106], which gives a normalized flux of [94]

ΦBEC(t) =
15

16
g
t2 + t20

2t2

√
m

2µ
max

[
0, 1− m

2µ

(
g
t2 − t20

2t

)2
]2

, (2.7)

where for simplicity it is assumed that the entire BEC falls on the detector (in
the He∗ setup, this is ∼ 95% if the BEC is directly above the detector). The
TOF profile below Tc can be fit using a linear superposition of equation 2.6,
and 2.7. The chemical potential (µ) in equation 2.7 is distinct from the chemical
potential of the thermal gas (which is assumed to be zero below Tc) and is given
by

µ =
1

2

(
15aωxωyωz~2m1/2

)2/5

N
2/5
BEC , (2.8)

where ωi are the trap frequencies in all three directions, and a = 7.512(5) nm or
142.0(1) a0 is the s-wave scattering length [57]. This expression is very useful

3The thesis of Notermans [87] erroneously states the classical limit as kBT � µ therefore
ζ → 1.
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Figure 2.5: Comparison of the momentum distribution for different kinds of particles.
When quantum statistical effects are negligble the Maxwell-Boltzmann distribution
(black solid line) is appropriate. When the phase space density increases, the energy
distribution changes. For bosons, the Bose-Einstein distribution applies (blue dash-
dotted line, µ = 0), which gives a higher probability density at low momentum, an
effect known as bunching. For fermions, the Fermi-Dirac distribution applies (red
dashed line, T/TF = 0.25), which shows anti-bunching.

because it relates the number of atoms in the BEC to the chemical potential
which can now be measured directly by fitting equation 2.7 to measured TOF
profiles. By inducing trap oscillations, the trap frequencies can be measured
using absorption imaging, allowing a calibration of the MCP detector in terms
of the absolute number of atoms [98].

Finally, when the temperature is significantly lower than the gravitational
energy (kBT � mgh ≈ kB × 0.8 mK), the movement of the atoms is domi-
nated by gravity rather than ballistic expansion. This allows a simplification
of expressions 2.6, and 2.7. For the Bose gas this gives

ΦBose(t) = g3(z)−1 g
√
m√

2πkBT
×[

g5/2

(
ζ exp

(
−mg

2(t− t0)2

2kBT

))
− g5/2

(
ζ exp

(
−mg

2((t− t0)2 + r2
0/(2h)

2kBT

))]
,

(2.9)
and for the BEC

ΦBEC(t) =
15

16

√
2µ

mg2
max

(
0, 1− 2µ

(t− t0)2

mg2

)2

. (2.10)
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Figure 2.6: Time-of-flight profile of a BEC of 1× 106 atoms with a thermal fraction
of 5× 105 atoms, fitted according to equations 2.9, and 2.10. The solid red line is the
combined bimodal fit, while the black dashed line and the blue dotted line indicate
the BEC and thermal Bose gas respectively.

Figure 2.6 shows a typical TOF-profile of a BEC with thermal fraction fitted
according to equations 2.9 and 2.10.

Ion-MCP detection

Besides the neutral MCP, a second MCP detector is placed about 8 cm
above the trap center (at a slight angle so as not to block any laser beams).
This detector, known as the ion-MCP, is of the same type as the neutral MCP
detector but doesn’t have a grounded grid to shield the electric field emanating
from it. This field affects the trajectory of nearby charged particles, attracting
positively charged ions. The principle of detection is the same as for neutral
particles except that the energy needed to release electrons is supplied by the
potential on the front side of the MCP rather than by the internal energy of
the He∗ atoms. Because the flux of ions can be rather low compared to the flux
on the neutral MCP it is sometimes advantageous to measure and count the
individual current pulses on the ion-MCP rather than the integrated current.

The ion-MCP is a useful diagnostic tool because it allows the observation
of dynamic processes during which the ionization rate changes as a function
of time. Examples of such processes are MOT loading, and the onset of Bose-
Einstein condensation which is asscociated with a sudden increase in density.
The ionization rate also increases dramatically when the internal state of the
He∗ atoms is changed so that the cloud is no longer stable against Penning
ionization. One way in which this happens is when the 2 3S1 → 2 1S0 transition
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is made because for 2 1S atoms Penning ionization is no longer suppressed. The
ion-MCP thus allows the indirect detection of 2 1S0 atoms.

2.3 Optical Dipole traps

Neutral atoms can also be trapped in laser beams which are far detuned
from any resonances. The physical principle behind this is that the strong elec-
tric field induces a dipole moment in the atom, which allows the atoms to be
trapped. Because of this induced dipole moment, such a trap is usually referred
to as an optical dipole trap (ODT), although the terms far off-resonant trap
(FORT) or quasi-electrostatice trap (QUEST) (when the laser beam is far red-
detuned to the first electronic transition) are also sometimes used. Trapping
atoms in a laser beam offers three important advantages over magnetic trap-
ping. First, the trapping potential is independent on the magnetic substate,
which allows the preparation of different spin-states, or even mixtures. Second,
the high degree of control over a laser beam gives a lot of extra possibilities in
shaping the potential landscape for the atoms at a microscopic scale. Finally,
a laser beam based trap can be switched off much faster than a magnetic trap
while minimally affecting the ballistic expansion of the gas.

Atomic polarizability

When an atom is placed in an electric field ~E, the atom responds by forming
a dipole moment ~p. If the electric field changes in time, the dipole moment
responds with some linear response function. In the Fourier domain

~p(ω) = α(ω) ~E(ω), (2.11)

where α(ω) is the linear response function of the dipole moment, better known
as the polarizability. In an electric field oscillating at angular frequency ω, the
atom then experiences an energy shift [107]

∆E = −1

2
〈~p · ~E〉 = −1

4
Re(α(ω))E2

0 , (2.12)

where E0 is the peak amplitude of the electric field. This shift is known as the
ac-Stark shift4. The atom also absorbs energy from the time-dependent electric
field, which is re-emitted in the form of photons. The photon scattering rate
is given by [108]

Γsc =
Pabs
~ω

=
1

2~
Im(α(ω))E2

0 . (2.13)

4In the righthand side of equation 2.12 the root-mean-square value of the field was taken
implicitly. For the dc-Stark shift it should be multiplied by 2.
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The conservative part of the interaction, which is useful for trapping, is thus as-
sociated with the real part of the polarizability, while the dispersive part, which
is detrimental to it, is associated with the imaginary part. The peak amplitude
of the electric field of a monochromatic wave is related to the intensity of the
wave as

E2
0 = 2Z0I, (2.14)

where Z0 = 1/cε0 ≈ 376.7Ω is the impedance of free space. A high intensity
laser beam would thus provide an excellent trapping potential because of the
high intensity gradient that can be generated. The only problem that remains
is to choose a suitable frequency for the electromagnetic wave such that the
real part of the atomic polarizability is large, while the imaginary part is small.

The Lorentz oscillator model

A simple classical model that reproduces much of the physics of the atomic
polarizability is the Lorentz oscillator model [108]. This model treats the atom
as consisting of a negatively charged “electron” that is elastically bound to a
positively charged “nucleus”, as if by a rubber band or spring. This system can
oscillate with eigenfrequency ω0, and is damped by the emission of radiation.
The corresponding on-resonance damping rate is

Γ =
e2ω2

0

6πε0mec3
, (2.15)

where e, and me are the charge and mass of the electron respectively. When
the system is driven by a linearly polarized electric field, the equation of motion
is given by

ẍ+ (ω/ω0)2Γẋ+ ω2
0x = − e

me
E(t). (2.16)

The dipole moment of this system p(t) = −ex(t) can be found by solving the
equation of motion. By Fourier transformation

p(ω)

E(ω)
= α(ω) =

6πε0c
3

ω2
0

Γ

ω2
0 − ω2 − i(ω3/ω2

0)Γ
, (2.17)

where e2/me = 6πε0c
3Γ/ω2

0 was substituted. Note that equation 2.17 only de-
pends on the electron mass or charge to the extent that equation 2.15 does. The
polarizability given by the Lorentz oscillator model provides a good approxi-
mation for real atoms that have a strong closed transiton. Γ should then be
replaced by the spontaneous emission rate. The model fails when the response
becomes non-linear, which is the case when saturation becomes non-negligible.
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Plugging the polarizability of equation 2.17 into equations 2.12, and 2.13,
the energy shift is given by

∆E =
3πε0c

3

4ω3
0

Γ

∆
E2

0 , (2.18)

and the scattering rate by

Γsc =
3πε0c

3

4~ω3
0

(
Γ

∆

)2

E2
0 , (2.19)

where the rotating wave approximation was made, and ∆ = ω − ω0 is the
detuning from resonance. Two inferences can be made from these expressions
which are very important to optical dipole traps. First, a red detuned (∆ < 0)
laser beam produces a negative energy shift, and thus provides a trapping
potential, while blue detuned light (∆ > 0) is anti-trapping. Secondly, the
trapping depth (equation 2.18) decreases as ∆−1, while the scattering rate
(equation 2.19) decreases as ∆−2. Because the latter induces heating and trap
loss, it is advantageous to increase the detuning to improve the ratio of trap
depth to loss rate.

Corrections to the polarizability

The Lorentz oscillator model is a good approximation of the polarizability
when the laser is not too far detuned from a single strong line and the atom can
be considered a two-level system. In general, other levels should be considered
and the polarizability needs to be calculated from second-order perturbation
theory [109]. The real part of the polarizability of some initial state ni is then
given by a sum over all final states nf

αi(ω) = −2

~
∑
f 6=i

ωfi|〈ni|~d|nf 〉|2

ω2
fi − ω2

, (2.20)

where ~d is the dipole operator, and ωfi is the transition frequency between
the final and initial state. This expression can be further rewritten in the LS
coupling scheme as

αn,J,mJ
(q, ω) = 6πε0c

3
∑

n′,J′,m′
J

(
J 1 J ′

−mJ q m′J

)2
(2J ′ + 1)An′J′

ω2
n′J′(ω2

n′J′ − ω2)
, (2.21)

where n, J , mJ are the principal, angular momentum, and magnetic projection
quantum numbers respectively, and AnJ is the Einstein A coefficient for the
transition. The term between the large brackets is the Wigner 3j-symbol, and
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q is a quantum number for the polarization state of the light which is ±1, or
0 depending on whether the light has σ± or π polarization respectively. In
chapter 4 this formula is used for ab-initio calculations of the polarizability in
order to find magic wavelengths.

In general the polarizability given by equation 2.21 depends on the exact
magnetic substate, and the polarization of the light. It can be shown from
symmetry considerations, that this dependence can always be parametrized
as [89, 107]

αJ(q, ω) = αSJ (ω) + (k̂ · B̂)q
mJ

2J
αVJ (ω) + (3|ε̂ · B̂|2 − 1)

3m2
J − J(J + 1)

2J(2J − 1)
αTJ (ω),

(2.22)
where αSJ , αVJ , and αTJ are known as the scalar, vector, and tensor parts of the

polarizability respectively. The unit vectors k̂, B̂, and ε̂ are in the direction of,
respectively, light propagation, the quantization axis (typically induced by an
electric field), and the electric field polarization of the light. For the 2 3S1 state
of helium, the vector and tensor polarizability arise from perturbations to LS
coupling [53] and are small enough compared to the scalar part that they can
typically be neglected (see chapter 4).

Beam intensity profile

A diffraction limited laser beam, also known as a Gaussian beam, is de-
scribed by a so-called TEM00 mode which, given a certain power P , has an
intensity profile

I(r, z) =
2P

πw2(z)
exp

(
− 2r2

w2(z)

)
, (2.23)

where the z coordinate is along the propagation direction and the r coordinate
is orthogonal to it. The width of the beam w(z) = w0

√
1 + (z/zR)2 is fully

characterized by the two related length-scales known as the beam waist w0,
and the Rayleigh length

zR =
πw2

0

λ
, (2.24)

which characterizes the depth of focus. Far from the focus, the beam has
a divergence angle Θ = λ/(πw0) which decreases as wavelength decreases,
making it easier to attain a small focus with short wavelength light. The perfect
Gaussian beam is an idealization of real laser beams. In practice a laser beam
may show a number of aberrations which tend to increase the minimum spot
size achieved. This decreases the peak intensity, and therefore the trapping
power of the beam, and for that reason minimization of these aberrations should
receive consideration when selecting or building a trap laser. Nevertheless, the
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Figure 2.7: Schematic view of the ODT geometry. The ODT beam is focussed in the
vacuum chamber, refocussed, and passed into the vaccum chamber again, intersecting
itself at an angle of 19◦. The atoms are then trapped at the intersection.

Gaussian beam provides a good starting point for estimating the trapping
potential for the atoms.

Crossed-beam ODT

In the He∗ experiment, two laser systems are used to generate an ODT.
The first is a commercial Erbium-doped fiber laser at 1557 nm (NP photonics
Scorpio) which has a built-in amplifier with a maximum output power of about
2 W. The second is a home-built laser system at 320 nm which is described in
detail in chapter 5, and produces up to 2 W at that wavelength. Both beams
are focussed to have a similar waist size which is about 85 µm for the 1557 nm
laser, and about 60 µm for the 320 nm laser, though with some astigmatism.
The Rayleigh lengths of these beams are fairly long (∼ 1.5 cm at 1557 nm,
and ∼ 3.5 cm at 320 nm) and provide very little confinement along the beam
path. To remedy this, the beam is refocussed and passed into the chamber
again, intersecting itself at an angle of θ = 19◦. The polarization of the beam
is rotated by 90◦ to prevent the generation of a standing wave. The geometry
is shown in figure 2.7.

Assuming perfect Gaussian beams, what does the potential felt by the atoms
look like? If the trap depth (U0 = αIpeak/2ε0c) is large compared to the
temperature of the atoms, the potential is approximately harmonic with a
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slightly differing spring constant in three orthogonal directions [87]

UODT (x, y, z) ≈ −U0

(
1− mω2

xx
2

2
−
mω2

yy
2

2
− mω2

zz
2

2

)
, (2.25)

where the three trap frequencies are given by

ωx =

√
4U0

mw2
0

, (2.26)

ωy = ωx cos(θ/2), (2.27)

ωz = ωx sin(θ/2). (2.28)

The trap depth of the 1557 nm input beam has been estimated to be U0/kB ≈
4.5 µK at an input power of 240 mW directly before the chamber [87]. For the
320 nm beam the peak intensity of a 1 W beam was found to be 1.0×108W m−2

(see chapter 5), and the polarizability to be 189.3 × 4πε0a
3
0 (see chapter 4).

This provides almost the same trap depth at U0/kB ≈ 4.3 µK. Based on this
the expected trap frequencies are (ωx, ωy, ωz) = 2π × (359, 352, 59) Hz for the
1557 nm trap, and (ωx, ωy, ωz) = 2π × (500, 492, 82) Hz for the UV trap. The
two trap frequencies ωy, and ωz can be measured using absorption imaging of
trap oscillations. Typical trap frequencies found by this method are 50-80%
of the expected frequencies. This mismatch can be attributed to misalignment
of the beams (the alignment of the two waist positions is quite difficult to get
right), and to beam aberrations that decrease the tightness of the focus.

Optical lattice

When the returning beam of the ODT has the same polarization as the in-
coming beam, the beams interfere and generate a standing wave pattern. The
atoms feel this as a periodic potential and this configuration is known as an
optical lattice [110]. This configuration has not been used in the experiments
described in this thesis. However, a small unintended optical lattice was found
to be responsible for the line-splitting effect found in chapter 3, and a deep
optical lattice allows spectroscopy in the Lamb-Dicke regime which may be the
next step in improving the measurements presented in chapter 6. This sec-
tion therefore briefly reviews the basics of optical lattices, focussing on effects
relevant to optical spectroscopy.

The 1D optical lattice potential can be written as

Vlatt(x) = sEr,l cos2(qx), (2.29)
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2. Experimental setup

where s = U0/Er is the depth of the lattice in units of the lattice recoil5

Er = ~2q2/2m, q = π/d is the lattice wavevector, and d = λ/2 cos(θ/2) is
the lattice spacing. The recoil energy is the natural unit for measuring the
lattice depth because it demarcates between the weak potential (U0/Er,l � 1),
and tight-binding (U0/Er,l � 1) regimes of the optical lattice. Solving the
Schrödinger equation (or Gross-Pitaevskii equation for a BEC) in the weak
potential limit, one finds that a band-structure forms, with the two lowest
bands given by (equation 19 of ref. [110])

E(q′)

Er,l
=

(
q′

q
− 1

)2

±

√
4

(
q′

q
− 1

)2

+
s2

16
, (2.30)

where q′ is the quasi-momentum in the lattice. The main difference compared
to free atoms is then the opening of an energy bandgap ∆ = U0/2 at q′ = q.
This gap is unimportant as long as the momentum of the atoms does not
come close to the lattice momentum, which is typically satisfied as long as the
temperature is much lower than the recoil temperature Tr = Er/kB . However,
when the recoil from a spectroscopy photon is close to the recoil of a lattice
photon, which was the case for the experiments of chapter 3, even a small
bandgap becomes noticeable and shows up as a splitting of the line.

The recoil energy6 of the 320 nm ODT (Er(320 nm) ≈ kB × 23.4 µK) is
much higher than for the 1557 nm ODT (Er(1557 nm) ≈ kB × 0.986 µK),
and therefore, in the weak potential limit, does not influence spectroscopy at
1557 nm. In the tight-binding limit, the lowest band can be described by [110]

E(q′)

Er
=
√
s− 2J cos

(
πq′

q

)
, (2.31)

where the hopping parameter J , which is well-defined only in the tight-binding
limit, is given by

J =
4√
π
s3/4 exp(−2

√
s). (2.32)

In this limit, the bandgap is a multiple of the recoil energy, and excitation to
the first excited band is forbidden by momentum conservation. At the same
time, when the total width of the band becomes small compared to the recoil
of a spectrocopy photon (4JEr,l < Er,s), excitation involving only the transfer
of a single photon recoil is no longer possible. What is happening here is

5There can sometimes be some confusion over whether the recoil energy refers to the lattice
or the spectroscopy photon recoil. An l or s, referring to the lattice or the spectroscopy, is
added in the formulas to avoid ambiguity.

6These energies are for 4He, for 3He the recoil energies are higher at Er(320 nm) ≈ kB ×
31.0 µK, and Er(1557 nm) ≈ kB × 1.31 µK.
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2.3. Optical Dipole traps

Figure 2.8: Transition linewidth in the lowest energy band of an optical lattice at
320 nm as a function of s = U0/Er,l compared to some energy scales relevant for
spectroscopy on the 2 3S1 → 2 1S0 line in 3He∗. The blue dashed line is the bandwidth
of the lowest energy band of the optical lattice, the grey dashed line is the recoil
shift for 3He∗, the black dashed line is a typical Fermi temperature of 0.5 µK, the
red dashed line is the natural lifetime of the 2 1S0 level, and the green dashed line
is the off-resonant scattering rate at 320 nm. The purple solid line indicates the
estimated linewidth for spectroscopy. The purple curve reaches a minimum of 13.9 Hz
at s = 60.86.

that as the trap depth increases the atoms become more and more localized
and confined to a single lattice site until they start to enter the Lamb-Dicke
regime [111]. When the trap depth is increased further, at some point the
bandwidth becomes smaller than the energy spread of the atoms, in particular
for fermionic 3He∗. Eventually tunneling between different states is virtually
impossible and the lattice becomes an array of unconnected harmonic potentials
with trap frequency ~ω0 = 2sEr,l, which is deep into the Lamb-Dicke regime
when the spectrocopy recoil is comparable to or smaller than the lattice recoil.

These effects are relevant to spectroscopy of the 2 3S1 → 2 1S0 transition
because they affect the recoil shift and the Doppler width of the absorption
lineshape. Spectroscopic measurements should therefore aim to work either
at sEr,l � Er,s where these effects can be neglected, or at sEr,l � Er,s to
reap the benefits of the Lamb-Dicke regime. In the latter case, the proper
lineshape should be calculated from Franck-Condon overlap integrals between
the different Wannier wavefunctions that describe the atoms in this lattice.
However, from a comparison of the energy distribution inside the trap and the
expected bandwidth J , an estimate of the order of magnitude of the linewidth
can be made. Figure 2.8 shows this comparison for the case of 3He∗ in the
320 nm ODT.
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In the present configuration of the 320 nm ODT the maximum attainable
trap depth is limited by the peak intensity of ∼ 108 Wm−2. At this intensity
s ≈ 0.18 and the experiment is far from the tight-binding regime. The only
way of increasing the trap depth without compromising the magic wavelength
condition would be to increase the light intensity, either by tighter focusing,
or by using a build-up cavity. At some point however, lifetime broadening by
off-resonant scattering, which also increases with intensity, becomes significant.
Other loss mechanisms such as two-photon ionization may increase the lifetime
broadening even further. If this is neglected there should be an optimum in
the linewidth at around s = 60 where a linewidth less than 20 Hz is expected
as can be seen in figure 2.8. This is a dramatic reduction compared to the
linewdith of 3He∗ which is limited by Fermi-energy of ∼ h× 10 kHz. For 4He∗,
it may allow spectroscopy above the condensation threshold so that the density
and thus the mean-field shift can be reduced.

2.4 Magnetic substate preparation

One of the advantages of the ODT compared to the magnetic trap is that the
trap potential is (almost) independent of the magnetic substate of the atoms.
This allows trapping of spin states other than the spin-stretched mJ = +1
state, or even spin mixtures. The rf-coil used for forced evaporative cooling, is
also employed to drive transitions between different spin states. This section
describes techniques by which these transitions are used to prepare different
spin states.

Magnetic resonance rf-transitions

Because 4He has no nuclear spin, the Zeeman shift of the 2 3S1 state is
given entirely by the electron spin. The Hamiltonian of this system7 with spin
~S in a magnetic field ~B is

Ĥ = −γ ~B · ~̂S, (2.33)

with the coupling given by the gyromagnetic ratio8 γ = geµB/~ ≈ 2π ×
2.8025 MHz G−1, where µB is the Bohr magneton, and ge is the electron g-
factor. If the atoms are in a static magnetic field B0 in the z-direction, and
subjected to an oscillating field B1 cos(ωt) in the x-direction, equation 2.33

7This Hamiltonian is readily generalized to systems with arbitrary angular momentum pro-
vided that the total angular momentum is a good quantum number.

8The 3He gyromagnetic ratio is very close to 2/3 of this value, with only a minor correction
due to the (much smaller) nuclear magnetic moment.
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2.4. Magnetic substate preparation

takes on the more explicit form

Ĥ = ~ω0Ŝz +
~Ω

2

(
eiωtŜ− + e−iωtŜ+

)
(2.34)

in the rotating wave approximation. Here ω0 = γB0/~ is the Larmor frequency,
Ω = γB1/(2~) is the Rabi frequency, and Ŝz and Ŝ± = (Ŝx ± iŜy)/2 are
spin projection operators. The time-dependent Schrödinger equation for this
Hamiltonian, Ĥ|ψ(t)〉 = i~ ∂

∂t |ψ(t)〉, yields a set of coupled equations for the
population amplitudes in the different spin states. These equations have equally
spaced energy levels and idential diagonal matrix elements so we speak of a
cascaded system.

4He∗ is a spin-1 system with a three-dimensional Hilbert space. An arbi-
trary pure spin state of this system can be written as

|ψ〉 = C+ |mJ = +1〉+ C0 |mJ = 0〉+ C− |mJ = −1〉 , (2.35)

where |C+|2 + |C0|2 + |C−|2 = 1 are the population amplitudes in the dif-
ferent spin projection eigenstates. Plugging the Hamiltonian of equation 2.34
into the time-dependent Schrödinger equation yields a system of three coupled
differential equations for the population amplitudes

i
dC+

dt
= ω0C+(t) +

Ω√
2

exp(−iωt)C0(t) (2.36)

i
dC0

dt
=

Ω√
2

exp(iωt)C+(t) +
Ω√
2

exp(−iωt)C−(t) (2.37)

i
dC−
dt

=
Ω√
2

exp(iωt)C0(t)− ω0C−(t). (2.38)

The general solution to this system can be represented as a vector in the nor-
malized orthogonal basis of solutions

|ψ0〉 =
1

2ΩR

(
−
√

2Ωe−i(ωt+φ) |+〉+ 2∆ |0〉+
√

2Ωei(ωt+φ) |−〉
)

(2.39)

|ψ−〉 =
eiΩR(t−t0)

2ΩR

(
(ΩR −∆)e−i(ωt+φ) |+〉 −

√
2Ω |0〉+ (ΩR + ∆)ei(ωt+φ) |−〉

)
(2.40)

|ψ+〉 =
e−iΩR(t−t0)

2ΩR

(
(ΩR + ∆)e−i(ωt+φ) |+〉+

√
2Ω |0〉+ (ΩR −∆)ei(ωt+φ) |−〉

)
,

(2.41)

where ∆/(2π) is the detuning from resonance, ΩR =
√

Ω2 + ∆2, and φ is the
starting phase of the rf-field9. These solutions are eigenstates of the effective

9This phase is arbitrary for a single rf-pulse but becomes important when multiple pulses
are used, such as in a Ramsey-type measurement.
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Figure 2.9: Stern-Gerlach measurement of the magnetic field. The signal n−/(n− +
n+) is determined from the absorption images above the graph where the different
spin states are separated using a magnetic field gradient. The signal below is fitted
using equations 2.45, and 2.43, where the Rabi frequency and the center frequency are
the only free parameters. The Rabi frequency for this measurement is 2π × 7.2 kHz.

combined light-atom Hamiltonian10 in the dressed state picture with energies
E± = ±~ΩR and E0 = 0. The time evolution operator URabi(∆T, φ) that
evolves an arbitrary input state at time t0 to the one at time t1 is simply a
projection onto this basis:

|ψ(t1)〉 = URabi(t1 − t0, φ0) |ψ(t0)〉 =

+,0,−∑
i

|ψi(t1 − t0, φ0)〉 〈ψi(t0, φ0)|ψ(t0)〉 .

(2.42)
Most of the time the system starts in the spin stretched state and the boundary
condition |ψ(t0)〉 = |mJ = +1〉 is appropriate.

Rf-spectroscopy and Rabi-flopping

In the ODT, the atoms are still subjected to a magnetic field, either one
that is applied, or the ambient field in the laboratory which is typically of the
order of ∼ 0.5 G. The associated Zeeman splitting can be measured by driving
an rf-transition and observing the transfer to the different sublevels using a

10This Hamiltonian can be found by substituting ω0 → ∆ in equation 2.34
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2.4. Magnetic substate preparation

Stern-Gerlach type measurement (see section 2.2). The associated lineshape
can be found using equation 2.42. Starting from the |mJ = +1〉 state, and
applying an rf-pulse with excitation time T , the different populations are given
by

|C+(∆, T )|2 =
∆2

Ω2
R

+
Ω2

Ω2
R

cos4

(
ΩRT

2

)
− Ω2∆2

Ω4
R

sin4

(
ΩRT

2

)
(2.43)

|C0(∆, T )|2 =
Ω2

2Ω4
R

[
Ω2
R sin2(ΩRT ) + 4∆2 sin4

(
ΩRT

2

)]
(2.44)

|C−(∆, T )|2 =
Ω4

Ω4
R

sin4

(
ΩRT

2

)
. (2.45)

The Stern-Gerlach type experiment allows the measurement of relative spin
state populations. Unfortunately, this measurement shows a strong negative
bias in the relative mJ = 0 population because of the high rate of Penning
ionization during the necessary expansion before imaging. Correcting for this
bias is not straightforward because the effect is density dependent. Instead,
the spectroscopy signal can be defined using only the relative population in the
|mJ = +1〉, and the |mJ = −1〉 states as S = n−/(n− + n+). This signal can
then be fitted according to equations 2.43, and 2.45, as shown in figure 2.9.

Equations 2.43-2.45 also describe the dynamics of Rabi flopping between
the different magnetic substates, which can be used to transfer the atoms to
different spin states. Not surprisingly, population transfer is most efficient when
∆ = 0, with a maximum of 50% transfer to the |mJ = 0〉 state for ΩRT = π/2,
and 100% transfer to the |mJ = −1〉 state for ΩRT = π. Pulses with power
and duration set to produce these population transfers are known as a π/2- or
π-pulse respectively. Figure 2.10 shows the measured population dynamics.

Landau-Zener sweep

A Rabi π-pulse is an efficient and fast way of transfering population from
the |m = +1〉 to the |m = −1〉 state. A major downside however, is the fairly
strong constraint on the detuning. Over the course of a single day the Larmor
frequency has been observed to drift by several tens of kHz (∼ 10 mG) which
is significant compared to the maximum Rabi frequency (∼ 2π × 20 kHz). A
more robust method of population transfer is to use an adiabatic Landau-Zener
sweep [112]. The basic idea behind this can be seen in figure 2.11 which shows
the energies of as a function of detuning in the dressed state picture. Far from
resonance the mJ = +1 state is identical to the |ψ+〉 state. When the detuning
is linearly ramped over the resonance (by sweeping the rf-frequency or the
magnetic field) the spins remain in the |ψ+〉 state, provided that the ramp is
sufficiently slow. At the opposite side of the resonance the |ψ+〉 projects almost
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Figure 2.10: Observed population in different spin states, normalized to the total
population at t=0, as a function of rf-pulse duration. The mJ = +1, 0,−1 populations
are indicated by the blue squares, black circles, red diamonds respectively. The solid
blue, dotted black, and dashed red lines are fits of equations 2.43-2.45 to the data.
The measured mJ = 0 population is less than half the expected population because of
Penning ionization losses. The Rabi frequency for this measurement is 2π × 23 kHz.

entirely into the |m = −1〉 state. The sweep therefore adiabatically transfers
the atoms regardless of when it passes the resonance.

The problem that remains is to determine what ramping speed can be con-
sidered “sufficiently slow”. An exact solution of the time-dependent Schrödinger
equation during such a ramp is already quite complicated in the two-level sys-
tem because the detuning ∆ is now dependent on time. A useful approximation
is given by the Landau-Zener formula [112] which gives the approximate prob-
ability of a non-adiabatic jump out of |ψ+〉 (often referred to as the transfer
probability)

PNA = exp

(
−2πΩ2

∆̇

)
. (2.46)

The condition for adiabaticity is therefore ∆̇ � 2πΩ2. A practical realization
often used in the He∗ setup [98] is to ramp the magnetic field from 1 to 2 G
in 50 ms (∆̇ = γ∆B/50 ms ≈ (2π × 3kHz)2), with a coupling Rabi frequency
Ω ≈ 2π × 20kHz. With these numbers, equation 2.46 predicts an essentially
perfect transfer to the |mJ = −1〉 state.
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Figure 2.11: Schematic view of the energy levels E±,0 in the dressed state picture
during a Landau Zener sweep. At large detuning the eigenstates of the coupled system
are the same as the uncoupled system. As the detuning continuously passes through
zero the atoms remain in an eigenstate of the system which adiabatically transits into
the opposite eigenstate of the uncoupled system.

2.5 Frequency Metrology

The experiments that form the core of chapters 3 and 6 rely heavily on the
ability to accurately measure optical frequencies. To take care of the accuracy
requirement, it is necessary that the measurement is traceable to the definition
of the SI-second [113]:

The second is the duration of 9 192 631 770 periods of the radiation
corresponding to the transition between the two hyperfine levels of
the ground state of the caesium 133 atom.11

The commercial Cs clock (Symmetricom CsIII Model 4310B) that is is used,
is specified to be traceable to the SI-second to better than one part in 1012.
This is not accurate enough for the measurements described in chapter 6, so
an additional calibration of the clock was done by comparing it to the time
disseminated by GPS over long averaging time.

The Cs clock provides a frequency reference in the microwave domain (∼
1010 Hz), which is far lower than optical frequencies (1014 − 1015 Hz). Since
about twenty years, this gap can be bridged by making use of a special type of
laser known as a frequency comb. This section describes the frequency comb
and related infrastructure, as well as how these are employed to measure optical
frequencies. The frequency comb and related infrastructure are maintained in
close collaboration with the Ulrafast Laser Physics and Precision Metrology
group of Kjeld Eikema.

11It was later made explicit that this statement refers to atoms not immersed in a thermal
radiation bath i.e. at a temperature of 0 K [114].
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Frequency comb

At the end of the 20th century, laser technology had progressed to the point
that mode-locked oscillators could produce ultrashort (∼ 100 ps) laser pulses
in a phase-coherent pulse train. For their contributions to these developments,
Hall and Hänsch were jointly awarded half of the 2005 Nobel prize12 [115, 116].
To understand why these developments are considered so revolutionary, it is
useful to consider the Dirac comb which is an idealization of the frequency
comb. The Dirac comb consists of an infinitely long train of infinitesmally short
“pulses” (i.e. delta functions) with a regular spacing T in time. Each pulse
can have a cumulative phase offset φ and the total pulse train is normalized,
so that the comb is given by

E(t) = lim
m→∞

1

m

∑
m

eimφδ(t−mT ). (2.47)

The Fourier tranform of this function is

E(ω) =

∫ +∞

−∞
lim
m→∞

1

m

∑
m

δ(t−mT )e−i(ωt−mφ)dt (2.48)

= lim
m→∞

1

m

∑
m

e−imT (ω−φ) =

{
1 for ω = 1

2πmT + φ

0 otherwise
. (2.49)

The idealized comb thus consists of an infinite number of peaks in the frequency
domain (called “modes”), with the frequency of the n-th mode given by

fn = fceo + n× frep, (2.50)

where fceo = 2πφ is known as the carrier envelope offset, n is the mode number,
and frep = 1/T is the repetition rate of the comb. Figure 2.12 schematically
shows the comb spectrum, both in the time and the frequency domain. Because
fceo and frep are much lower in frequency than fn, they can be referenced to
an atomic clock so that fn is known with the same (relative) accuracy. This
allows the measurement of much higher frequencies with the same precision.

Of course in reality the pulse train is not infinitely long, and does not consist
of pulses that are infinitely short. In practice a frequency comb only extends
over a finite frequency range which is inversely proportional to the width of the
pulses, while the finite coherence time of the laser causes a broadening of the
modes. Nevertheless, the optical frequency comb has become an indispensible
weapon in the physicist’s arsenal.

12The other half was awarded to Glauber.
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Figure 2.12: Schematic view of the frequency comb in the frequency domain and
the time domain. The frequency spectrum is given by equation 2.50 but only has
appreciable power over a more narrow wavelength range limited by the inverse of the
pulse time. The peaks have a finite width due to the loss of coherence over time.
In the time domain the pulses are spaced a time T apart and carry a small carrier
envelope offset phase φceo.

Frequency combs have been generated at wavelength ranges extending from
the mid-infrared [117, 118] to the extreme ultraviolet [34, 119], but the near-
infrared is still the most common. The frequency comb used for the experiments
described in this thesis is a commercial erbium-doped fiber laser frequency
comb (Menlo systems) which has a center wavelength of about 1500 nm and
a bandwidth around 100 nm and is part of the shared frequency metrology
infrastructure in the Atoms Molecules and Lasers group at the VU.

Ultrastable laser and transfer lock

The spectroscopy laser used in chapters 3 and 6 can be locked directly to
the comb by generating a beat frequency and applying feedback to the comb.
Unfortunately the linewidth of the comb modes is fairly large (∼ 100 kHz,
limited mainly by the stability of fceo) so this does not allow the full use of
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the stability offered by the spectroscopy laser (NKT photonics E15) which has
a specified short term linewidth of 0.1 kHz based on a delayed self-heterodyne
measurement (delay of 120 µs) [120].

This problem can be mitigated by using an ultrastable laser (ORS1500 by
Menlo systems). In essence this is simply a continuous wave laser at 1542 nm
locked to a reference cavity by the Pound-Drever-Hall technique. This refer-
ence cavity is made extremely stable however, using a number of techniques.
The cavity is made out ultra-low expansion glass, is kept in high vacuum,
temperature stabilized, and isolated from vibrations. With these stabilization
techniques the specified laser linewidth is < 1 Hz, with a specified stability of
10−15 at 1 second. On longer timescales this stability becomes progressively
worse as the laser slowly drifts.

The spectroscopy laser is phase-locked to the ultrastable laser by means of a
transfer lock, using the frequency comb as a means of bridging the wavelength
difference. The details and implementation of this technique are described
in Notermans [87], here I give a brief overview. First, a beat note with the
frequency comb is generated for both the spectroscopy laser and the ultrastale
laser by overlapping each with light from the comb. These beat notes are
converted into electronic signals using photodiodes. The electronic beatnote of
the spectroscopy laser is mixed with an electronic signal from a direct digital
synthesizer (DDS) in order to be able to tune the laser frequency later. This
mixed beatnote is then mixed with the beatnote of the ultrastable laser and
the frequency comb to generate the virtual beatnote. This virtual beatnote
is compared to a local oscillator (the Cs clock) using a phase detector. This
detector finally generates an error signal that is used to lock the spectroscopy
laser. Figure 2.13 shows a schematic picture of this setup.

Because many of the effects that broaden the comb modes are common to
the beat notes of the spectroscopy laser and the ultrastable laser, the contri-
bution of the frequency comb to the final linewdith of the spectroscopy laser
is strongly reduced. The carrier envelope offset frequency is entirely common
between the two beat notes so any noise on this frequency does not contribute
to the spectroscopy laser linewidth. The noise in the repetition frequency is
suppressed by a factor ∆n/n which is the relative difference in modenumber be-
tween the two beatnotes. This reduces the comb contribution to the linewidth
to about 1% of the linewidth of the comb modes (the absolute contribution to
the linewidth of the spectroscopy laser is then about ∼ 1 kHz). At present this
is not a limiting factor to the experiments but if necessary it can be eliminated
completely by employing more sophisticated mixing techniques [121]. Other
contributions to the linewidth of the laser that were identified and estimated
by Notermans [87] include the phase noise introduced by the ∼ 80 m long fiber
link to the He∗ experiment (∼ 2 kHz), and the electronic noise introduced by
the analog lockbox used for the phase-locked loop (∼ 1 − 2 kHz). Based on
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Figure 2.13: Schematic view of the transfer lock setup. The spectroscopy laser at
1557 nm, which is an erbium fiber laser (EFL), is mixed with the optical frequency
comb (OFC), which is referenced to the Cs Clock, to generate a beatnote. An offset
frequency generated by a direct digital synthesizer (DDS) is mixed into this beatnote
to allow frequency steering of the spectroscopy laser. The ultrastable erbium fiber
laser (UEFL) at 1542 nm is mixed with the same OFC to generate another beatnote
which is mixed together with the spectroscopy laser beatnote, generating the virtual
beatnote. The phase of the virtual beatnote is measured with respect to the Cs clock
to generate an error signal that is used to lock the spectroscopy laser in a phase-locked
loop (PLL).

these numbers, the total linewidth of the spectroscopy laser was estimated as
4-5 kHz at a timescale of 1 second.

Absolute frequency metrology

The frequencies of the spectroscopy laser, the ultrastable laser, and the
virtual beat note can be written in reference to the frequency comb as

fsl = fceo + nslfrep + fb,sl , (2.51)

ful = fceo + nulfrep + fb,ul , (2.52)

fb,virt = fb,sl − fb,ul = fsl − ful + (nsl − nul)frep (2.53)

where ni and fb,i are the modenumber and beat frequency for laser i with
respect to the nearest comb mode (note that the fceo and fb may have a
negative sign). In order to measure an absolute laser frequency, it is first
necessary to determine the modenumber of the nearest comb mode. This is
done using a wavemeter with a resolution higher than the comb repetition rate.
The absolute frequencies of both lasers can then be found by measuring (as well
as determining the sign of) the comb carrier offset frequency fceo, the comb
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Figure 2.14: Frequency measurement of the spectroscopy laser over the course of 12
hours. The graph on the left shows the reconstructed frequency (grey line), and its
moving average at a timebase of 100 seconds (blue line). The red line is a linear fit
to the data to compensate for the drift of the ultrastable laser. For this dataset the
drift was 26(1) mHz/s. The graph on the right shows a histogram of the fit residuals.
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Figure 2.15: The modified Allan deviation of the spectroscopy laser (blue squares),
and of the same data with a linear drift removed (red circles). The red dotted line is
a guide to the eye indicating the averaging rate of white frequency noise (τ−1/2).
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Figure 2.16: Calibration of the Cs clock compared to the second disseminated by
GPS. The graph on the left shows the time delay difference of the Cesium clock PPS
compared to GPS PPS (grey line), and its moving average at a timebase of 10 000
seconds (blue line). The red solid line is a linear fit to the entire dataset and has a
slope of 1.9(2) × 10−14. The graph on the right is a histogram of the fit residuals,
showing a slightly asymmetric distribution.

100 101 102 103 104 105 106 107
Averaging time (s)

10−7

10−8
10−9
10−10
10−11

10−12
10−13
10−14M

od
ifi
ed

 A
lla

n 
de

vi
at
io
n

Figure 2.17: Allan deviation of the clock calibration data showing the modified Allan
deviation of the Cs-GPS PPS comparison (blue circles), compared to the specified
Cs clock stability (red squares). The dashed and dotted lines are guides to the eye,
indicating averaging as τ−1 (blue dotted line), averaging as τ−1/2 (red dotted line),
and the Cs clock stability floor of 5× 10−14 (black dashed line).
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2. Experimental setup

repetition rate frep and, as the system is overdetermined, two of the three beat
frequencies fb,i.

These frequencies are measured using a four-port zero dead time counter
(FXM50 by K+K Messtechnik) which is referenced to the Cs clock. Figure 2.14
shows the reconstructed frequency of the spectroscopy laser over a period of
twelve hours. The frequency follows the ultrastable laser which drifts at a rate
of 23 mHz/s on average. A linear fit to the data corrects for this drift. As the
frequency measurements are averaged over a longer integration time, the uncer-
tainty on the measurement reduces. The uncertainty of the measured frequency
is typically given in terms of the (modified) Allan deviation [122]. Figure 2.15
shows the modified Allan deviation of the data shown in figure 2.14. The
Allan deviation of the drift corrected signal diverges from the non-corrected
signal at integration times longer than 1000 seconds (about 20 minutes), indi-
cating that the drift of the ultrastable laser is significant at those timescales.
The drift-corrected Allan deviation averages down to 2× 10−13 after 12 hours,
which corresponds to about 40 Hz on the absolute laser frequency. The drift-
corrected Allan deviation matches the specified accuracy of the Cs clock at
all investigated timescales, indicating that this is the limiting factor in the
frequency determination.

All of these frequency measurements are done with respect to the frequency
of the Cs clock. Although this frequency is specified to be stable to 5× 10−14,
it is only traceable to the SI definition at the level of 10−12 [123]. In order to
perform frequency measurements beyond this level it is necessary to calibrate
the clock to a more accurate standard. A standard that can be used for this is
the Global Positioning System (GPS) which disseminates a prediction of Uni-
versal Coordinated Time (UTC). Corrections to the GPS disseminated time are
typically at the level of < 10−15 when averaged over a one month period [124].
Figure 2.16 shows a comparison of the pulse-per-second signal (PPS) of the
Cs clock, and GPS over a three-month period. This data is a lot noisier than
the spectroscopy laser signal (figure 2.14) but the Allan deviation averages
down faster which can be seen in figure 2.17, catching up with the stability of
the clock at long integration time (> 106 seconds, or approximately 11 days).
At integration time > 105 seconds (a little over 1 day) the Allan deviation aver-
ages down beyond 10−12, allowing a calibration of the Cs clock. The time delay
between pulses drifts at a rate of ∆̇T = (tCs− tGPS)/tGPS = −1.9(2)× 10−13,
meaning that the Cs clock runs slightly faster than GPS. By correcting for
this frequency offset the clock can be used to perform frequency measurements
traceable to the SI-second up to its specified stability.
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Chapter 3

Line shape of the 2 3S → 2 1S transition

for bosons and fermions

Abstract

We observe a dramatic difference in optical line shapes of a 4He Bose-
Einstein condensate and a 3He degenerate Fermi gas by measuring the
1557-nm 2 3S−2 1S magnetic dipole transition (8 Hz natural linewidth)
in an optical dipole trap. The 15 kHz FWHM condensate line shape is
only broadened by mean field interactions, whereas the degenerate Fermi
gas line shape is broadened to 75 kHz FWHM due to the effect of Pauli
exclusion on the spatial and momentum distributions. The asymmetric
optical line shapes are observed in excellent agreement with line shape
models for the quantum degenerate gases. For 4He a triplet-singlet s-
wave scattering length a = +50(10)stat(43)syst a0 is extracted. The high
spectral resolution reveals a doublet in the absorption spectrum of the
BEC, and this effect is understood by the presence of a weak optical
lattice in which a degeneracy of the lattice recoil and the spectroscopy
photon recoil leads to Bragg-like scattering.

3.1 Introduction

The bosonic or fermionic nature of a particle is a fundamental property,
and trapped quantum degenerate gases display dramatic different behaviour
depending on the quantum statistical nature of the gas. At low temperatures
identical bosons accumulate in the lowest state in the trap, leading to Bose-
Einstein condensation. In contrast, identical fermions cannot occupy the same
state due to the Pauli exclusion principle, and will ‘fill’ all states in the trap
from the bottom up until no more atoms - or states - are available. A drastic

This chapter is based on: Comparison of spectral linewidths for quantum degenerate bosons
and fermions, R.P.M.J.W. Notermans, R.J. Rengelink, and W. Vassen, Physical Review
Letters 117, 213001 (2016).
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3. Line shape of the 2 3S → 2 1S transition

difference in line shape of a narrow optical transition is expected when measured
in a Bose-Einstein condensate (BEC) and a degenerate Fermi gas (DFG). In
this work we show a direct comparison of this difference between a BEC of
metastable 4He and a DFG of metastable 3He trapped in an optical dipole
trap (ODT).

We do this work in the framework of high-precision frequency metrology
in helium, aimed at testing quantum electrodynamics (QED). Comparison of
accurate transition frequencies is used to determine fundamental physical pa-
rameters that are difficult to measure otherwise, such as the nuclear charge
radius of an atom. Recently high-precision frequency metrology in (muonic)
hydrogen and deuterium resulted in a remarkable discrepancy in the determi-
nation of the proton and deuteron charge radius [73, 74]. This discrepancy,
also known as the ‘proton radius puzzle’, is currently under scrutiny by many
groups all over the world and similar work is ongoing for helium [80, 125]. To
determine the 3He-4He nuclear charge radius difference, we recently measured
the doubly forbidden 2 3S − 2 1S transition at 1557 nm (natural linewidth
8 Hz) in both quantum degenerate 4He and 3He with 1.8 kHz and 1.5 kHz
accuracy, respectively [21]. The measured isotope shift, combined with QED
calculations, allowed a determination of a squared nuclear charge radius dif-
ference of 1.028(11) fm2 [32]. To compare this determination to measurements
in muonic helium ions [80, 125] we aim to measure the 2 3S − 2 1S transition
frequency with� 1 kHz accuracy. Using a narrow linewidth spectroscopy laser
we are able to observe asymmetric line shapes for a BEC and a DFG of meta-
stable helium as well as a line splitting in the optical spectrum of the BEC.
Quantification of these effects by understanding the line shapes is essential in
achieving the sub-kHz accuracy goal.

3.2 Experimental setup

Our experimental setup is similar to earlier work [21] and to a more re-
cent measurement of the 2 3S1 − 2 1P1 transition at 887 nm [22]. We load a
BEC of typically 106 atoms in the metastable 2 3S1 (mJ = +1) state (lifetime
∼ 7800 s, internal energy 19.82 eV) into a crossed-beam ODT operating at
1557.3 nm. The crossing angle between the ODT beams is 19◦, and the tem-
perature of the thermal atoms in the ODT is typically T ≈ 0.2 µK. As the
fermionic 3He atoms cannot thermalize once their temperature is below the
p-wave barrier, they are loaded simultaneously with 4He and sympathetically
cooled to degeneracy [10]. The quantum degenerate 3He-4He mixture is loaded
into the ODT to rethermalize, after which the 4He atoms are blown away using
resonant light. This procedure leaves a pure DFG of thermalized 3He in the
2 3S1 (F = 3

2 ,mF = + 3
2 ) state. The spectroscopy beam copropagates with

54



3.3. Comparing the line shape of a BEC to a degenerate Fermi gas

one of the ODT beams in order to overlap with the trapped cloud. The atoms
are probed for a few seconds, after which the remaining cloud is released from
the ODT. The time-of-flight signal of the metastable atoms is measured on
a microchannel plate (MCP) detector and used to determine the remaining
atom number, temperature and chemical potential. The measurements alter-
nate with and without the spectroscopy light in order to have a continuous
background measurement to normalize the line shapes.

For this experiment a narrow linewidth fiber laser is transfer-locked to an
ultrastable (< 2 Hz) laser system operating at 1542 nm using a caesium clock-
referenced femtosecond frequency comb to bridge the 15 nm wavelength dif-
ference between both lasers. Due to uncompensated fiber links we estimate a
residual ∼ 5 kHz linewidth of the spectroscopy laser, which is in agreement
with the 4.5 kHz linewidth (FWHM) determined in our line shape fits (see
appendix 3.A). This is a factor 20 improvement compared to our previous ex-
periment [21].

3.3 Comparing the line shape of a BEC to a degenerate
Fermi gas

Figure 3.1 shows the optical σ− transitions measured in a BEC [2 3S1

(mJ = +1) → 2 1S0 (mJ = 0)] and DFG [2 3S1 (F = 3
2 ,mF = + 3

2 ) →
2 1S0 (F = 1

2 ,mF = +1
2 )]. The uncertainty in the frequency is 1.8 kHz, and

the error bars in the normalized atom numbers are based on the atom number
fluctuations in the measurements. The zero on the frequency axis represents
the transition frequency from the bottom of the trap which is not measured as
an absolute frequency. For the DFG results the atom number N ≈ 3 × 105

and peak density ∼ 1 × 1012 cm−3. There are three times as many atoms in the
BEC compared to the DFG due to the more complicated loading procedure of
the DFG [10], and the peak density of the BEC is ten times higher. Despite this,
the line shape of the DFG is over five times broader. This is caused entirely by
the broad momentum and spatial distribution of the fermions. In contrast, the
BEC line shape only has a finite width due to the mean field interactions (which
are absent in a coherent excitation of a Fermi gas [126]) and the linewidth of
the spectroscopy laser. Without the effects of quantum statistics the width of
both line shapes would simply be the Doppler width (31 kHz for 4He, 35 kHz
for 3He). This huge difference in linewidths based on the quantum statistics
of the helium isotopes is complementary to the observation of bunching and
antibunching with the same atoms [12]. For frequency metrology purposes
it is clear that proper modeling is imperative in order to determine the true
transition frequency.
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3. Line shape of the 2 3S → 2 1S transition
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Figure 3.1: Direct comparison of the (normalized) optical line shapes of the 2 3S−2 1S
transition measured in a degenerate Fermi gas (top) and a Bose-Einstein condensate
(bottom) of metastable helium. The full lines represent the fits provided by the
models discussed in the main text, and display a small but significant asymmetry.
For a clear comparison only one peak of the observed BEC doublet is shown (see
figure 3.4). The zero frequency represents the transition frequency from the bottom
of the trap.

The line shape for the DFG is calculated using the absorption line profile
from Ref. [127] and involves explicit integration of the Fermi-Dirac distribution
of the spatial and momentum states occupied in the ODT, convolved with a
Lorentzian distribution with a FWHM of 4.5 kHz (determined from the BEC
fits) to model the finite linewidth of the spectroscopy laser. Time-dependent
depletion of the DFG does not play a role because the fermions neither rether-
malize nor redistribute over the trap states during the optical excitation. Using
the experimentally determined degeneracy T/TF = 0.33(7) and chemical po-
tential µ/kB = 0.55(15) µK of the DFG, the calculated line shape is shown in
figure 3.1 (top). As only the relative amplitude and frequency offset of the line
are fitted to the data, the model predicts the line shape perfectly. Although
hardly visible, the line shape is asymmetric and the model provides a reduced
χ2 = 1.09.
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3.3. Comparing the line shape of a BEC to a degenerate Fermi gas

The line shape for light absorption from a BEC is fundamentally different
from that of a DFG and was first calculated by Killian for the absorption on
the 1S− 2S transition in a hydrogen BEC [15, 128]. Excellent agreement with
the data was demonstrated, but the line shape function [129] cannot be used in
our experiment for two reasons. First, in [129] it is assumed that the trapping
potentials of both the initial and final state are equal. This assumption is
invalid in our ODT as the ratio of the polarizabilities of both states αs/αt =
−1.64(1) (see Chapter 4), where s and t denote the singlet and triplet state
(2 1S atoms are repelled from the trap). Second, the excitation fraction in
[129] was on the order of 1% and therefore depletion of the condensate during
excitation could be neglected. This is invalid in our experiment as the excited
BEC fraction is typically 20− 70% to have an acceptable signal-to-noise ratio.
Therefore we extend the Killian model [129], of which the full derivation is given
in appendix 3.A, by including the polarizabilities in the effective potentials of
the initial and final state. This results in the addition of the ac Stark shift to
the resonance condition, and an effective rescaling of the mean field shift term
(4π~2n0/m)(ats − att) which becomes (4π~2n0/m)(ats − (αs/αt)att). Here n0

is the peak density of the condensate, att the 2 3S1 − 2 3S1 s-wave scattering
length in the pure 5Σ+

g potential, and ats the 2 3S1(mJ = +1)−2 1S0(mJ = 0)
s-wave scattering length. Although ats has not been measured or calculated
to date1, att is very accurately known: atheory

tt = 143.0(5) a0 [58, 130] and
aexp
tt = 142.0(1) a0 [57], where a0 is the Bohr radius.

It is convenient to express the line shape of the BEC using the chemical
potential µ = 4π~2attn0/m, which we determine directly from a time-of-flight
measurement. The line shape S(ν, µ), derived in appendix 3.A, is

S(ν, µ) =
15π~Ω2

R

4
N
hν

µ̃2

√
1− hν

µ̃
, (3.1)

where ΩR is the Rabi frequency of the transition, N the total atom number of
the BEC, ν the detuning from the absolute transition frequency including the
full ac Stark shift of the trap, and µ̃ = (ats/att−αs/αt)µ the rescaled chemical
potential of the BEC (see appendix 3.A). This rescaling shows how the mean
field interaction and ac Stark shift affect the effective potential experienced by
the atoms. The line shape of the BEC is asymmetric with a high-frequency
cut-off at ν = 0.

As the atom number of the condensate scales as N ∝ µ5/2 in the Thomas-
Fermi limit and the line shape S(ν, µ) constitutes a one-body loss process, the
decay of the chemical potential of the BEC during the spectroscopy phase can

1A later measurement is described in chapter 6.
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3. Line shape of the 2 3S → 2 1S transition

be written as
dµ

dt
=

2

5

µ

N
S̃(ν, µ)− 2

5
Γµ, (3.2)

where S̃(ν, µ) is the line shape S(ν, µ) convolved with a Lorentzian distribution
to model the spectroscopy laser linewidth (as derived in appendix 3.A). We
include the one-body lifetime Γ−1 of the gas as the typical interaction times
are long enough (1-6 seconds) that one-body loss cannot be neglected. The
decay of the chemical potential is slow enough such that the condensate can
be assumed to remain in equilibrium throughout the excitation. The BEC
is held in the ODT for 4-5 seconds before switching on the probe light so
two- and three-body loss processes are negligible. The nonlinear differential
equation 3.2 is numerically solved to fit to the line shape as shown in figure 3.1
(bottom). Here we use only the frequency offset and ats scattering length as
free parameters, giving a reduced χ2 = 0.94.

3.4 Bragg-like scattering in an optical lattice

Interestingly, we observe a doublet in the BEC spectrum where a single
peak was expected. This double peak structure is attributed to the presence
of a weak optical lattice in our crossed dipole trap due to birefringence in our
vacuum windows. The ODT laser wavelength λODT ≈ 1557.3 nm (sufficiently
off-resonance from the 2 3S − 2 1S transition to have negligible scattering)
is close to the transition wavelength and creates a lattice with periodicity
d = λODT/[2 cos(θ/2)] and effective lattice recoil energy Elr = ~2q2

l /2m,
where ql = π/d. This recoil energy is nearly degenerate with the recoil when
absorbing a spectroscopy photon in the lattice frame, Er = ~2q′2/2m ≈ h×
20.0 kHz, with q′ = 2π cos(θ/2)/λspec, see figure 3.2(a). The absorbed spec-
troscopy photon provides the excited wavefunction a quasimomentum q′ in the
frame of the lattice. This quasimomentum is at the edge of the first Brillouin
zone and therefore at the optical lattice bandgap, as shown in figure 3.2(b). The
resonance condition can only be satisfied below or above the bandgap, leading
to a line splitting ∆ of the transition, where ∆ = V0/2 and V0 is the optical
lattice modulation amplitude as observed by the excited state [110, 131].

This excitation in a weak optical lattice is reminiscient of Bragg scattering
of a BEC in an applied optical lattice [132, 133]. Contrary to Bragg scatter-
ing, where an applied moving optical lattice causes diffraction, the direct one-
photon optical excitation causes the transition to a higher momentum state
near the edge of the Brillouin zone. We verify the presence of the weak optical
lattice by rotating the polarization of the second ODT beam with respect to
the first. Figure 3.3 shows that the splitting increases as V0 is increased and
in these measurements we estimate the optical lattice modulation amplitude
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Figure 3.2: (a) In the crossed-beam optical dipole trap geometry we have a weak
optical lattice with periodicity d = λODT/[2 cos(θ/2)]. Absorption of a spectroscopy
photon results in a recoil momentum q′ = 2π cos(θ/2)/λspec in the lattice direction
equal to the lattice recoil momentum π/d. (b) Band structure of the optical lattice for
the ground (lower red bands) and upper state (upper blue bands) for a typical lattice
amplitude V0 ≈ 2El

r. The BEC is situated at quasimomentum q = 0 in the lowest
band (black dot). Absorption of a photon creates a quasimomentum q′ ≈ π/d in the
optical lattice for the excited state. Absorption can take place if the spectroscopy
laser frequency is resonant with the lowest or first band at the edge of the Brillouin
zone (black dots at q = π/d), giving rise to the observed bandgap splitting ∆.

59



3. Line shape of the 2 3S → 2 1S transition

for the 2 1S state to be V0 ≤ 6.5Elr for the largest splitting shown. As the
polarizability for the 2 3S atoms is smaller by a factor 1.64, the optical lattice
observed by the BEC is V0 ≤ 4.0Elr for the largest splitting and the ultracold
cloud is in the superfluid regime [134]. Aspect ratio inversion in absorption
images of the expanding cloud confirms this. In this regime the mean field
description is applicable and coupling to higher lattice bands can be ignored.
The doublet is simultaneously fit with the same model and fixed experimen-
tal parameters, apart from the line splitting and amplitude ratio, as shown in
figure 3.3. For the DFG line shape measurements we have minimized V0 by
looking at the BEC spectra shown in figure 3.3. At this setting the DFG line
shape is much broader than the effect of the lattice or, equivalently, the Fermi
energy EF � V0.

3.5 Determining the 2 3S − 2 1S s-wave scattering length

We measure the time-dependent behaviour of the BEC line shapes to extract
the scattering length ats, which is the only unknown parameter in the line
shape calculations. The optical lattice operates with splitting ∆ ≈ 35 kHz
such that the lattice is as weak (V0 ≈ 2Elr) as possible but the two lines
are separated sufficiently so they can be individually resolved. Background
and lifetime measurements provide the one-body loss rate Γ−1 ≈ 10 s and the
chemical potential of the BEC at t = 0. The scattering length ats is determined
by simultaneous fitting of six doublet lines with interaction times ranging from
0.5 s to 3 s, and figure 3.4 shows the lines for 1 s and 3 s. The average reduced
χ2 of all fits is 1.1, showing good agreement of the model with the data. From
the fits we find ats = +50(10)stat(43)syst a0. The statistical uncertainty is a
1σ uncertainty based on simultaneous χ2 minimization of all data sets. The
systematic uncertainty is a worst-case error bound based on our estimation of
the Rabi frequency ΩR = 2π × 21(5) Hz (see appendix 3.B). Our result is
in agreement with the estimated range of possible scattering lengths based on
previous mean field shift measurements [21]. Furthermore the determination is
in agreement with a surprisingly accurate theoretical value ats = +42.5+0.5

−2.5a0

[135], based on ab initio 1 3Σ+
g and 2 3Σ+

g molecular potentials [59] including
large ionization widths which make the calculations insensitive to the actual
coupling between the potentials. This is discussed in more detail in ref. [87].

3.6 Conclusion

To conclude, we have directly compared the fundamental difference be-
tween quantum degenerate fermions and bosons by measuring and calculating
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Figure 3.3: Absorption spectrum of a BEC in a weak optical lattice for various
rotation angles of the polarization of the second ODT beam with respect to the first
ODT beam from the configuration shown in figure 3.2(a). The spectra are offset and
centered around the midway frequency of the two lines, and the lines are fits of the
time-dependent line shape model. The spectroscopy interaction times used in these
measurements are (top to bottom): 1.5 s, 2 s, 1.5 s, 4 s, and 6 s and vary as the Rabi
frequency also varies with the rotation angles.
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Figure 3.4: Double-peak structure of the Bose-Einstein condensate absorption spec-
trum due to the weak optical lattice measured for a spectroscopy laser probe time of
1 s (top, red) and 3 s (bottom, black). The uncertainty per data point is indicated by
the bottom left inset. The full lines are fits of the time-dependent line shape model.
For the top (red) and bottom (black) fit we find χ2 = 0.9 and χ2 = 1.3, respectively.
A single absorption line from the top (red) dataset is used in figure 3.1.

the asymmetric absorption line shapes of a Bose-Einstein condensate and a
degenerate Fermi gas of metastable helium. The line shape of the Fermi gas
shows excellent agreement without any adaptations to the existing model [127].
We extended the line shape of the Bose-Einstein condensate from the existing
model [129] to include ac Stark shift and time-dependent depletion of the con-
densate. The model shows good agreement with the data, and the 2 3S− 2 1S
s-wave scattering length is extracted to be ats = +50(10)stat(43)syst a0, in good
agreement with scattering length calculations.

We also show how a weak optical lattice can induce a line splitting if the
lattice recoil is degenerate with the spectroscopy photon recoil. The effect is
similar to Bragg scattering and allows observation of the lattice in the optically
excited state. Measurement of the line splitting and the total ac Stark shift
on the transition frequency would allow determination of both the dynamic
polarizability of the ground and excited states. Furthermore, if unresolved,
this effect could lead to a frequency broadening or shift in any spectroscopy
measurement in an optical dipole trap.

3.A Appendix: BEC lineshape model

Using the line shape model as calculated by Killian [129] as a starting point,
the ac-Stark shift and the time-dependent behavior are introduced in two steps.
Finally an analytic form of the line shape, convolved with a Lorentzian laser
line shape, is given.
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3.A. Appendix: BEC lineshape model

Adding an ac Stark shift

Although the hydrogen experiment was done in a magnetic trap [15, 128],
this does not influence the mathematics for the optical dipole trap (ODT) case.
The trapping potential of an ODT is proportional to the dynamic polarizabil-
ity α and the local intensity I(~r) of the optical field as V (~r) ∝ −αI(~r). As
I(~r) is identical for both atomic states, the potential for the excited state can
be expressed simply as V2(~r) = (α2/α1)V1(~r), where α1 and α2 are the dy-
namic polarizabilities of the ground and excited states, respectively. In the
main chapter the ground and excited states are labeled t and s respectively to
distinguish between the singlet and triplet states.

The resonance condition of Killian already includes a spatially dependent
mean field shift and the new spatially dependent term is simply added here.
Using the general resonance condition

h(ν − ν0) = V eff
2 (~r)− V eff

1 (~r), (3.3)

where V eff
1,2(~r) are the effective potentials of the ground and excited state. Note

that the definition of ν is slightly different from that used in equation 3.2 in
section 3.3, which also contains the ac-Stark, Zeeman and recoil shift which
are omitted here to simplify the notation. Filling in the mean field interaction
and the ac Stark shift gives

h(ν − ν0) =
(α2

α1
− 1
)
V1(~r) + ∆Un1(~r). (3.4)

Here ∆Un1(~r) = (U2−U1)n1(~r) = (4π~2n1(~r))/m)(a21−a11) is the mean field
interaction term, with atomic mass m, and scattering lengths a21 and a11 for
the excited-ground state and ground-ground state collisions, respectively. The
ground state density profile is given by n1(~r). Inclusion of the ac-Stark effect
thus leads to a spatial dependence of the resonance condition similar to the
mean field interactions.

Mean field interactions between two 2 1S0 atoms are neglected as the esti-
mated fraction of 2 1S0 atoms is limited to a worst-case upper bound of 0.2% in
the measurement. This estimate is based on the fact that the 2 1S0 atoms ex-
perience an antitrapping potential and are therefore expelled from the trapping
region at a timescale shorter than 2 ms. Note that this timescale is an upper
limit based on worst-case estimates of atoms leaving the trap from the center
along the long axial direction. In most cases the timescale is much shorter and
on the order to 10 µs, which makes the excited state fraction even lower. As
the radiative lifetime of the 2 1S0 state is 20 ms, spontaneous decay does not
play a role in this process.

There is a linear relationship between the ground state trapping potential
and the density distribution of the BEC through the Thomas-Fermi relation
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Figure 3.5: Schematic overview of the excitation in an energy-position graph. The
unperturbed transition frequency ν0 is ac-Stark shifted due to the different ac po-
larizabilities α1,2 of the 2 3S1 and 2 1S0 states. In the Thomas-Fermi limit the
Bose-Einstein condensate with chemical potential µ has a density profile nBEC(r, t)
mimicking the trapping potential with depth U0. Due to the spatial dependence of
the ac Stark shift and the mean field shift, the atoms are resonant at a range of
positions between the frequencies νmin and νmax, which are explained in the main
text. During the excitation atoms leave the Bose-Einstein condensate and lower the
chemical potential. As a result also the range of frequencies over which the atoms
are resonant becomes narrower and shifts to higher frequencies.

µ − U0 = U1n1(~r) + V1(~r), where U0 = V1(r = 0) is the depth of the trap2.
Substituting this in equation 3.4 yields

h(ν − ν0) =
(α2

α1
− 1
)

(µ− U0) +
(
U2 −

α2

α1
U1

)
n1(~r). (3.5)

This resonance condition now only depends on the spatial dependence of the
density distribution of the BEC, and any further analysis is completely analo-
gous to the work done by Killian. An important check is to see what happens
if the trapping potentials are equal, which is the case for the hydrogen experi-
ment or, indeed, a magic wavelength ODT. In this case α1 = α2 and equation
3.5 indeed reduces to the resonance condition as derived by Killian.

2The implicit definition V1(r → ∞) = 0 is convenient in these calculations but slightly
unconventional as usually V (r = 0) = 0 is taken
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3.A. Appendix: BEC lineshape model

The behaviour of the resonance condition can also be visualized in a schematic
way as shown in figure 3.5. Outside of the optical dipole trap the resonance fre-
quency is the unperturbed frequency ν0, but this frequency is ac-Stark-shifted
in the optical dipole trap due to the differential polarizability of the states
(as the polarizabilities α2/α1 ≈ −1.64). Including the mean field interactions
two extremes in the shifted transition frequencies are identified. The center
frequency νmax is given as the sum of the maximum ac-Stark shift and the
maximum mean field shift hνmax = [(α2/α1)− 1](µ−U0) + (U2/U1−α2/α1)µ,
using the fact that µ ∝ a11n1(r = 0). Similarly, at the edge of the Bose-Einstein
condensate (at the Thomas-Fermi radius R =

√
2µ/mω2 where Udip = µ), the

density is zero and the only contribution is the ac Stark shift to the minimum
shifted transition frequency hνmin = [(α2/α1) − 1](µ − U0). As the atoms are
excited from the Bose-Einstein condensate for t > 0 the condensate shrinks
and the chemical potential drops, resulting in a narrower range of blue-shifted
(higher) frequencies for which the atoms are resonant.

New line shape model

Using the definition by Killian to calculate the line shape for a Doppler-
sensitive profile in a spherically symmetric trap, the lineshape is given by

S(ν) = π~Ω2
R

∫
4πr2n1(r)dr

× δ
[
h(ν − ν0) +

(α2

α1
− 1
)

(U0 − µ)−
(
U2 −

α2

α1
U1

)
n1(r)

]
, (3.6)

where ΩR is the Rabi frequency. This integral has the analytical solution

S(ν) =
15π~Ω2

RN

4

h(ν − ν0)−
(
α2

α1
− 1
)

(U0 − µ)(
U2

U1
− α2

α1

)2

µ2

×

√√√√√1 +
h(ν − ν0)−

(
α2

α1
− 1
)

(U0 − µ)(
U2

U1
− α2

α1

)
µ

, (3.7)

with N the total number of atoms in the condensate. Equation 3.7 is also given
in Section 3.3 as equation 3.2. This function is valid in the frequency domain(α2

α1
− 1
)

(µ− U0) ≤ h(ν − ν0) ≤
(α2

α1
− 1
)

(µ− U0) +
(U2

U1
− α2

α1

)
µ. (3.8)

This looks quite similar to equation 25 from Killian’s work [129], which becomes
more apparent if the ac-Stark effect is removed by setting α1 = α2 i.e. the
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3. Line shape of the 2 3S → 2 1S transition

‘magic wavelength’ condition. Also note that U2/U1 = a21/a11 and therefore
this result has the nice feature of being dependent on the (dimensionless) ratios
of the polarizabilities and scattering lengths.

Depletion of the condensate during excitation

The weak excitation approximation (as used in [129]) assumes that the
chemical potential of the condensate does not change significantly during the
excitation. In the hydrogen BEC work this is a good approximation as only
a fraction of 10−2 of the condensate is excited. In the case considered here
the excited fraction reaches over 50% and the change of the chemical potential
during the excitation has to be taken into account in the line shape calculations.

In the Thomas-Fermi limit the relationship between the chemical potential
µ and the atom number N of a BEC is the well-known nonlinear relationship

N =
2

5
2

15
√
m~2aω̄3

µ
5
2 , (3.9)

where m is the atomic mass, a the s-wave scattering length and ω̄ = (ωxωyωz)
1
3

the geometric averaged trap frequency. The atom number loss and chemical
potential loss are then related as

dN

dt
=
dN

dµ

dµ

dt
=

5

2

2
5
2

15
√
m~2aω̄3

µ
3
2
dµ

dt
=

5

2

N

µ

dµ

dt
. (3.10)

Realizing that the function S(ν) represents the one body atom number loss
dN/dt, we can use this relationship to use equation 3.7 as a differential equation
for the chemical potential:

dµ

dt
=

2

5

µ

N
S(ν) =

3π~Ω2
R

2

h(ν − ν0)−
(
α2

α1
− 1
)

(U0 − µ(t))(
U2

U1
− α2

α1

)2

µ

×

√√√√√1 +
h(ν − ν0)−

(
α2

α1
− 1
)

(U0 − µ(t))(
U2

U1
− α2

α1

)
µ(t)

. (3.11)

Solving this differential equation will result in a function µ(ν, t) which shows
how the chemical potential of the condensate changes as function of the laser
frequency and interaction time.

The above derivation assumes that the condensate stays in equilibrium
throughout the excitation. To see if the condensate can redistribute fast enough
during the excitation to assume equilibrium compare the change in density dis-
tribution to the sound velocity of the condensate. As the density distribution
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3.A. Appendix: BEC lineshape model

scales linearly with the chemical potential, the estimated upper limit on the
relative change in the density distribution is

1

µ

dµ

dt
=

2

5

1

N

dN

dt
≈ 0.13 s−1, (3.12)

assuming a (comparatively large) atom number of N = 106 atoms and a (com-
parativelt short) excitation time of 3 s based on the achieved depletion in
figure 3.4 in section 3.5. The sound velocity is [136]

c =

√
µ

m
≈ 2 cm/s, (3.13)

which, for a condensate with a length of ∼ 200 µm (an upper limit), corre-
sponds to a frequency of the density oscillations of 100 s−1. As this is three
orders of magnitude larger than the inverse timescale at which the density of
the condensate changes, it is reasonable to assume that the BEC remains in
equilibrium throughout the excitation.

As the interaction time is on the order of seconds, the condensate also
decreases due to one-body collisions with the background gas. This is typically
characterized by a loss rate Γ, and the simple differential equation

dN

dt
= −ΓN, (3.14)

actually leads to a second term in the differential equation for the chemical
potential as

dµ

dt
= −2

5
Γµ. (3.15)

Two- and three-body losses can, in principle, be implemented in a similar
fashion.

Adding homogeneous broadening mechanisms

The spectral linewidth of the system (∼ few kHz) is non-negligible com-
pared to the observed width of the spectral feature (∼ 15 kHz). In order to
properly include a homogeneous broadening mechanism, the initial line shape
is convolved with a broadening function g(ν) as

S̃(ν) =

∫
ν′

dν′g(ν − ν′)S(ν′). (3.16)

This does not change any of the first principle considerations, and a simple con-
volution of the analytical result for the lineshape with some arbitrary broad-
ening mechanism (independent of the spatial distribution of the atoms) is in
agreement with the formalism.
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3. Line shape of the 2 3S → 2 1S transition

Analytical result for S̃(ν)

Defining the Lorentzian distribution as

g(ν) =
1

2π

γ

ν2 + (γ/2)2
, (3.17)

with γ the full-width-half-max (FWHM), a closed form espression for the con-
volution with the line shape as defined in equation 3.7 can be obtained. Intro-
ducing the (rescaled) variables to simplify the final expression:

µ̃ ≡
(U2

U1
− α2

α1

)
µ, (3.18)

hν̃ ≡ h(ν − ν0) +
(α2

α1
− 1
)

(U0 − µ), (3.19)

h∆ ≡
√

(hν̃ − µ̃)2 + (hγ/2)2, (3.20)

hδ± ≡ h∆± (hν̃ − µ̃), (3.21)

hξ± ≡
√

(hγ)2 ± 8hδ±(hν̃ − µ̃). (3.22)

The line shape then becomes

S̃(ν) =
30

32

~Ω2
RN

µ̃
5
2

[
2hγ

√
µ̃+

(
hν̃
√
hξ− +

hγ

2

√
hξ+

)

×

(
tan−1

[
−
√

2δ+µ̃/h

2∆−
√

2δ−µ̃/h

]
− tan−1

[ √
2δ+µ̃/h

2∆ +
√

2δ−µ̃/h

])

−

(
hν̃
√
hξ+ −

hγ

2

√
hξ−

)(
Log

[√√√√ hδ+µ̃

2(h∆)2
+

(
1−

√
hδ−µ̃

2(h∆)2

)]

− Log

[√√√√ hδ+µ̃

2(h∆)2
+

(
1 +

√
hδ−µ̃

2(h∆)2

)])]
. (3.23)

This expression was used in equation 3.11 to calculate the time-dependent line
shape used to fit the data as shown in figures 3.1, 3.3 and 3.4.

It is interesting to note that most of the parameters in the full analytical
expression 3.23 are fixed or can be determined in our experiment with sufficient
accuracy. For determining the 2 3S1−2 1S0 scattering length the limiting factor
in the accuracy turns out to be the Rabi frequency ΩR, as the overall prefactor
of the lineshape contains the ratio Ω2

R/µ̃
5/2 and using equation 3.18, there

is a near-linear dependence between the scattering length a21 and ΩR. The
accuracy in determining a21 is therefore limited by the accuracy with which
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the Rabi frequency can be estimated, which will be discussed in appendix 3.B.
Note also that a number of assumptions were made in the derivation of this
closed form expression (such as µ̃ ≥ 0 which are true for the measurements in
this work but not in general.

3.B Appendix: Estimating the Rabi frequency

Calculation of the Rabi frequency, which is an important parameter in our
line shape calculations, requires trigonometry to calculate the projection of the
spectroscopy beam on the quantization axis of the atoms. In the measurements
used to determine the s-wave scattering length only the background magnetic
field of the experiment was used. This section explains how this field is mea-
sured and how to calculate the Rabi frequency from this. A more detailed
calculation can be found in ref. [87].

Consider a basic coordinate system where the z-axis is aligned with the
axial direction (longitudinal axis) of the ODT and therefore of the BEC. The
experiment is equipped with a set of coils in Helmholtz configuration (“fine
tune coils”) with their longitudinal axis parallel to this z-axis to apply a well-
defined magnetic field if necessary. As the quantization axis of the atoms is
given by the magnetic field, the magnetic field in this coordinate system can
be calculated and used to determine the projection of the spectroscopy beam
polarization to calculate the Rabi frequency.

Using rf spectroscopy to measure the magnitude of the magnetic field, as
described in section 2.4, the fine tune coils are used to scan the magnetic field.
The fine tune coils only produce a magnetic field component along the z-axis,
and therefore these measurements can be used to determine the azimuthal
angle θ = 52.1(4)◦ of the background magnetic field with respect to the z-
axis. With this angle we can calculate the projection P of the polarization
of the spectroscopy light on the quantization axis. To be more precise, we
are interested in the orthogonal part of the polarization P ′ =

√
1− P 2 as this

contributes to the σ−-transition that is required to induce the 2 3S1(mJ =
+1) → 2 1S0(mJ = 0) transition. As the polar angle φ cannot be determined
in the current setup, the full range is taken as a conservative estimate to be
P ′2 = 0.7± 0.3.

This calculated range of effective projections provides an estimate of the
Rabi frequency ΩR which is defined as

Ω2
R =

6πc2

~ω3
0

A21|〈J1M1|q|J2M2〉|2I0. (3.24)

Here ω0 is the transition frequency, A21 = 9.1×10−8 s−1 the Einstein coefficient
as calculated by Pachucki et al. [86], I0 = 2P0/πw

2
0 the peak intensity with
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3. Line shape of the 2 3S → 2 1S transition

P0 the total power and w0 = 0.3 mm the beam waist of the spectroscopy
beam. The remaining matrix element |〈J1M1|q|J2M2〉|2 = C2

C−G · P ′2, where
q = −1, 0,+1 represents the possible transitions (i.e. σ−, π, σ+, respectively),
C2
C−G = 1/3 the corresponding Clebsch-Gordan coefficient of the transitions.

Finally, an additional factor 1/2 needs to be added to account for the fact that
the orthogonal component of the linear polarization decomposes equally into
right- and lefthanded circularly polarized light.

Plugging all these numbers into equation 3.24 yields

ΩR = 2π × (37± 8) Hz, (3.25)

where the uncertainty is fully dominated by the determination of P ′2, and limits
the systematic uncertainty in the determination of the s-wave scattering length.
The circular component of the polarization due to the birefringent vacuum
windows was judged to have an effect small compared to this uncertainty (see
ref. [87]). Please note that a small error in the calculation was corrected giving
a slightly higher estimate of the Rabi frequency compared to the value ΩR =
2π × (21 ± 5) Hz found in ref. [87] and used in the published work [63]. This
error has not been carried over into the data analysis and does not affect the
conclusions of the main text in any way.
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Chapter 4

Magic wavelengths for the

2 3S → 2 1S transition

Abstract

We have calculated ac polarizabilities of the 2 3S and 2 1S states of
both 4He and 3He in the range 318 nm to 2.5 µm and determined the
magic wavelengths at which these polarizabilities are equal for either
isotope. The calculations, only based on tables of level energies and
Einstein A coefficients, do not require advanced theoretical techniques.
Polarizability contributions of continuum states are calculated using a
simple extrapolation beyond the ionization limit, yet the results agree to
better than 1% with such advanced techniques. Several promising magic
wavelengths are identified around 320 nm with sufficient accuracy to
design an appropriate laser system. The extension of the calculations to
3He is complicated due to the additional hyperfine structure, but we show
that the magic wavelength candidates around 320 nm are predominantly
shifted by the isotope shift.

4.1 Introduction

In recent years a growing number of experimental tests of QED in atomic
physics have surpassed the accuracy of theory, allowing new determinations
of fundamental constants. High-precision spectroscopy in atomic hydrogen
has been achieved with sufficient accuracy to allow a determination of the
proton size from QED calculations [137], and spectroscopy in muonic hydrogen
has allowed an even more accurate determination [72, 73]. Interestingly, the
muonic hydrogen result currently differs by 7σ from the proton size determined
by hydrogen spectroscopy and electron-proton collision experiments. So far

This chapter is based on: Magic wavelengths for the 2 3S → 2 1S transition in helium,
R.P.M.J.W. Notermans, R.J. Rengelink, K.A.H. van Leeuwen and W. Vassen, Physical Re-
view A 90, 052508 (2014).
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there has not been a satisfying explanation for this discrepancy, which is aptly
named the proton size puzzle [138]. Research in this field has expanded to
measurements in muonic helium ions, a hydrogenic system which has a different
nuclear charge radius [80]. As this work is done for both naturally occurring
isotopes of helium (4He and 3He), the absolute charge radii of the α-particle
and the helion may be determined at an aimed relative precision of 3 × 10−4

(0.5 attometer), providing a very interesting testing ground for both QED and
few-body nuclear physics.

Parallel to these developments, high-precision spectroscopy in neutral he-
lium has become an additional contribution to this field in recent years. Al-
though QED calculations for three-body systems are not as accurate as for
hydrogen(ic) systems, mass-independent uncertainties cancel when considering
the isotope shift [139, 140]. Therefore isotope-shift measurements in neutral
helium can provide a crucial comparison of the nuclear charge radius differ-
ence determined in the muonic helium ion and planned electronic helium ion
measurements.

High-precision spectroscopy in helium is a well-established field, and transi-
tions ranging from wavelengths of 51 nm to 2058 nm [21, 22, 34, 36, 37, 39, 43–
45, 48, 141] have been measured in recent years both from the ground state
and from several (metastable) excited states. Only two transitions have been
measured in both helium isotopes with sufficient precision for accurate nu-
clear charge radius difference determinations. The 2 3S → 2 3P transition at
1083 nm [37] and the doubly-forbidden 2 3S → 2 1S transition at 1557 nm
[21, 86] are measured at accuracies exceeding 10−11, providing an extracted
nuclear charge radius difference with 0.3% and 1.1% precision, respectively.
Interestingly, the determined nuclear charge radius differences from both ex-
periments currently disagree by 4σ [37].

In order to determine the nuclear charge radius difference with a precision
comparable to the muonic helium ion goal, we aim to measure the 2 3S → 2 1S
transition with sub-kHz precision. One major improvement to be implemented
is the elimination of the ac Stark shift induced by the optical dipole trap
(ODT) in which the transition is measured. Many high-precision measurements
involving optical (lattice) traps solve this problem by implementation of a so-
called magic wavelength trap [142]. In a magic wavelength trap the wavelength
is chosen such that the ac polarizabilities of both the initial and final states of
the measured transition are equal, thereby cancelling the differential ac Stark
shift.

In this paper we calculate the wavelength-dependent (ac) polarizabilities of
both 2 3S and 2 1S states and identify wavelengths at which both are equal
for either 4He or 3He. Generally one will find multiple magic wavelengths over
a broad wavelength range, but our goal is to identify the most useful magic
wavelength for our experiment. Currently [21] we employ a 1557 nm ODT at
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a power of a few 100 mW, providing a trap depth of a few µK and a scattering
lifetime of > 100 s (the actual lifetime in the trap is limited to 10’s of seconds
due to background collisions). A good overview on calculating trap depths
and scattering rates in ODTs is given in [108], and the specific calculations for
our ODT are discussed in section 2.3. For our future magic wavelength trap
we need to produce a similar trap depth with sufficient laser power at that
wavelength. Furthermore, the scattering rate should be low enough to have a
lifetime of at least a few seconds, providing enough time to excite the atoms
with a 1557-nm laser.

Based on the calculations reported here, we are currently building a laser
system at 319.82 nm with a tuning range of 300 GHz based on similar designs
[143, 144]. It is therefore sufficient for us to find magic wavelength candidates
with an accuracy on the order of a few GHz, well within the tuning range.
Although this is less accurate than polarizability calculations achievable with
more advanced theoretical techniques [145, 146], the purpose of this paper
is to show that it is possible to calculate magic wavelengths with sufficient
accuracy to design an appropriate laser system without having to resort to the
aforementioned specialized techniques.

The polarizabilities for the 2 3S and 2 1S states of 4He are presented over a
wavelength range from 318 nm to 2.5 µm. In this range all magic wavelengths
including estimated ODT powers and trap lifetimes are calculated. From these
results we identify our best candidate for a magic wavelength trap. A lot of
work, both theoretical and experimental, has been done for the dc polarizability
of the 2 3S and 2 1S states (see Table 4.1 for an overview). Therefore these are
used as a benchmark for our calculations by also calculating the polarizabilities
in the dc limit (λ → ∞), as discussed in section 4.4. Calculations of the ac
polarizability of the 2 3S and 2 1S states [55, 147] states also allow us to
compare the polarizability calculations at finite wavelengths.

Finally we present a simple extension to 3He which shows hyperfine struc-
ture that needs to be taken into account. Although different theoretical chal-
lenges arise due to the hyperfine interaction, we can get an estimation of the
3He magic wavelength candidates and show that they are equal to the 4He
results approximately shifted by the hyperfine and isotope shift.

4.2 Theory for 4He

The polarizability α of an atomic state with angular momentum J and
magnetic projection MJ contains a scalar part α0, a vector part α1 and a
tensor part α2, all depending on J . In general, given a quantization axis B̂,
the polarizability in a laser field with propagation direction k̂, polarization q
(q = 0 for linear polarization, q = ±1 for σ±), and electric field direction ε̂ is
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given by1 [89, 107]

α(ω) = α0(ω) + (k̂ · B̂)q
mJ

2J
α1(ω) + (3|ε̂ · B̂|2−1)

3m2
J − J(J + 1)

2J(2J − 1)
α2(ω), (4.1)

The non-scalar terms in the polarizability do not play an important role in
our calculations. The reason is that in 4He the 2 1S0 state (lifetime ≈ 20 ms)
has a purely scalar polarizability and for the metastable 2 3S1 state (lifetime
≈ 7800 s) the vector and tensor polarizabilities are equal to zero within strict
LS coupling.

The polarizability induced by an electromagnetic wave with angular fre-
quency ω due to a single opposite parity state, in the LS coupling scheme,
is [109, 146, 148]

α(n)(J,MJ , J
′,M ′J , q) = 6πε0c

3(2J ′ + 1)

(
J 1 J ′

−MJ q M ′J

)2
AnJJ ′

ω2
nJJ ′(ω2

nJJ ′ − ω2)
.

(4.2)

ωnJJ ′ is the 2 1,3SJ → n 1,3PJ′ transition frequency and AnJJ ′ is the Einstein
A coefficient of the transition. The term between two brackets represents the
3j symbol for the transition. The total polarizability α(J,MJ , q) is given by a
sum over all opposite-parity states as

α(J,MJ , q) =
∑
n

∑
J′

α(n)(J,MJ , J
′,M ′J , q) (4.3)

We note here that in other work equation 4.3 is commonly further simpli-
fied by a summation over all MJ states and possible polarizations q (see,
e.g. [146]). As our experimental work specifically concerns the spin-stretched
2 3S1 (MJ = +1) state [21, 22], we only calculate the polarizability for the
MJ = +1 state and assume linearly polarized light (q = 0). For 3He the calcu-
lations specifically concern the spin-stretched 2 3S F = 3/2 (MF = +3/2) and
2 1S F = 1/2 (MF = +1/2) states. The summation in equation 4.3 can be
explicitly calculated for 2 1,3S → n 1,3P transitions up to n = 10, as accurate
ab initio energy level data and Einstein A coefficients are available [149].

Extrapolation of both the energy levels and the Einstein A coefficients is
required to calculate contributions of dipole transition matrix elements with
states beyond n = 10. A straightforward quantum defect extrapolation can be
used to determine the energies by introducing the effective quantum number

1The original published version of the paper gives the expression for unpolarized light

α(J,MJ ) = α0 + α2
3M2

J−J(J+1)

J(2J−1)
which is common in theoretical literature [109, 146, 148].
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n∗ [150]:

n∗ = n−
∞∑
r=0

δr
n∗r

, (4.4)

where δr are fit parameters and the quantity n − n∗ is commonly referred to
as the quantum defect. For both the singlet and triplet series, equation 4.4 is
used to fit the literature data up to n = 10 and to extrapolate to arbitrary n.
This method is tested using a dataset provided by Drake [150].

Extrapolation of the Einstein A coefficients is more complicated as there
is no relation such as equation 4.4 for Einstein A coefficients. Furthermore,
the sum-over-states method does not provide straightforward extrapolation
beyond the ionization limit, as the energy levels converge to the ionization
limit for n→∞. Both problems can be solved by calculating the polarizability
contribution of a single transition 2 3S1 → n 3PJ′ (or 2 1S0 → n 1P1) as given
in equation 4.3 and defining the polarizability density per upper state energy
interval as

∆α(n)

∆E
=

2α(n)

En+1 − En−1
, (4.5)

which is evaluated at En. En+1 and En−1 are the energies of the neighbouring
upper states with the same value of J ′ given by the Rydberg formula En(n∗) =
−R∞/n∗2. For ease of notation we have omitted all the dependent variables
of α(n) as defined in equation 4.2. The polarizability density is a function of
energy and can not only be used to calculate the polarizability contribution
from dipole transition matrix elements to highly excited (Rydberg) states, but
additionally allows extrapolation beyond the ionization potential. Using the
Rydberg formula, the polarizability density becomes

∆α(n)

∆E
=
α(n)

R∞

(n∗2 − 1)2

2n∗
, (4.6)

where we have made the approximation that n− n∗ is constant for increasing
n. This approximation already works better than 1% for n = 2. In the limit
n� 1, the polarizability contribution per energy interval can be written as

dα(n)

dE
=

6πε0c
3

R∞
(2J ′ + 1)

(
J 1 J ′

−MJ q M ′J

)2
CnJJ ′(n∗)

ω2
nJJ ′(ω2

nJJ ′ − ω2)
, (4.7)

where we define

CnJJ ′(n∗) ≡ AnJJ ′(n∗2 − 1)2

2n∗
. (4.8)
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As there is no exact analytical model for AnJJ ′ as function of energy, the
method of extrapolation is based on a simple low-order polynomial fit of the
CnJJ ′(n∗) as function of E(n∗) for the n ≤ 10 levels. The result is a func-
tion CnJJ ′(E) that is used to extrapolate AnJJ ′ to arbitrary upper states and
calculate the corresponding polarizability contributions. However, as the ex-
trapolation is a function of energy, it can be extended beyond the ionization po-
tential to calculate continuum contributions to the polarizability. This method
omits all higher order effects such as resonances to doubly-excited states or
two-photon excitations into the continuum, and it should be considered as an
approximation of the continuum.

For a large enough quantum number n, the discrete sum-over-states method
smoothly continues as an integration-over-states method following equation 4.7.
The ionization limit serves as a natural choice as the energy at which we would
switch between the discrete sum and the integration method. But even for
large enough n we would already be making a negligible numerical error in
varying the exact cutoff energy Ec at which we switch between these methods.
Therefore we perform the calculation using the sum-over-states method to an
arbitrary cutoff at Ec = −R∞/n∗2max and continue with an integration over the
remaining states as

αcont(J,MJ) =
∑
J′

∫ ∞
Ec

dα(n)

dE
dE, (4.9)

where E is the energy of the corresponding state. As we use a low-order
polynomial fit of equation 4.8 to calculate dα(n)/dE, the integral of equation 4.9
can provide an analytical solution. The total polarizability is therefore easily
calculated as a sum-over-states part and an analytical expression

α(J,MJ) = αcont +

n=nmax∑
n=1

∑
J′

α(n). (4.10)

4.3 Numerical uncertainties

In this section we discuss the sources of any numerical errors in our calcu-
lations, which are purely based on the technical execution of our method. The
accuracy of our calculations due to our estimation of the continuum contri-
bution will be discussed in section 4.4 where we compare our results to other
calculations.

The numerical convergence of equation 4.10 is tested by varying nmax. We
find that the polarizability converges as n−2

max, and even for nmax = 20 the
polarizability is within a fraction 10−4 of the polarizability calculated using
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nmax = 5000. The computation of equation 4.10 therefore poses no numerical
problems.

A more crucial matter is the fact that our calculations are based on two
extrapolations: that of the level energies and the Einstein A coefficients. We use
the ab initio calculations of the level energies and Einstein A coefficients for the
n ≤ 10 levels in helium [149]. The higher level energies are extrapolated using
equation 4.4 and include up to fifth order (r = 5) contributions. Variation of the
total number of orders (r = 4, 6) or using a different dataset (such as the NIST
database [151] as used in other recent work [55]) affects the polarizabilities at
the 10−8 level and is negligible.

The limiting factor in the accuracy of the calculations is the choice of ex-
trapolation of the Einstein A coefficients through extrapolation of CnJJ ′(E).
As mentioned before, no advanced methods are used to calculate transtion
matrix elements to higher states or doubly excited states in the continuum.
Instead, the heuristic approach we use is to choose an extrapolation function
that is smooth, continuous and provides a convergent integral in equation 4.9.
Therefore CnJJ ′(E) is fit with a polynomial of maximum order 2. A number
of different functions have been tried which provide a similar quality of the
fit, and their effect on the calculation of the continuum contribution can lead
to a polarizability shift which is a significant fraction of the continuum contri-
bution itself. This indeed shows that the absolute accuracy of our continuum
contributions will be the limiting factor in the accuracy of the calculated polar-
izabilities. We chose to use a second order polynomial function to extrapolate
CnJJ ′(E) as it has the additional advantage of providing an analytical solution
of the continuum contributions. The absolute accuracy of the calculations will
be discussed in section 4.4 .

4.4 Results

In order to discuss the absolute accuracy of the calculations, we first present
our polarizabilities calculated in the dc limit (λ → ∞) as a lot of literature is
available for these calculations. After comparison with the dc polarizabilities
(next subsection), the ac polarizabilities are given, including the magic wave-
lengths at which they are equal for the 2 3S1 (MJ = +1) and 2 1S0 states.
Experimental characteristics, such as the required trapping power and scatter-
ing lifetime at the magic wavelengths, are estimated in order to discuss which
magic wavelength candidate is most suitable for our experiment. Finally, the
tune-out wavelength (where the polarizability is zero) of the 2 3S1 state near
414 nm is compared to the result calculated by Mitroy and Tang [55].
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Table 4.1: Comparison of calculations and measurements of MJ -averaged dc polar-
izabilities of the 2 1S0 and 2 3S1 states in units of a30.

Author (year) Ref. 2 1S0 2 3S1

Crosby and Zorn (1977) [Experiment] [152] 729(88) 301(20)
Ekstrom et al. (1995) [Experiment] [153, 154] 322(6.8)
Chung and Hurst (1966) [155] 801.95 315.63
Drake (1972) [156] 800.2 315.608
Chung (1977) [157] 801.10 315.63
Glover and Weinhold (1977) [158] 803.31 316.24
Lamm and Szabo (1980) [159] 790.8 318.7
Bishop and Pipin (1993) [160] 315.631
Rérat et al. (1993) [161] 803.25
Chen (1995) [147] 800.31
Chen and Chung (1996), B Spline [162] 315.630
Chen and Chung (1996), Slater [162] 315.611
Yan and Babb (1998) [145] 800.316 66 315.631 468
Mitroy and Tang (2013), hybrid [55] 315.462
Mitroy and Tang (2013), CPM [55] 316.020
This work 801.19 317.64

dc polarizabilities

An overview of previously calculated and measured dc polarizabilities for
the 2 1S0 and 2 3S1 states of 4He is given in Table 4.1 together with our
results. For convenience we give the polarizabilities in atomic units a3

0 (a0 is
the Bohr radius), but they can be converted to SI units through multiplication
by 4πε0a

3
0 ≈ 1.64877×10−41 CV−1m2. Furthermore, the dc polarizabilities are

calculated using the common convention of summing over all MJ states [146].
There is general agreement between our results and previously calculated

dc polarizabilities, but comparison with the work of Yan and Babb [145], which
provides the most accurate calculated dc polarizabilities to date, shows that
both our 2 1S0 and 2 3S1 dc polarizabilities are slightly larger (0.1% and 0.6%,
respectively). This means that the calculated continuum contributions in equa-
tion 4.9 provide an overestimate of the continuum contributions. Furthermore,
as the difference is smaller than our calculated continuum contribution (7.1 a3

0

and 3.6 a3
0, respectively) and following the discussion in section 4.3, we can

conclude that our absolute accuracy is indeed limited by the exact calculation
of the continuum contributions.
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Table 4.2: Calculated magic wavelengths λm for the 2 3S1(MJ = +1)→ 2 1S0 tran-
sition with the corresponding differential polarizability slope dα/dλ and the absolute
polarizability α at the magic wavelength. The last row gives the wavelength and
polarizability at which we currently use our ODT. Additional columns give the laser
beam power required to create a 5 µK deep trap in the exact same crossed-beam
geometry as currently employed and the corresponding lifetime of the gas in this ge-
ometry due to scattering from a nearby 2 3S1 → n 3P0,1,2 transition. See section 2.3
for details on those calculations.

λm [nm] dα/dλ α [a3
0] Laser Lifetime Nearest

[a3
0/nm] power [W] [s] transition

318.611 −7.00× 104 -809.2
319.815 −4.40× 103 189.3 0.7 3 2 3S1 → 4 3P0,1,2

321.409 −5.38× 102 55.3 2.3 6 2 3S1 → 4 3P0,1,2

323.587 −1.48× 102 17.2 7.3 6 2 3S1 → 4 3P0,1,2

326.672 −5.48× 101 -1.2
331.268 −2.37× 101 -13.5
338.644 −1.08× 101 -24.2
352.242 −5.33 -39.0
411.863 −2.00 4.5 28.0 4 2 3S1 → 3 3P0,1,2

1557.3 0.0 603.8 0.2 205 2 3S1 → 2 3P0,1,2

Magic wavelengths

We have calculated the ac polarizabilities of the 2 1S0 and 2 3S1 (MJ =
+1) states in the range of 318 nm - 2.5 µm and an overview of the magic
wavelengths is shown in Table 4.2. We also give the slope of the differential
polarizability, which is used to estimate the sensitivity of the determined magic
wavelength due to the accuracy of the calculated polarizabilities. Table 4.2
furthermore provides the trapping beam power required to produce a trap
depth of 5 µK and the corresponding scattering lifetime (see section 2.3) to
indicate the experimental feasibility of each magic wavelength.

The magic wavelengths in the range 318-327 nm, as shown in figure 4.1,
are mainly due to the many resonances in the singlet series. The magic wave-
lengths at 318.611 nm and 326.672 nm are not useful for our experiment as
the absolute 2 3S1 polarizability is negative and therefore a focused laser beam
does not provide a trapping potential. There are more magic wavelengths for
λ < 318.611 nm, but the polarizability of the 2 3S1 state will stay negative
until the ionization wavelength of the 2 1S state around 312 nm. In the range
327-420 nm, shown in figure 4.2, there are four more magic wavelengths. The
magic wavelength at 411.863 nm, previously predicted with nm accuracy [141],
is the only one in this region with a small yet positive 2 3S1 polarizability
(see inset in figure 4.2). There are no more magic wavelengths in the range
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4. Magic wavelengths for the 2 3S → 2 1S transition

Figure 4.1: Calculated polarizabilities of the 2 3S1 (dashed, blue) and 2 1S0 (dotted,
black) states shown together with the differential polarizability (full, red). The blue
and black vertical lines indicate the positions of the 2 3S1 → 4 3P and the 2 1S0 →
n 1P (n = 9− 13) transitions, respectively. There are five magic wavelengths (black
dots) in this range, all listed in Table 4.2.

420-2500 nm, which is shown in figure 4.3, and the polarizabilities converge to
the dc polarizabilities for λ > 2500 nm.

The ac polarizability of the 2 1S0 state can be compared to previous polar-
izability calculations from dc to 506 nm [147]. Combined with the dc polariz-
ability comparison and the tune-out wavelength result for the 2 3S1 state, we
find that the accuracy of our calculations is limited by the exact calculation of
the continuum contributions. We note that the absolute continuum contribu-
tions and the corresponding uncertainty are approximately 5 times larger for
the magic wavelengths around 320 nm than for 412 nm, as the shorter wave-
lengths are closer to the 2 1S ionization limit (at 312 nm). The uncertainty
in the absolute value of the polarizabilities translates to an uncertainty in the
absolute value of the magic wavelength through the slope dα/dλ of the polariz-
ability at the zero crossing. For the magic wavelength at 319.815 nm this gives
a frequency uncertainty of 10 GHz (0.003 nm), yet for the magic wavelength
near 412 nm the uncertainty is approximately 1 nm due to the very small slope
at the zero crossing. However, the latter magic wavelength is not suitable for
our experiment as the absolute polarizability is very small.

For experimental purposes the most promising magic wavelength is 319.815 nm,
as the polarizability of the 2 3S1 state is large enough to provide sufficient trap
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Figure 4.2: Calculated polarizabilities of the 2 3S1 (dashed, blue) and 2 1S0 (dotted,
black) states shown together with the differential polarizability (full, red) for wave-
lengths ranging from 327 nm to 420 nm. The blue and black vertical lines indicate
the positions of the 2 3S1 → 3 3P and the 2 1S0 → n 1P (n = 4 − 8) transitions,
respectively. There are four magic wavelengths (black dots) in this range, all listed in
Table 4.2. The inset shows the wavelength region 411-415 nm, displaying the magic
wavelength at 411.863 nm and the tune-out wavelength at 414.197 nm.

depth at reasonable laser powers while the estimated scattering lifetime is still
acceptable.

Tune-out wavelength of the 2 3S1 state

The zero crossings of the absolute polarizability of a single state occur at
so-called tune-out wavelengths. Mitroy and Tang calculated several tune-out
wavelengths for the 2 3S1 state [55], of which the candidate at 413.02 nm is
the most sensitive to the absolute value of the polarizability due to a very
small slope dα/dλ = −1.9 a3

0/nm at the zero crossing. We find this tune-
out wavelength at 414.197 nm (see inset in figure 4.2), which is considerably
larger. However, the slope of the polarizability at the zero crossing can be
used to calculate that the difference in tune-out wavelength is equivalent to
a 2.23 a3

0 difference in the calculated absolute polarizabilities. Comparison of
the calculated dc polarizabilities (see Table 4.1) shows a similar difference, so
within a constant offset of the absolute polarizability our tune-out wavelength
is in agreement with Mitroy and Tang’s result.
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4. Magic wavelengths for the 2 3S → 2 1S transition

Figure 4.3: Calculated polarizabilities of the 2 3S1 (dashed, blue) and 2 1S0 (dotted,
black) states shown together with the differential polarizability (full, red) for wave-
lengths ranging from 420 nm to 2.5 µm. The blue and black vertical lines indicate
the positions of the 2 3S1 → 2 3P and the 2 1S0 → n 1P (n = 2, 3) transitions,
respectively. There are no magic wavelengths in this range and the polarizabilities
converge to the dc polarizabilities for λ > 2.5 µm.

4.5 Extension to 3He

The 2 3S → 2 1S transition is also measured in 3He in order to determine
the isotope shift of the transition frequency [21]. Hence a magic wavelength
trap for 3He will be required as well. As 3He has a nuclear spin (I = 1/2),
the measured hyperfine transition is 2 3S F = 3/2 (MF = +3/2)→ 2 1S F =
1/2 (MF = +1/2) and the magic wavelengths need to be calculated for these
two spin-stretched states.

The mass-dependent (isotope) shift of the energy levels is taken into account
by using 3He energy level data [30] and recalculating the quantum defects using
equation 4.4. The Einstein A coefficients of the transitions also change due
to the different reduced mass of the system [149], but this effect is negligible
compared to the accuracy of the calculations. In total, the mass-dependent shift
of the magic wavelengths is dominated by the shift of the nearest transitions
and is approximately -45 GHz.

The fine-structure splitting decreases as 1/n3 whereas the hyperfine split-
ting converges to a constant value for increasing n [163]. In this regime the
(LS)JIF coupling scheme is not the best coupling scheme because J is no
longer a good quantum number. Instead an alternative coupling scheme is
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used which first couples the nuclear spin quantum number I and total electron
spin S to a new quantum number K [164]. This new quantum number K then
couples to L to form the total angular momentum F . In this coupling scheme
the transition strengths can be calculated with better precision compared to
the (LS)JIF coupling scheme, and can be applied for states with n ≥ 3. Al-
though this coupling scheme does not work perfectly for n = 2 (which in any
case is far-detuned from the magic wavelengths), it provides an estimate of the
transition strengths that is sufficiently accurate for our purposes.

For increasing n, the strong nuclear spin interaction with the 1s electron
becomes comparable with the exchange interaction between the 1s and np
electrons [163]. This leads to mixing of the singlet and triplet states as the total
electron spin S is no longer a good quantum number. The solution requires
exact diagonalization of the Rydberg states, which provides the singlet-triplet
mixing and the energy shifts of the states. The mixing parameter is then used
to correct the Einstein A coefficients and the energies of the states. Although
this is implemented in the calculations, these corrections lead to shifts in the
magic wavelengths that are below the absolute accuracy of the calculations.
Due to the two hyperfine states of 3He+ in the 1s ground state, there are two
Rydberg series in the 3He atom. For even higher n than discussed before, this
leads to mixing of Rydberg states with different n [163]. This leads to shifts
that are well below the accuracy of the calculations and is therefore neglected.

Using the aforementioned adaptations, the polarizability of the 2 3S F =
3/2 (MF = +3/2) and 2 1S F = 1/2 (MF = +1/2) states can be calculated
using equation 4.2, but with substituted quantum numbers (J,MJ → F,MF ),
Einstein A coefficients and transition frequencies. The numerical calculation
of the polarizabilities and discussion of the numerical accuracies is similar to
the 4He case. An additional uncertainty of 1.0 a3

0 is added in the calculation
of the polarizabilities of the 3He states based on a conservative estimate of the
shifts caused by the hyperfine interaction. It should be noted that the states
of interest, 2 1S and 2 3S, both have angular momentum L = 0 and both are
in the fully spin-stretched state. Therefore neither 3He or 4He has a significant
non-scalar polarizability for the states discussed in this paper.

A comparison between the 4He and 3He magic wavelengths is presented
in Table 4.3. Magic wavelengths up to 330 nm are all shifted by the isotope
shift with small corrections due the abovementioned effects. The frequency
difference between the two isotopes (third column of Table 4.3) grows with
increasing wavelengths because dα/dλ decreases and the results become more
sensitive to the absolute accuracy (1.0 a3

0) of the calculations, as can be seen
from the growing uncertainties associated with the shifts. The isotope shifts
for magic wavelengths with λ > 324 nm have been omitted in Table 4.3 as they
are not useful due to the large relative uncertainty.
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Table 4.3: Comparison of magic wavelengths λm calculated for the 4He 2 3S1 (MJ =
+1) → 2 1S0 and 3He 2 3S F = 3/2 (MF = +3/2) → 2 1S F = 1/2 (MF = +1/2)
transitions and the corresponding frequency shift. The uncertainty in the shift is due
to the additional 1.0 a30 absolute uncertainty in the polarizabilities of 3He.

λm [nm] Shift [GHz]
4He 3He

318.611 318.626 −45.03(4)
319.815 319.830 −43.1(7)
321.409 321.423 −38(5)
323.587 323.602 −4(2)× 101

The difference of the magic wavelengths between the two isotopes is well
within the tuning range of our designed laser system near 320 nm. Furthermore
there is no significant change in the absolute polarizability or the slope dα/dλ
at the magic wavelengths. This means that an ODT at these wavelengths has
a comparable performance for either isotope.

4.6 Conclusion

We have calculated the dc and ac polarizabilities of the 2 1S and 2 3S states
for both 4He and 3He in the wavelength range of 318 nm to 2.5 µm and deter-
mined the magic wavelengths at which these polarizabilities are equal for either
isotope. The accuracy of our simple method is limited by the extrapolation
of the polarizability contributions of the continuum states. This is less than
achievable through more sophisticated methods which calculate the transition
matrix elements explicitly. However, the purpose of this paper is to show that
using a simple extrapolation method it is possible to achieve an accuracy on
the order of 10 GHz for the magic wavelengths that are of experimental inter-
est, which is required to design an appropriate laser system for the required
wavelengths.

Most experimentally feasible magic wavelength candidates are in the range
of 319-324 nm, as the absolute polarizability of the 2 3S1 state in this range is
positive and large enough to create reasonable (∼ µK) trap depths in a crossed-
beam ODT with a few Watts of laser power. The estimated scattering rates at
these wavelengths and intensities are low enough to perform spectroscopy on
the doubly-forbidden 2 3S → 2 1S transition.

The calculations are extended to also calculate magic wavelengths in 3He.
Although the hyperfine structure, which is absent in 4He, leads to complications
in the calculation of the polarizabilities, these effects are very limited for the
2 1S and 2 3S states. The magic wavelengths of interest, around 320 nm, are
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shifted relative to the 4He magic wavelengths by predominantly the isotope
shift.

4.A Appendix: Vector and tensor polarizability

The calculations in this chapter do not discuss the vector and tensor parts
of the polarizability because both are expected to be small due to the high
degree of LS coupling in the helium atom. Furthermore, linear polarization of
the light is explicitly assumed in which case the vector part of the polarizability
can safely be neglected. However, for the interpretation of the measurements
in chapter 6 it becomes necesary to estimate the magnitude of the non-scalar
part of the polarizability in order to verify that they do not influence the
measurements. In this appendix a simple extension to the calculations is carried
out to estimate the non-scalar terms in the polarizability.

In order to estimate the vector and tensor polarizabilities, I have extended
the calculations of the polarizability in this chapter to include the |2 3S1;mJ =
0〉 state for π-polarized light and of the |2 3S1;mJ = +1〉 state for both σ+ and
σ− polarization. From these the vector and tensor polarizability, as defined by
equation 4.1, are calculated according to

α1 = α(mJ = +1, σ−)− α(mJ = +1, σ+), (4.11)

and

α2 =
α(mJ = +1, π)− α(mJ = 0, π)

3
. (4.12)

At the magic wavelength the values 0.09 a3
0 and 0.03 a3

0 are found for the vector
and tensor polarizabilities respectively. These numbers are small compared to
the scalar polarizability of 189.3 a3

0, and the 0.5 a3
0 uncertainty on the dc-offset

on the polarizability curve as found in the magic wavelength measurement (see
chapter 6).
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Chapter 5

A laser system for trapping at the

magic wavelength

Abstract

High precision spectroscopy on the 2 3S → 2 1S transition is possible in
ultracold optically trapped helium but the accuracy is limited by the ac-
Stark shift induced by the optical dipole trap. To overcome this problem,
we have built a trapping laser system at the predicted magic wavelength
of 319.8 nm. Our system is based on frequency conversion using com-
mercially available components and produces over 2 W of power at this
wavelength. With this system, we show trapping of ultracold atoms,
both thermal (∼ 0.2 µK) and in a Bose-Einstein condensate, with a trap
lifetime of several seconds, mainly limited by off-resonant scattering.

5.1 Introduction

The helium atom has proven to be a productive testing ground for funda-
mental physics. Frequency metrology has been employed as a sensitive test of
QED calculations, both from the ground state [34, 35], and from the long lived
(lifetime ∼ 8000 s) metastable 2 3S state (He∗) [22, 39, 40]. Another interesting
target for spectroscopy is to probe the influence on level energies of the finite
size of the nucleus. By comparing accurate atomic structure calculations [32]
to high precision isotope shift measurements, nuclear charge radii relative to
the (accurately known [71]) 4He nucleus can be extracted. This method was
employed to determine charge radii of the halo nuclei 6He and 8He [83] but
also to measure the 4He-3He differential nuclear charge radius [21, 37]. These
measurements are relevant to current investigations into the so-called “proton
radius puzzle” which arose when a similar measurement of the proton radius in

This chapter is based on: A simple 2 W continuous-wave laser system for trapping
ultracold metastable helium atoms at the 319.8 nm magic wavelength, R.J. Rengelink,
R.P.M.J.W. Notermans, and W. Vassen, Applied Physics B 122, 122 (2016).
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µH found a 7σ discrepancy with the 2010 CODATA value [73]. Current efforts
investigating the nuclear charge radii of µ3He+ and µ4He+ are projected to
reach an experimental uncertainty at the sub-attometer (am) level [80]. De-
terminations of the 4He-3He differential nuclear charge radius with comparable
accuracy in electronic systems provide a valuable cross-check for these mea-
surements.

Currently the two most accurate measurements of the 4He-3He differential
nuclear charge radius have achieved accuracies of 3 [37] and 11 am2 [21], roughly
an order of magnitude less precise than the projection of the µHe experiment,
but disagree by 4σ. The former experiment resolved the 2 3S → 2 3P transition
to within one-thousandth of the 1.6 MHz natural linewidth and is not expected
to be significantly1 improved upon in the near future. The latter experiment
was performed on the doubly forbidden 2 3S → 2 1S transition whose 8 Hz
natural linewidth is not a limiting factor but has a very low excitation rate and
thus requires a long interaction time. To achieve this He∗ atoms were cooled
to quantum degeneracy (a Bose-Einstein condensate (BEC) of 4He∗, and in a
degenerate Fermi gas of 3He∗) and trapped in an optical dipole trap (ODT).
The accuracy of this experiment was limited by experimental effects, mainly
the ac-Stark shift induced by the ODT.

This problem is also encountered in optical lattice clocks where it is solved
by employing so-called magic wavelength traps [88]. In a magic wavelength
trap, the wavelength of the trapping laser is chosen such that the upper and
lower state polarizability are exactly the same, cancelling out the differential
ac-Stark shift. In helium a high-precision calculation of the ac-polarizability
of the 2 3S level was recently reported [55], and we ourselves have made more
approximate calculations on both the 2 3S and 2 1S levels (see chapter 4). Both
works predict the polarizability of the 2 3S level to vanish at around 413 nm (a
so-called tune-out wavelength) which was later confirmed experimentally [56].
Our calculations also predict a number of magic wavelengths for the 2 3S →
2 1S transition. The most promising from the perspective of trapping is located
at 319.815 nm for 4He and 319.830 nm for 3He.

Trapping atoms at this wavelength is not straightforward. First of all, to
achieve a trap depth comparable to [21], where an infrared ODT at 1557 nm
was used, an optical power of approximately 1 W is required. Such powers are
not readily available at ultraviolet wavelengths. Secondly, the lifetime of atoms
trapped at this magic wavelength is intrinsically limited by two mechanisms:
off-resonant excitation to the nearby 2 3S → 4 3P transition at 318.9 nm,

1After publication of this work a new measurement of this transition was reported [38] which
improves the experimental accuracy by almost a factor two compared to the work referenced
here but disagrees with it by 20σ.
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and two-photon ionization. The total loss rate from these processes should not
exceed about 1 s−1, to allow sufficient probe time for spectroscopy.

Considerable progress has been made in the production of laser light in the
wavelength range near 320 nm, primarily for the purpose of laser cooling Be+

ions [143, 144, 165–167]. High power (several hundreds mW) was generated by
sum frequency mixing and subsequent frequency doubling of two fiber lasers,
retaining most of their high spatial and spectral mode quality [143, 144, 167].
Production of up to 2 W was demonstrated with such a system [144]. Con-
strained to commercial Er and Yb doped fiber amplifiers, this scheme allows
the production of high power continuous wave laser light over a range of 310-
325 nm.

In section 5.2, we demonstrate a laser system built out of commercially
available components producing over 2 W at 319.8 nm based on a modification
of this scheme. In section 5.3 we show that our source can be used to trap he-
lium atoms with an acceptable lifetime of a few seconds, such that spectroscopy
on the 2 3S → 2 1S transition can be performed.

5.2 Laser system

The system can be divided in a sum frequency generation (SFG) part,
which generates 639.6 nm light from two infrared lasers, and a second harmonic
generation (SHG) part which frequency doubles the SFG light to 319.8 nm. In
the following, we will first give a full overview of the optical system before
discussing the results and performance of the SFG and SHG parts separately.

Overview

Figure 5.1 shows a schematic overview of the optical setup. The setup is
relatively compact with all of the components, except for the lasers and the
control electronics, mounted on a single 1000×500 mm2 optical breadboard.
The system starts with two fiber lasers (NKT photonics Koheras Adjustik
E15 and Y10) with center wavelengths of 1557.28 nm and 1085.45 nm. The
thermal tuning ranges are 1000 pm and 700 pm respectively, covering a spectral
range much larger than the uncertainty in the calculated magic wavelength.
The lasers seed two 10 W fiber amplifiers (NuFern NUA-1084-PB-0010-C2
and NUA-1550-PB-0010-C2), with isolated polarization maintaining free-space
output couplers. The beams are separately focussed to achieve optimal sum
frequency generation.

The output beams are to an excellent degree of approximation Gaussian,
and can be described completely by two parameters: their (minimum) waist
size (w0), which is directly related to their Rayleigh range (zR = πw2

0/λ),
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Figure 5.1: Schematic view of the UV laser system. Two infrared fiber lasers at
1085.5 nm and 1557.3 nm seed two 10 W amplifiers. The infrared beams are inde-
pendently focussed, and overlapped on a dichroic mirror (DM). The combined beam
passes through a temperature stabilized PPLN crystal. More dichroic mirrors filter
residual infrared light from the SFG beam at 639.6 nm. This beam is mode-matched
and phase modulated by a 20 MHz electro-optic modulator (EOM) and the cavity
reflection is monitored using a photodiode (PD) to allow Pound-Drever-Hall lock-
ing of the cavity. The final UV output beam is then collimated and ellipticity is
compensated by an anamorphic prism pair (APP).

and the position of their focus. In order to achieve optimal conversion these
parameters must be matched both to each other and to the crystal. Achieving
this condition is not entirely straightforward because of the coupled nature of
the problem.

We first collimate the 1557.3 nm beam with an f = 300 mm lens, and then
focus by two lenses with focal distances of -100 mm and 200 mm. The beam
waist can now be changed by moving either of the focussing lenses, but doing
so will also move the focal point. The 1085.5 nm beam is first passed through
a telescope consisting of two lenses with focal distances of 200 mm and 50 mm
and is then focussed by an f = 300 mm lens. The focal point can be changed
without affecting the waist size by moving the focussing lens. In this way, the
foci of the beams are matched by first setting the waist of the 1085.5 nm beam
to the desired focussing, secondly matching the 1557.3 nm beam waist to it,
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and finally overlapping the focal point of the 1085.5 nm beam with that of the
1557.3 nm beam.

With fixed beam parameters, the infrared beams are overlapped on a dichroic
mirror and passed through a 40 mm MgO doped periodically poled lithium nio-
bate (PPLN) crystal (Covesion) with a poling period of 12.1 µm. The crystal
is mounted in an oven and temperature stabilized at ∼ 90◦C. The output beam
from the crystal contains both the sum frequency and residual infrared light.
This residual light is filtered from the beam by two dichroic mirrors and the
SFG beam is collimated by a f = 250 mm lens to a waist of ∼ 1 mm.

The light is then coupled (free-space) into a commercial frequency doubling
system (Toptica SHG pro) where it is mode-matched to the cavity and passed
through an electro-optical modulator (EOM). The EOM modulates 20 MHz
sidebands on the laser carrier frequency to allow Pound-Drever-Hall locking of
the cavity. The doubling cavity is similar to [168], the main differences being
the locking scheme (Pound-Drever-Hall instead of Hänsch-Couillaud) and the
crystal (AR-coated rather than Brewster cut). The UV output is collimated
and passed through an anamorphic prism pair to reduce beam ellipticity. Based
on the specifications of the seed lasers and amplifiers the spectral linewidths of
the infrared beams should be of the order of several tens of kHz. Because the
nonlinear conversion steps do not significantly add to the fractional linewidth
the final UV-output is expected to have a linewidth of ∼ 100 kHz, which is
small compared to the scale at which the polarizability changes [169].

Sum Frequency Generation

The purpose of the SFG stage is to convert the available infrared laser light
into useful SFG light with high efficiency. To achieve this it is necessary to
focus the input beams tightly so that a high peak intensity is reached, but
not so tightly that the beams diverge too quickly before they reach the end
of the crystal. As described by Boyd and Kleinman [170], this process can be
optimized with respect to the dimensionless focussing parameter ξ = l/2zR,
which is the ratio of the crystal length l to the confocal parameter of the beam
(twice the Rayleigh length zR). Although optimal at ξ ≈ 2.84, the efficiency
varies quite slowly so that at confocal focussing (ξ = 1) it is still approximately
80% of its maximum value. The system produces more power than required
and the confocal condition is chosen because of practical considerations such
as the available path length and the size of the entrance surface of the crystal.

The infrared beams were set to the confocal condition with waist sizes
measured to be 56(1) µm (zR = 8.9(3) mm) for the 1085.5 nm beam and
63(1) µm (zR = 7.9(3) mm) for the 1557.3 nm beam and their waist positions
located within 1 mm of each other. By correcting for the refractive index of the
crystals, which can be calculated based on known Sellmeier coefficients [171],
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5. A laser system for trapping at the magic wavelength

Figure 5.2: Results of sum frequency generation. (a) Sum frequency power as a
function of the input power product (IPP) of the infrared lasers. The dashed line is
a linear fit at low input powers (slope 0.108(1) W−1). (b) Contourplot of the sum
frequency power as a function of both input powers, based on a linear interpolation
of the same dataset as (a). Black diamonds indicate measured datapoints, the dashed
lines indicate contours of constant IPP.

the focussing parameter inside the crystal is found to be ξ = 1.03 for the
1085.5 nm beam and ξ = 1.16 for the 1557.3 nm beam.

Figure 5.2a shows the converted power as a function of the product of
the input powers (input power product, IPP). When different combinations
of input powers with equal IPP are used they produce almost the same SFG
output power. This can be seen more clearly in a contour plot of the output
power as a function of input powers (figure 5.2b, based on a linear interpolation
of the same dataset) where contours of constant IPP follow constant output
power. From this we conclude that the total converted power is a function of
IPP only, and does not depend on the exact composition of infrared powers.

In order to achieve the power conversion plotted in Figs. 5.2a and 5.2b, it is
necessary to optimize for crystal temperature at each input power product. The
reason for this is shown in Figure 5.3, which shows the conversion efficiency as
a function of crystal temperature at different input powers. As the input power
becomes higher, the optimal temperature shifts to lower temperature and the
crystal temperature needs to be adjusted to achieve maximum conversion. A
possible explanation for this behaviour is that light is absorbed in the center
of the crystal and heats it locally. This causes a slightly elevated temperature,
and consequently imperfect phase matching at the center of the crystal (where
conversion occurs) compared to the crystal edge (with respect to which the
temperature is controlled). When the crystal temperature is set to a slightly
lower temperature, this effect is compensated.
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Figure 5.3: Sum frequency production as a function of crystal temperature, normal-
ized for measured input power product. The plot shows input power products of
1.4 W2 (blue circles), 35.7 W2 (red squares), and 78.0 W2 (black diamonds). At
higher input powers the temperature graph becomes slanted towards lower tempera-
ture, indicating thermal effects.

At low input powers the SFG output power scales linearly with a slope of
0.108(1) W−1, comparable to other experiments using a similar crystal [143,
144]. At higher output powers a deviation from the linear behaviour is seen.
This may be a left-over thermal effect, or it may be that, because of the high
conversion efficiency, pump depletion needs to be taken into account. In the
case of a thermal effect the spatial output mode may be distorted but this is
not observed. At an IPP of 80 W2, consisting of 8 W at 1557.3 nm and 10 W at
1085.5 nm, a maximum output power of almost 6 W of SFG light is produced,
which corresponds to a conversion efficiency of 33%.

Second Harmonic Generation

The generated SFG light is coupled in free space to the Toptica SHG pro
system. Using a commercial frequency doubling system has advantages, but
the disadvantage is that some system parameters are not disclosed. We will
therefore describe the system as a whole with reported in- and output powers
measured before and after the full system.

Figure 5.4 shows the system output power and conversion efficiency of the
SHG section. At an input power of ∼2 W the conversion efficiency saturates
at about 50% and at an input power of 4 W a maximum output power of more
than 2 W of UV light was achieved. At this point the cavity coupling efficiency
is just over 80%. This behaviour is qualitatively similar to what is observed in
other SHG systems [168, 172]. Although more SFG input power is available, we
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5. A laser system for trapping at the magic wavelength

Figure 5.4: Results from the SHG system. (a) UV output power (319.8 nm) as a
function of total input power (639.6 nm) going into the full system. The output
increases quadratically at low input powers, but saturates to a linear asymptote at
higher powers. (b) System conversion efficiency (ratio of total input and output
power) as a function of input power. The efficiency saturates at ∼50%.

choose to remain below 4 W input power to prevent (UV-induced) damage to
the cavity optics at these powers [173]. Peak-to-peak UV intensity fluctuations
of 4% were measured over a 4 hour period. This is within the specifications
for intensity stability of the fiber amplifiers. No evidence of degradation of the
crystal or cavity optics has been observed after more than a year of operation
although periodic realignments of the cavity mirrors were required.

The beam profile of the cavity output is still Gaussian (M2 < 1.2), but
shows ellipticity due to crystal walk-off. Directly from the cavity we observe
a beam waist of ∼ 0.7 mm in the vertical and ∼ 0.1 mm in the horizontal
direction. This beam is passed through a collimating lens and an anamorphic
prism pair to produce a more circular beam. We measure the final beam waist
of ∼ 0.21 × 0.35 mm2. Despite the modest ellipticity these beam parameters
still allow tight focussing, an essential requirement for optical dipole trapping.

5.3 Trapping

Now that we are able to produce sufficient power at 319.8 nm, we imple-
ment the laser system into our existing setup [21, 22] to demonstrate trapping
and to characterize the trap lifetime. We prepare the beam for trapping by en-
larging it with a 1:2 telescope and focus it inside the vacuum chamber with an

f = 400 mm lens to a waist of w
(1)
0 ×w

(2)
0 = 64.3(1.0)×55.6(7) µm2. The focus

positions along the horizontal and vertical axes are found to lie 12(2) mm apart
which is small compared to the Rayleigh lengths (40.0(6) mm and 30.0(4) mm).
We measure 62% total transmission of the two windows of the vacuum cham-
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ber. While high, these losses are expected from uncoated sapphire vacuum
windows [174].

A transmission per window of T1 =
√

0.62 ≈ 0.78 is assumed to estimate
the power inside the vacuum chamber. Therefore, at a power (P ) of 1 W and
neglecting astigmatism, the beam has peak intensity

Ip =
2T1P

πw
(1)
0 w

(2)
0

= 14 kWcm−2. (5.1)

Based on the polarizability (calculated in chapter 4) this translates to a trap
depth of ∼ 6.0 µK W−1 for a single beam. The trap depth of our ODT is
therefore far below the recoil temperature

Trec =
~2k2

kBm
= 46.7 µK, (5.2)

where k = 2π/λ is the photon wavenumber and m is the atomic mass of helium.
We can therefore safely assume that each photon scattering event leads to the
loss of the scattered atom. Additionally, the excess energy of the scattered
atom can heat the other atoms or even kick more atoms out of the trap.

When two- and three-body losses can be neglected, the total loss rate is
a combination of three distinct rates: a background loss rate Rbg due to the
background pressure inside the chamber, a loss rate Rsc due to photon scat-
tering, and a loss rate Rion due to two-photon ionization. These mechanisms
scale in different ways with ODT power. The total loss rate is

Rtot = Rbg +RscIp +RionI
2
p . (5.3)

The Rayleigh length of the focussed UV beam is comparable to the ∼4
cm spacing between the vacuum windows. Therefore, in a single beam ODT
trapped atoms are able to collide with the windows and leave the trap. To
avoid this some means of axial confinement is necessary. We use two different
methods to provide this confinement. The first is to add a magnetic field
gradient along the beam direction to create a hybrid trap [175]. With this
method the loss rate and trap depth are straightforward to interpret. However,
peak densities are not high enough to produce a BEC. The other method is to
create a two-colour crossed-beam ODT using the UV beam and additionally a
focussed 1557 nm beam which was already in place [21]. This trap gives a high
enough peak density for a BEC to form.

The final magic wavelength trap for precision spectroscopy will be of a dif-
ferent geometry however, because both trapping schemes disussed here still
introduce systematic shifts of the transition frequency. The most straightfor-
ward final trap geometry would be a crossed beam ODT using only the UV
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Figure 5.5: Schematic view of the hybrid trap geometry. Atoms are trapped by the
combination of the UV-laser beam and the quadrupole magnetic trap (QMT) coils.
A set of fine-tune coils allows precise tuning of the trap center. Because of limited
optical access the UV laser beam is at an angle of ∼ 9.5◦ with the magnetic field axis.
High-resolution detection is done using a micro-channel plate detector (MCP). Inset:
in-situ absorption image of atoms in the UV hybrid trap.

laser. In such a trap the atomic density will be similar to what is found in
the two-colour trap while the trap depth and scattering rate are comparable
to the hybrid trap. Measuring these quantities therefore gives an accurate pic-
ture of what can be expected while requiring no modification of the current
experimental setup.

Hybrid trap

We prepare an ultracold sample in a way previously described [21]. A
beam of He∗ atoms is generated from a liquid nitrogen cooled dc-discharge,
collimated, slowed in a Zeeman slower, and captured in a magneto-optical trap.
Here the atoms are cooled to approximately 0.5 mK. Subsequently they are
spin-polarized, loaded into a Ioffe-Pritchard type magnetic trap and Doppler
cooled to approximately 130 µK. Finally, the atoms are cooled to ∼ 0.2 µK by
forced rf evaporative cooling inside the magnetic trap.

The cloud is transferred to the hybrid trap consisting of the UV beam
and a quadrupole magnetic trap (QMT) generated by a set of QMT coils
in anti-Helmholtz configuration. Figure 5.5 shows a schematic of this trap.
The quadrupole field has a strong axis gradient of 0.54 Gauss/cm but gravity
acts in a direction perpendicular to this axis. In this direction the gradi-
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Figure 5.6: Hybrid trap one-body loss rate as a function of UV power. The blue line is
a linear fit with a slope of 0.16(2) s−1W−1, corresponding to off-resonant scattering.

ent is only half the magnitude which is well below the leviation gradient of
mg/µ = 0.351 Gauss/cm [175]. Below this gradient gravity is stronger than
the confining magnetic force so that atoms are not trapped in the absence of the
UV beam. The QMT therefore adds confinement but does not contribute to
the trap depth. A homogeneous magnetic field is applied with a set of fine-tune
coils to minimize trap oscillations induced by the loading step.

The atoms are detected either by absorption imaging or by a micro-channel
plate detector (MCP) located 17 cm below the trap center. MCP time of flight
measurements are done as a function of hold time in the hybrid trap. The time
of flight signals are fitted with a thermal Bose-Einstein distribution to extract
the temperature of the gas as well as the atom number. The decay in atom
number is fitted with an exponential (with an oscillating component to account
for residual trap oscillations). The first few seconds of the decay are not fitted
to neglect two-body loss and thermalization effects.

Figure 5.6 shows the loss rate of a thermal gas inside the hybrid trap.
The loss rate varies linearly with power, which is consistent with only back-
ground collisions and off-resonant scattering; two-photon ionization would de-
pend quadratically on power. A linear fit gives a slope of about 0.16(2) s−1W−1

(Rsc ≈ 1.2 s−1W−1m2, see equation 5.3), with a background loss rate of 0.12(2)
s−1. This background loss rate is consistent with the loss rate of 0.13(1) s−1

in a hybrid trap of comparable depth using our 1557 nm ODT for which off-
resonant scattering is negligible [169].

Figure 5.7 shows the fitted temperature as a function of hold time in the
hybrid trap. This temperature is not constant; after a quick thermalization
the temperature starts to increase linearly with time, however, not fast enough
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5. A laser system for trapping at the magic wavelength

Figure 5.7: (a) Temperature as a function of hold time in the hybrid trap. After some
thermalization time the atomic cloud starts to heat as a result of UV absorption. The
blue dotted line is a constant fit to the temperature around the minimum to extract
the minimum temperature. The red dashed line is a linear fit to the temperature after
a few seconds to extract the heating rate. (b) Determination of the trap temperature
based on minimum temperature (blue circles), and an extrapolation to zero hold time
of the heating rate (red squares). From linear fits to these data an upper (lower) bound
is set on the temperature in absence of heating of 0.62(2) µK W−1 (0.51(2) µK W−1).

to pose a problem. Two generic sources of heating in a dipole trap are in-
tensity noise and beam pointing noise [176]. The former is not observed at
this timescale because it would lead to exponential rather than linear heat-
ing. Beam pointing noise is a possible explanation of the observed heating but
was never observed to be a problem in our infrared trap which uses a similar
geometry. A more plausible heating mechanism is that atoms off-resonantly
scattering a photon dump a small portion of their high recoil energy in the
atomic cloud, thereby heating the ensemble. In principle it is also possible
that a fraction of atoms heated by scattering is able to dump all recoil energy
in the cloud and thermalize instead of leaving the trap. This may cause the
photon scattering rate that was determined earlier to be an underestimate be-
cause a part of all scattering events appear as heating rather than trap loss.
To assess the maximum contribution to the scattering rate of this effect we
assume the most extreme case in which the rethermalization of recoiling atoms
causes all of the observed heating. In this case, the highest observed heating
rate of Ṫ ≈ 0.04 µK s−1 corresponds to no more than Ṫ /Trec ≈ 0.001 s−1

unaccounted scattering events. This is two orders of magnitude lower than
typically observed trap loss and can be safely disregarded.

To give an estimate of the equilibrium temperature inside the trap (in the
absence of heating) we take the minimum achieved temperature as an up-
per bound, and a linear extrapolation of the heating to zero hold time as a
lower bound. In this way we extract temperatures of 0.62(2) µK W−1 and
0.51(2) µK W−1 respectively. This is approximately a factor 10 lower than the
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Figure 5.8: (a) Schematic picture of the two-colour ODT setup. The angle between
the beams is 19◦. (b) MCP time-of-flight measurement of a BEC in a two colour
optical dipole trap. The signal is fit with a bimodal distribution indicating a BEC
(red dashed line) and a thermal fraction (blue dotted line).

calculated trap depth and corresponds to a truncation parameter η = 10 which
is typically found in a thermalized trapped gas [175].

Two-colour trap

Because of the low confinement provided by the hybrid trap, no BEC was
observed. To provide enough confinement to observe BEC we switch to a two-
colour trap consisting of the UV beam and an IR beam (focussed to a waist
of 85 µm) which cross at an angle of 19◦. Figure 5.8a shows a schematic of
the setup. Figure 5.8b shows the corresponding time-of flight signal on the
MCP, fit with a bimodal distribution. Superposed on the thermal distribution
is a clear inverted parabola Thomas-Fermi profile demonstrating Bose-Einstein
condensation. For this BEC a one-body lifetime is observed of ∼ 4s.

5.4 Conclusion

In order to perform magic wavelength trapping of metastable helium atoms
we have realized a laser system which produces over 2 W at 319.8 nm, with not
yet an indication of a reduction of SHG efficiency at higher pump power. The
setup is built from commercially available fiber lasers, amplifiers and SFG/SHG
components. Similar performance should be possible in a spectral range of 310-
325 nm with only minor changes in the required components (mainly limited
by available wavelength ranges of the amplifiers). The produced UV light is
used to trap an ultracold (∼ 0.2 µK) thermal gas in a hybrid trap and a BEC
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5. A laser system for trapping at the magic wavelength

in a two colour ODT. Trap losses are found to be mainly due to off-resonant
scattering with a rate of 0.16(2) s−1 W−1.

With this system we can make a sufficiently deep dipole trap in the UV
while keeping the intrinsic losses at an acceptable level such that spectroscopy
is possible. This opens the door to a full magic wavelength ODT and a more
precise measurement of the 2 3S → 2 1S transition frequency.
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Chapter 6

Precision spectroscopy in a magic

wavelength trap

Abstract

Improvements in both theory and frequency metrology of few-electron
systems such as hydrogen and helium have enabled increasingly sensitive
tests of quantum electrodynamics (QED), as well as ever more accurate
determinations of fundamental constants and the size of the nucleus. At
the same time advances in cooling and trapping of neutral atoms have
revolutionized the development of increasingly accurate atomic clocks.
Here, we combine these fields to reach the highest precision on an opti-
cal transition in the helium atom to date by employing a Bose-Einstein
condensate confined in a magic wavelength optical dipole trap. The mea-
sured transition accurately connects the ortho- and parastates of helium
and constitutes a stringent test of QED theory. In addition we test po-
larizability calculations and ultracold scattering properties of the helium
atom. Finally, our measurement probes the size of the nucleus at a level
exceeding the projected accuracy of muonic helium measurements cur-
rently being performed in the context of the proton radius puzzle.

6.1 Introduction

In the past decades, high-precision spectroscopy measurements in atomic
physics scale systems have pushed precision tests of quantum electrodynam-
ics (QED), one of the cornerstones of the standard model of physics, ever
further [16, 31] and have led to accurate determinations of fundamental con-
stants [51, 65, 66, 177]. Recently however, measurements of transition frequen-

This chapter is based on: Precision spectroscopy of helium in a magic wavelength op-
tical dipole trap, R.J. Rengelink, R.P.M.J.W. Notermans, Y. van der Werf, R. Jan-
nin, K.S.E. Eikema, M.D. Hoogerland and W. Vassen, Nature Physics Published online
doi:10.1038/s41567-018-0242-5 (2018)
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cies in muonic hydrogen (µH) have revealed a discrepancy of six standard devia-
tions [72, 73] with respect to the accepted CODATA value for the proton charge
radius. This discrepancy, which has become known as the “proton radius puz-
zle”, has stimulated strong interest in the field, as its confirmation implies the
violation of lepton universality, one of the pillars of the standard model. New
experiments in atomic hydrogen [17, 18], and muonic deuterium [74] have only
deepened the puzzle, prompting research into other elements such as muonic
helium (µ 3,4He+) [80]. From these measurements the charge radii of the alpha-
particle and the helion (1.68 fm resp. 1.97 fm) are projected to be determined
with sub-attometer accuracy, which should be compared to high-precision ex-
periments in electronic helium atoms or ions.

QED theory of the helium atom, with two electrons more complicated than
hydrogen, has seen impressive improvements in recent years, with QED cor-
rections up to order mα6 now evaluated [31]. Recent experiments are in good
agreement [22, 34, 36, 38, 39, 41, 42, 52] and may allow a competitive value
for the fine structure constant in the near future [45, 46, 48, 49]. The antici-
pated evaluation of the next highest order corrections (mα7) [31] would allow
the determination of the 4He nuclear charge radius with an accuracy better
than 1%. At present nuclear charge radii can already be determined differen-
tially, i.e. with respect to 4He, due to cancellation of higher-order terms in
the isotope shift. Using this approach the radii of the exotic halo nuclei 6He
and 8He [82, 83], as well as the stable isotope 3He [21, 37, 84] were determined
with accuracies far exceeding electron scattering experiments [81]. However,
different experiments on the 3He-4He isotope shift show significant discrep-
ancies [31], even between different measurements of the same dipole allowed
2 3S1 → 2 3P transition [38]. Furthermore, improving the experimental accu-
racy on this transition is challenging due to the 1.6 MHz natural linewidth and
the presence of quantum interference shifts [49]. Only one previous experiment
has used the doubly forbidden 2 3S1 → 2 1S0 transition [21], which in contrast
has an excellent quality factor of 2.4×1013 (natural linewidth 8 Hz) that poses
no fundamental limit in the foreseeable future.

Here we report a new measurement of the 2 3S1 → 2 1S0 transition fre-
quency at 1557 nm which improves the previous result by an order of mag-
nitude, making this the most accurate optical frequency measurement in the
helium atom to date (δν/ν = 1.0 × 10−12). Our measurement has been per-
formed using a Bose-Einstein condensate (BEC) in the metastable 2 3S1 state
confined in an optical dipole trap (ODT) at a previously predicted [169] magic
wavelength for this transition. At such a magic wavelength the ac-Stark shift
on the transition vanishes, a property that has been exploited to realize atomic
clocks operating at a stability in the 10−19 region [19, 20], allowing constraints
on a possible time-variation of fundamental constants [142]. Moreover, ab-initio
calculations of polarizability have recently emerged as an alternative means of
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testing atomic theory at a level sensitive to QED effects [55, 56, 178]. By
finetuning the ODT laser wavelength to reduce the ac-Stark shift on the tran-
sition frequency, we measure the magic wavelength to high accuracy, providing
a stringent test for ab-initio calculations [179].

Our approach has also enabled us to measure the mean-field, or cold-
collision, shift on the transition for the first time by direct observation. This
frequency shift was instrumental in the first observation of Bose-Einstein con-
densation of atomic hydrogen via two-photon excitation of the 1S → 2S tran-
sition, where the enormous density of the BEC gave rise to a huge mean-field
shift [15, 128]. The associated transition lineshape allowed quantitative analy-
sis of these results [129]. In earlier work [63], we showed how this lineshape is
affected by an asymmetry in the trapping potential for 2 3S1 and 2 1S0 atoms,
and we could extract the 2 1S0 − 2 3S1 scattering length with 50% accuracy.
Now, working in a magic wavelength trap, we are able to improve this accuracy
by an order of magnitude.

These measurements therefore test our knowledge of the helium atom in
three different ways. The transition frequency measured here is a test of level
energies and is sensitive to the finite size of the nucleus. The magic wavelength
determination is a precision test of atomic structure as a whole and is there-
fore also sensitive to transition dipole moments. Finally, the scattering length
derived from the mean-field shift is a precise test of the molecular potentials
between helium atoms.

6.2 Setup

We prepare a BEC of typically 106 atoms in the metastable 2 3S1 state
(19.82 eV above the 1 1S0 ground state, lifetime ∼ 8000 s [52]) [21], and trans-
fer it into a dipole trap at 319.8 nm. The atoms are spin-polarized in the
spin-stretched mJ = +1 state so that ionization via two-body collisions (Pen-
ning ionization) is strongly suppressed [7]. Figure 6.1a shows the geometry of
the dipole trap. A tightly focused ODT beam is passed through the vacuum
chamber, refocused and passed through the chamber again with orthogonal lin-
ear polarization, intersecting itself at an angle of 19◦. The atoms are trapped
at the intersection, where the probe laser is applied counterpropagating to the
incident ODT beam. To detect excitation of the transition, we measure the
increased Penning ionization rate from the excited 2 1S0 atoms using a mi-
crochannel plate detector (MCP) and counter (see section 6.5). This detection
method provides substantially better signal-to-noise ratio compared to a signal
based on the loss of 2 3S1 atoms used previously [21, 22, 63]. After excitation,
the remaining atoms (>90%) are dropped under gravity on another MCP de-
tector placed 17 cm directly below the trap, producing a time-of-flight (TOF)
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Figure 6.1: a) Schematic of the experimental geometry. Two overlapping laser beams
crossing at an angle of 19◦ form the ODT. The probe light is counterpropagating
with one of the ODT beams. A high-voltage biased MCP detector above the setup
detects ions generated by excited atoms. A grounded MCP below the setup detects
the remaining metastable atoms that fall under gravity when they are released from
the trap. b) Schematic of the laser setup. An erbium fiber laser (EFL) is transfer-
locked in a phase locked loop (PLL) to an ultrastable erbium fiber laser (UEFL) via
an optical frequency comb (OFC). Control over the frequency offset is provided by
an in-loop direct digital synthesizer (DDS). The EFL serves as the probe laser, but
part of it is also split off to seed a fiber amplifier. An independent ytterbium fiber
laser (YFL) is amplified and overlapped with this light in order to generate the sum
frequency (SFG), which is frequency doubled in a second harmonic generation (SHG)
stage. A wavemeter (WM) is used to measure the wavelength of the YFL.

signal. From a bimodal fit to the TOF signal, we determine the chemical po-
tential and atom number of the BEC, as well as the temperature and atom
number of the thermal cloud.

Figure 6.1b shows the optical setup generating the probe and trap laser
light. Part of the probe laser light is also amplified and mixed with a second
independent laser in order to generate the ODT light. This second laser is
monitored by a high resolution wavemeter to determine the trap laser wave-
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Figure 6.2: A typical spectroscopy scan. The black circles indicate the signal when
spectroscopy light is applied. The grey triangles are background calibration points
measured directly after each spectroscopy point. In order to account for the Zeeman
shift, the atoms are alternately excited from the mJ = +1, and mJ = −1 states. The
red line is a fit of two Gaussians showing typical widths of about 10 kHz.

length (see section 6.5). The optical and electronic setup for generating the
probe and ODT laser light are described in refs. [63] and [180].

To account for the Zeeman shift arising from the ambient magnetic field in
the laboratory, we alternate between exciting from the mJ = +1 and mJ = −1
state (see section 6.5), which have first-order Zeeman shifts of equal magnitude
but opposite sign. Exciting from the mJ = 0 state, which shows no first-
order Zeeman shift, is not possible due to a high Penning ionization rate [7].
Every measurement is alternated with a background measurement in order to
monitor the level of background ion counts. In this way, we build up a double-
peak spectrum as shown in figure 6.2. We fit each measured line with two
Gaussian peaks (see section 6.5) and calculate the center frequencies.

6.3 Results

By employing a magic wavelength ODT, the ac-Stark shift induced by the
trap is greatly reduced compared to previous work [21]. The magic wave-
length was not known with sufficient accuracy to eliminate the ac-Stark shift
completely, and a residual trap-induced ac-Stark shift remains as a systematic
shift that needs to be calibrated. In addition to this, two other systematic shifts
are present that contribute roughly equally to the final accuracy: the ac-Stark
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Figure 6.3: a-d) Results of a multiple regression fit to a single dataset. The graphs
a) through c) are the partial residual plots for each of the fit parameters. The final
graph d) shows the measured frequencies (blue open circles) and the residuals of the
regression model (red circles). The grey band in all these figures indicates the 1σ
uncertainty on the transition frequency determined from this particular dataset. e)
Measured transition frequency per measurement week including systematic errors.
The data point at week six is derived from the multiple regression fit shown in a-d,
and the other points are based on similar datasets. The blue line and blue band
indicate the weighted average and 1σ uncertainty.

shift from the probe laser, and the mean-field shift which is proportional to the
chemical potential of the BEC.

In order to account for these systematics we performed multiple measure-
ments in which we varied the ODT and probe laser powers as well as the
chemical potential of the BEC. Since all of these systematic shifts are linear
with respect to their corresponding experimental observable, we can fit the
data with a multiple linear regression model, as shown in figure 6.3. From
this model we extracted the transition frequency as well as the slopes of the
ac-Stark shifts and the mean-field shift simultaneously. For every measurement
week, a single complete fit of the regression model was performed, where the
total number of measured transition frequencies varied between 16 and 39.
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It was experimentally not possible to vary all parameters independently. In
particular the trap power and chemical potential are highly correlated because
a deeper trap is better able to hold a high number of atoms at high density.
To break this correlation as much as possible, we varied the chemical potential
of the BEC while keeping the trap power fixed. This was achieved by varying
the hold time in the ODT before applying probe light between 200 ms and
a few seconds. Due to the fairly short (∼ 2 seconds, limited by off-resonant
scattering of the ODT light) one-body lifetime of the BEC in the ODT, this
allows for significant modification of the size of the BEC.

Figure 6.4: a) Transition frequency as a function of laser power, showing only the
“Coarse” scan, with a linear fit at each wavelength in order to determine the ac-Stark
shift. b) Slopes of the fitted lines in a) as a function of ODT laser wavelength. The
gray region indicates the predicted range for the magic wavelength [169]. c) “Fine”
scan of the ac-Stark shift with the polarizability curve from ref. [169] fitted (red line).
The blue region represents the 1σ uncertainty on the fit. The magic wavelength
condition is found at the zero-crossing.
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6. Precision spectroscopy in a magic wavelength trap

Magic wavelength

The determination of the magic wavelength was performed over two mea-
surement campaigns: a first “coarse” campaign, and a second “high resolution”
campaign during which the absolute transition frequency was also measured.
The results from the coarse campaign are shown in figs. 6.4a,b, along with
the predicted range from calculations [169]. These measurements gave a first
estimate of the magic wavelength. However, during this first campaign the
mean-field shift was not corrected for, leading to a small systematic offset on
the magic wavelength.

During the final measurement campaign, the trap laser wavelength was
varied over a smaller range in order to more precisely pinpoint the magic wave-
length. Figure 6.4c shows the results from this campaign. In order to determine
the magic wavelength we compare these data to the calculated polarizability
curves [169]. The dominant uncertainty in these calculations depends only very
weakly on wavelength and appears as a constant offset. The calculated polar-
izability can be related directly to the measured Stark shift by a scaling factor
which corrects for the laser intensity (see section 6.5). By fitting the data to
the calculated polarizability with a constant offset and a scaling factor, we also
account for the slight curvature of the polarizability curve over the measured
wavelength range. From this fit we then extract the laser intensity, a constant
offset correction to the calculated polarizability, and the zero-crossing. We find
the light intensity at the center of the trap to be 1.0(1) × 108 Wm−2 using a
1 W ODT beam. This intensity is roughly half of our estimate assuming per-
fect focusing conditions and beam quality [180]. The constant offset correction
to the polarizability is found to be 3.4(5) a3

0. The zero crossing of the fitted
curve corresponds to the magic wavelength and is found at 319.815 92(15) nm,
which is in good agreement with the calculated value of 319.815(3) nm. The
vector and tensor part of the polarizability are negligible at the current level
of uncertainty (see appendix 6.A), and also do not influence the measurement
of the transition frequency.

Mean-field shift and scattering length

The excited 2 1S0 atoms experience a different mean-field potential com-
pared to the remaining 2 3S1 atoms because of the difference in scattering
length. This leads to a shift of the transition frequency known as the mean-
field, or cold-collision shift [128]. The full-width of the mean-field lineshape
S(ν) [129] turns out to be small compared to the observed linewidth. At the
maximum density used in the experiments (peak density n(0) ≈ 4.5×1013cm−3

or equivalently µ ≈ kB×0.5 µK), a full width δνmax ≈ 4.4 kHz is expected (see
appendix 6.A). The additional ac-Stark shift contribution to the width [63] is

108



6.3. Results

negligible for the range of ODT laser wavelengths used in the final measurement
campaign. Possible line-pulling effects due to the asymmetric lineshape were
investigated by fitting Gaussians to simulations of the broadened lineshape but
were not found to affect the fitted frequencies.

The only observable effect of the mean-field interaction is therefore the
average shift of this lineshape. We derive this average shift analytically by
integrating the shift over the lineshape (see appendix 6.A for a detailed deriva-
tion):

〈∆νMFS〉 =

∫
νS(ν)dν∫
S(ν)dν

=
4

7h

(
att − ats
att

)
µ, (6.1)

where att and ats are the scattering lengths for triplet-triplet and triplet-singlet
collisions respectively, and µ is the chemical potential of the BEC.

The mean-field shift slope was found by including a linear regression to the
chemical potential of the BEC in the multiple regression model shown in fig-
ure 6.3c. Averaging over all measurements, we find a slope of -5.0(4) kHz µK−1.
By rewriting equation 6.1 we can express the unknown triplet-singlet scatter-
ing length in units of the very well known triplet-triplet scattering length,
att = +7.512(5) nm = +142.0(1) a0 [57]. We find ats = +82.5(5.2) a0, which
is in agreement with our previous result of ats = +50(10)stat(43)syst a0 [63].

Transition frequency

The final measured transition frequency is corrected for a number of sys-
tematic shifts as shown in table 6.1. By far the largest of these is the recoil shift
correction due to the absorption of a 1557 nm photon, ∆frec = −h/(2mλ2) =
−20.554 kHz, with negligible uncertainty.

Another systematic effect affecting all measurements equally is the fre-
quency offset of the Cesium clock with respect to the SI-second to which all
measurements are referenced. By comparing the clock with GPS time over
the course of the entire measurement campaign, a fractional frequency offset
of −1.9(2) × 10−13 was found (see section 6.5). By correcting for this offset,
the clock was calibrated to within its specified stability floor of 5 × 10−14,
which contributes to the error budget. The measured transition frequency was
corrected for the clock offset, corresponding to -36 Hz on the optical frequency.

Additional systematics are the black-body radiation shift, a dc-Stark shift
due to the ion-MCP bias voltage, possible shifts due to quantum interference
with far-off resonant transitions [49], and the second-order Zeeman shift. None
of these contribute significantly to the final error budget, and could be neglected
in the final result. Details of these estimations can be found in appendix 6.A.

Figure 6.3e shows the weekly average of all frequency measurements cor-
rected for the systematic effects identified. Averaging over all results, we find
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6. Precision spectroscopy in a magic wavelength trap

Table 6.1: Measured 2 3S1 → 2 1S0 transition frequency along with corrections. The
final result is compared to several alternative determinations. Values are in kHz.

Term Correction Uncertainty
Measured frequency 192 510 702 169.31
Recoil shift -20.554
ac-Stark shift: Probe }

0.192*ac-Stark shift: ODT
Mean-field shift
Statistical 0.032
Cs clock -0.036 0.010
Black-body radiation shift <0.005
dc-Stark shift <0.001
Quantum interference <10−4

Second-order Zeeman <10−5

Total: 192 510 702 148.72 0.20
van Rooij et al. [21] 192 510 702 145.6 1.8
IE(2 3S1) - IE(2 1S0) [30, 38, 41, 42] 192 510 702 156 42
Pachucki et al. [31] (theory) 192 510 703 400 800

* Uncertainty is correlated in the multiple regression model.

a 2 3S1 → 2 1S0 transition frequency of 192 510 702 148.72(20) kHz, which
corresponds to a relative uncertainty δν/ν = 1.0× 10−12.

6.4 Discussion and Conclusion

The magic wavelength found in this work is in very good agreement with
our earlier calculation [169] but is more accurate by over an order of magnitude.
Very recent full-configuration-interaction calculations incorporating relativistic
and recoil effects give the magic wavelength as 319.816 07(9) nm, which is
of a similar accuracy as our measurement and in excellent agreement [179].
It is interesting to make the comparison with measurements on the tune-out
wavelength (the wavelength for which the polarizability vanishes) for the 2 3S1

level at 413 nm [56]. Here a discrepancy with high precision calculations was
found which was attributed to QED effects [178], indicating that measurements
of atomic polarizablity can be used as an alternative means of testing QED.

The triplet-singlet scattering length ats derived from the mean-field shift
measured in this work is more accurate than the previous experimental bound [63]
by an order of magnitude, and in good agreement. This value can be used to
test quantum chemistry calculations of the relevant molecular potentials. In-
terestingly, a previously reported estimate, derived from ab-initio calculations
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of the 1 3Σ+
g and 2 3Σ+

g molecular potentials [59], found ats = +42+0.5
−2.5 a0 [63],

which disagrees significantly with the value of ast = +82.5(5.2) a0 found in
this work. This discrepancy may be related to the high ionization cross section
which causes the complex optical potential method used in these calculations
to break down.

The 2 3S1 → 2 1S0 transition frequency obtained in this work improves the
earlier measurement by van Rooij et al. [21] by an order of magnitude. The
results differ by 1.7σ (see table 6.1). This difference may be due to a slight
underestimation of the mean-field shift in that work, which was reported as
negligible at the level of 1.1 kHz. Based on the slope of the mean-field shift
found in this work and a rough estimation of the chemical potentials used in
ref. [21], we estimate that the mean-field shift in that work may have been
somewhat larger (up to 2 kHz), which brings the results to within 1σ of each
other.

We can test for consistency with other experiments by taking the difference
in ionization energy (IE) between the 2 3S1 and 2 1S0 levels. These IEs can be
determined from transition frequency measurements [38, 41, 42] and the the-
oretical IE of the 3 1,3D levels [30] which can be calculated to high accuracy.
As shown in table 6.1, the measured transition frequency is in excellent agree-
ment with this difference though more accurate by more than two orders of
magnitude. The measured transition frequency is also in reasonable agreement
(1.6σ) with direct QED calculation [31], although the estimated uncertainty
in this calculation is several orders of magnitude larger (see table 6.1). This
uncertainty is currently of the same order as the total nuclear size shift, but is
anticipated to be reduced [31] which would allow a direct determination of the
4He nuclear charge radius from the measured transition frequency.

At the current state of the theory, nuclear size information can still be
derived at high accuracy by looking at the 3He-4He isotope shift on this tran-
sition, for which the estimated uncertainty in the calculations is much smaller
(0.19 kHz) [31]. Taking the difference between the transition frequency mea-
sured in this work and the 2 3S1,F=3/2 → 2 1S0,F=1/2 transition frequency
in 3He [21], we derive an updated value of the differential nuclear charge ra-
dius δr2 = r2(3He) − r2(4He) = 1.041(7) fm2 (see ref. [31] for details of the
calculation), where the error is now dominated by the 1.5 kHz accuracy on
the 3He transition frequency. This new value agrees with electron scattering
(δr2 = 1.066± 0.06 fm2 [81]) but still disagrees with determinations based on
the 2 3S1 → 2 3P0,1,2 transitions [37, 84]. The very recent measurement of
the 2 3S1 → 2 3P1 transition frequency in 4He [38] showed a 20σ discrepancy
with ref. [37], which also indicates the need for further investigation of that
transition. In the immediate future, we aim to improve the measurement of
the 2 3S1,F=3/2 → 2 1S0,F=1/2 transition in 3He, which may bring the uncer-
tainty on δr2 down to < 0.002 fm2. This is actually better than the expected
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6. Precision spectroscopy in a magic wavelength trap

accuracy from muonic helium, which will be limited to 0.0031 fm2 because of
theoretical uncertainty in calculating the two-photon exchange contribution to
the Lamb shift [33].

The measurements presented in this work push our knowledge of the helium
atom at several levels. The 2 3S1 → 2 1S0 transition frequency is measured
to be 192 510 702 148.72(20) kHz, intimately tying the ortho- and parastates
together and allowing us to extract the 3He − 4He nuclear charge radius dif-
ference with improved accuracy. The magic wavelength on this transition is
determined to be 319.815 92(15) nm, in good agreement with calculations and
provides a stringent test for precision calculations of polarizabilities. Finally,
the measurement of the mean-field shift allows extraction of the 2 3S1 − 2 1S0

scattering length as +82.5(5.2) a0, which disagrees significantly with recent
quantum-chemistry calculations.

6.5 Methods

Experimental sequence

The tightly focused (waist< 100 µm) ODT beams trap the atoms in a
cigar-shaped harmonic potential. At 1 W input power, typical trap frequencies
are ωax ≈ 2π × 35 Hz in the axial direction, and ωrad ≈ 2π × 300 Hz in the
radial direction. The probe laser beam has an input power of up to 80 mW
and a larger beam waist (∼ 300 µm) in order to ensure uniform illumination.
We align the probe beam by overlapping it with the incident ODT beam.
The polarization of the probe beam is linear but the direction is rotated with
a motorized rotation stage in order to optimize the ion signal depending on
whether the transition is made from the mJ = +1 or the mJ = −1 state.

In the ODT, probe light is applied for about 100 ms, after which the re-
maining atoms are released to fall under gravity onto the MCP detector. This
excitation time is chosen to yield sufficient signal while being short enough to
not alter the chemical potential of the BEC by more than a few percent. Dur-
ing this step, the excited 2 1S0 atoms collide with the remaining 2 3S1 atoms
in a strongly Penning ionizing collision channel. We expect an ionization rate
comparable to that of unpolarized 2 3S1 atoms, corresponding to a lifetime
of about 1 ms for the 2 1S0 atoms. The He+ ions produced by this process
are detected by a second MCP detector (the ion-MCP) biased at -2.5 kV and
located 11 cm above the trap. The signal from the ion-MCP is amplified by
a pulse amplifier/discriminator and passed into a counter to yield the spectro-
scopy signal. Based on an excitation fraction of ∼ 5%, and a peak signal height
of a few thousand counts from a BEC of a few million atoms, we estimate a
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detection efficiency of ∼ 2%. We attribute the low efficiency to shielding of the
trap volume by the grounded re-entrant windows.

To mitigate the Zeeman shift, we alternate between exciting from the mJ =
+1 and mJ = −1 state. We transfer the atoms from the mJ = +1 to the
mJ = −1 state via a Landau-Zener sweep which consists of a magnetic field
ramp while RF-coupling between the magnetic substates is applied [64]. After
application of the probe light a second sweep brings the mJ = −1 atoms back
to the m = +1 state so that the TOF is not affected. In the case of mJ = +1
atoms the same sweep is performed without the RF-coupling to make sure no
systematic magnetic field difference is introduced. After every measurement
an identical measurement is performed with the probe light blocked in order to
calibrate the level of background ion counts. We attribute this background to
ionization of background gas by the 320 nm ODT light. This is corroborated
by the fact that the background count rate is linearly proportional to the
ODT laser power and increases when the background pressure is increased by
temporarily closing the safety valve going to the main chambers’ turbopump.

We estimate the linewidth of the probe laser at about 5 kHz, based on the
combined effects of residual frequency comb noise, electronic noise on the phase-
locked loop, and the 60 meter uncompensated fiber link between the frequency
comb and the setup. The observed lineshapes are broader however, showing
approximately Gaussian profiles of about 10 kHz width. We attribute the
additional broadening to a small residual oscillation of the BEC inside the trap
which causes Doppler broadening. Absorption images of the expanding BEC
indeed show random velocity fluctuations with a standard deviation of about 3-
4 mm/s in the axial direction. A simple model of a damped harmonic oscillator
driven by statistical fluctuations of the axial trap position can quantitatively
explain these observations (see appendix 6.B).

Polarizability and ac-Stark shift

The main uncertainty in the calculations of the polarizability in chapter 6 is
due to approximations made in estimating the contribution to the polarizability
due to coupling to the ionization continuum. Since this contribution is far off-
resonant, we can neglect its wavelength dependence and treat it as a dc-offset.
The calculated polarizabilities are given in atomic units which can be converted
into SI using

[
1 a3

0

]
a.u.

=
[
4πε0a

3
0

]
SI
≈ 1.64877×10−41JV−2m2. The intensity

of the laser beam can now be calculated from the scale of the polarizability
compared to the ac-Stark shift using I = 2ε0ch∆ν/Re(∆α), where ∆α is the
differential polarizability, and ∆ν is the observed ac-Stark shift [108].
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Absolute frequency determination

The ODT laser wavelength is derived from both the spectroscopy laser and
a second free-running fiber laser. Because the spectroscopy laser frequency
is determined with much higher accuracy, the uncertainty on the ODT laser
wavelength is dominated by the free-running laser. This wavelength is mea-
sured continuously during the course of the experiment using a high resolution
wavemeter (High Finesse WSU-30) with a specified accuracy of 30 MHz, which
was periodically calibrated on the 2 3S1 → 2 3P2 line at 1083 nm. The laser
wavelength was manually adjusted using the temperature control whenever it
drifted by more than 50 MHz from the wavelength setpoint for that measure-
ment week.

The spectroscopy laser is locked to an ultrastable laser at 1542 nm (Menlo
systems) via an optical frequency comb to bridge the wavelength gap in a
transfer-lock configuration [63]. The ultrastable laser serves as stable short
term flywheel oscillator for the measurement. Over the course of a measurement
day, the frequency of this reference is measured with respect to the Cs clock.

In order to reconstruct the absolute frequencies of the lasers several beat-
notes are continuously measured with a zero-dead time frequency counter, ref-
erenced to the Cs clock. The frequencies which are measured are the frequency
comb carrier offset frequency, the down-mixed pulse repetition rate, the spec-
troscopy laser beat-note (before mixing in the DDS), and either the virtual
beat-note or the ultrastable laser beat note. The wavelengths of the lasers
were measured using a wavemeter with sufficient resolution to determine the
comb modenumber of the observed beat notes.

From these data the ultrastable laser frequency was reconstructed, and a
linear fit allows us to compensate for the slow drift of this laser during the
day. This drift was found to be 22(2) mHz/s (1.1(1) × 10−16 s−1) on average
and fluctuating from day to day with a standard deviation of 9 mHz/s. The
modified Allan deviation of these data agrees well with the specified stability
of the Cs clock at the measured time scales, typically reaching a stability in
the low 10−13 region after a single measurement day. In total, the spectroscopy
data were acquired over about 30 separate measurement days, yielding in total
about 5 × 105 seconds of total integration time, which is enough to reach the
clock’s stability floor of 5× 10−14.

During the full measurement campaign the time delay between the Cs clock
and GPS pulse per second signal was continuously measured. The Allan de-
viation of this delay averages down as τ−1, and catches up with the Cs clock
stability after about 106 s. Integrating over the full course of the measurement
campaign, which took several months (∼ 8 × 106 s), we observed a fractional
frequency drift of −1.9(2)× 10−13, with an accuracy that exceeds the specified
Cs clock stability. We corrected for this drift in the frequency measurement
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data but take the specified clock stability floor as a conservative estimate of
the uncertainty. The deviations between the GPS disseminated second with
respect to the SI definition as reported in the BIPM circular T bulletin [124]
were found to be negligible at the current level of uncertainty.

Data processing and statistical analysis

The measured transition frequency data are fit with a weighted linear least
squares model regressing to the trap and probe laser powers (measured before
and after each scan) and the chemical potential of the BEC (as determined
from the MCP time-of-flight profile). In order to separate the purely statistical
error from the error due to the systematic shifts, we calculate the point of
minimum uncertainty from the covariance matrix of the fit. At this point the
uncertainty on the transition frequency is not correlated to the uncertainty in
the other parameters and can be considered purely statistical, amounting to
32 Hz. Extrapolating from this point to zero laser power and chemical potential
is associated with a systematic uncertainty of 192 Hz, which constitutes the
bulk of the uncertainty in this work.

6.A Appendix: Minor systematic effects

Vector and tensor polarizability

The measurement of the magic wavelength is more complicated when the
tensor and vector polarizability are considered. The measured magic wave-
length then depends on the details of the magnetic substates that are measured,
on the polarization of the laser light and the orientation of the quantization
axis. However, the tensor and vector polarizabilities are sufficiently small that
these details do not affect the measured values at the current level of uncer-
tainty.

First of all, the vector and tensor polarizabilities do not affect the frequency
metrology in any way. The tensor polarizability drops out as common mode
because we exclusively use the mJ = ±1 magnetic substates which are affected
identically. The vector polarizability introduces an asymmetry between the
mJ = +1 and mJ = −1 substates in the presence of an excess of either σ+ or
σ− polarization but this asymmetry extrapolates to zero in the trap ac-Stark
shift regression that is performed. The non-scalar terms in the polarizability
are therefore only relevant to the measurement of the magic wavelength.

In an extension to the magic wavelength calculation (see appendix 4.A
of chapter 4) the values 0.09 a3

0 and 0.03 a3
0 are for the vector and tensor

polarizabilities respectively. These numbers are small compared to the scalar
polarizability of 189.3 a3

0, and the 0.5 a3
0 uncertainty on the dc-offset on the
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polarizability curve as found in the magic wavelength measurement. Moreover,
the effects of both the vector and tensor polarizability tend to average out in
the geometry of our trap. Nominally, the trap laser polarization is linear in
both beams with the polarization of the returning beam orthogonal to the first.
This will create a rapidly oscillating polarization gradient over the trap, so that
any polarization dependent terms average out.

Mean-field lineshape

The lineshape due to the mean-field shift is given by equation 25 of ref. [129],
and can be written as

S(∆ν) = AN
∆ν

δν2
max

√
1− ∆ν

δνmax
, (6.2)

where A is a pre-factor not important to the discussion here, N is the number
of atoms in the BEC, and ∆ν is the detuning from resonance. The profile is
equal to zero outside the interval [0, δνmax]. The profile’s full width is given by

δνmax =
4π~2(ats − att)

hm
n(0) =

ats − att
hatt

µ, (6.3)

where att and ats are the triplet-triplet and triplet-singlet scattering lengths
respectively, n(0) is the peak density of the BEC, and µ is the chemical potential
of the BEC. A number of factors of two are different between equation 6.2 and
equation 25 of ref. [129] because we use a one-photon, rather than a two-photon
transition.

The average frequency shift of the lineshape can be calculated according to

〈∆ν〉 =

∫ δνmax

0
∆νS(∆ν)d∆ν∫ δνmax

0
S(∆ν)d∆ν

. (6.4)

The two integrals can be solved using the simple substitution x = ∆ν
δνmax

:∫ δνmax

0

∆νS(∆ν)d∆ν =
AN

δνmax

∫ 1

0

x2
√

1− xdx =
16AN

105δνmax
(6.5)∫ δνmax

0

S(∆ν)d∆ν =
AN

δν2
max

∫ 1

0

x
√

1− xdx =
4AN

15δν2
max

. (6.6)

We plug these expressions back into equation 6.4 to find

〈∆ν〉 =
4

7
δνmax (6.7)

Figure 6.5 shows the lineshape according to equation 6.2, along with the average
shift according to equation 6.7.
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Figure 6.5: Lineshape of a BEC as a result of mean-field interactions according to
equation 6.2. The average shift of the lineshape is analytically found to be 4/7 of
the full width. The orange line indicates the same line profile with a 50% smaller
chemical potential, giving rise to an observed shift of ∆fMFS .

Dc-Stark shift and blackbody radiation shift

The dc-Stark shift is given by [53]:

∆ν = − 1

2h

〈
~p · ~E

〉
= − 1

2h
Re(∆α)E2, (6.8)

where ~p is the instantenous dipole moment, and ~E the electric field. We know
the difference in dc-polarizability between the 2 3S1 and 2 1S0 states quite
well: Re(∆α) =

[
483.55 a3

0

]
a.u.
≈ 7.97 × 10−39 J V−2 m2 [169]. This gives a

dc-Stark shift of

∆ν

E2
=

4πε0 × 483.55 a3
0

2h
≈ 6.02× 10−6 Hz V−2 m2. (6.9)

Based on a simulation of the electric field in the vacuum chamber using
Comsol Multiphysics, we estimate that the ion-MCP produces a field of about
30 V/m at the position of the atoms. Even if we scale this up by a factor ten
to be conservative the shift is smaller than 1 Hz.

This analysis also applies for the blackbody radiation (BBR) shift. The
mean squared electric field from a blackbody is 〈E2〉T = (831.9 V m−1)2 ×(

T
300 K

)4
[142], which gives a BBR shift of 4.17 Hz at 300 K. This estimate does

not include the so-called dynamic contribution but this is typically smaller than
10% [181].
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Quantum interference

Quantum mechanically, when multiple paths are available to reach the same
final state, the question of which path was taken is ill-defined. In spectroscopy
this can lead to frequency shifts due to off-resonant excitation of distant transi-
tions. This is commonly referred to as “quantum interference” and was realized
to be a significant problem for precision spectroscopy on the 2 3S → 2 3P tran-
sitions [182].

In our work, we observe a transition between the 2 3S and 2 1S states.
The latter has a natural lifetime of 20 ms in which it decays to the 1 1S
ground state by the emission of two photons. Because we measure (via Penning
ionization) the generated population of 2 1S atoms, quantum interference may
occur with transitions to levels that decay to this state. By far the most
important of these is the 2 1P state which decays into the 2 1S state with a
branching ratio of about 0.1%. To estimate a possible quantum interference
shift, we apply the analysis of ref. [183], which directly maps to our system
when |1 1S〉, |2 3S〉, |2 1S〉, |2 1P 〉 → |0〉, |1〉, |2〉, |3〉.

In the limit of short interaction time compared to the Rabi frequency of the
main transition (Ω2T � 1), we find that according to equation 21 of ref. [183],
the transition frequency is shifted by

S0 =
γ2γ3 + |Ω3|2

4ω32
, (6.10)

where γi is the inverse lifetime, and Ωi the Rabi frequency for level |i〉, and ωij
is the angular frequency difference between levels |i〉 and |j〉. It is only the first
term in the numerator that corresponds to quantum interference, the second
term is simply the ac-Stark shift from this particular level, which is already
corrected for by the ac-Stark shift extrapolation.

γ3 and ω32 are known to be 2π×287 MHz and 2π×146 THz respectively [22].
For γ2 there is some ambiguity: the natural linewidth is 2π × 8 Hz but the
lifetime of this state is severely reduced because of Penning ionizing collisions
with the remaining 2 3S atoms. The inverse of this lifetime however, cannot
exceed the observed linewidth, indicating that γ2 < 2π×10 kHz. In the interest
of providing a conservative estimate, we will use this latter value since it gives
the largest shift.

Evaluating equation 6.10 with these numbers gives a shift of approximately
2π × 4.9 mHz. However, the asumption Ω2T � 1 is not justified, and a more
thorough calculation is needed. We calculate the Rabi frequency according to

|Ω2|2 =
6πc2

~ω3
12

A12|〈j1m1j2m2|JM〉|2I0, (6.11)
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where ω12 ≈ 2π×192.5 THz is the transition frequency, I0 ≈ 5.5×105 W m−2

is the peak intensity of the laser light, A12 = 9.1 × 10−8 s−1 is the Einstein
A-coefficient, and 〈j1m1j2m2|JM〉 ≤ 1/

√
3, depending on the polarization of

the laser light, is the Clebsch-Gordan coefficient of the transition. From these
numbers we calculate a Rabi-frequency that we round up to 2π×100Hz. Using
this number we calculate the expected line profile from equation 25 of ref. [183],
which has a slightly larger quantum interference shift of 2π × 79.6 mHz. This
number should be understood as an absolute upper bound, the true shift is
likely to be orders of magnitude smaller. For reference, table 6.2 shows all the
parameters used to arrive at this estimate.

Table 6.2: Parameters used to calculate the upper bound estimate shift due to quan-
tum interference. We take Ω3 as a multiple of Ω2 according to Ω3/Ω2 =

√
A13/A12

since they are derived from the same laser beam. Using these parameters, we find a
shift of ∼ 2π × 80 mHz.

Parameter value Remarks
Ω2 2π × 100 Hz Upper bound
Ω3/Ω2 4× 103 Same laser beam
γ2 2π × 10 kHz Upper bound
γ2→0 2π × 8 Hz
γ3 2π × 287 MHz
ω23 2π × 146 THz
T 100 ms

Second-order Zeeman shift

The second-order Zeeman shift of the 2 1S0 and 2 3S1 levels are given
in [184] at 3.2 mHz G−2 and 2.3 mHz G−2 respectively. The ambient magnetic
fields present during spectroscopy (typically about 0.5 G) would thus produce
a shift < 0.3 mHz, which is completely negligible.

6.B Appendix: BEC oscillation and Doppler broadening

The random axial motion of the BEC inside the optical dipole trap men-
tioned in section 6.5 can be observed in a number of ways. The most straight-
forward of these is to measure the velocity of the expanding BEC after it is
released from the trap using absorption imaging as shown in figure 6.6. Be-
cause the motion is stochastic, this velocity is uncorrelated between different
experimental cycles but the root-mean-square (RMS) of the velocity is still
well-defined. The magnitude of the velocity is found to be of the order of a few
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Figure 6.6: Root-mean-square position fluctuations (with the average position sub-
tracted) of the expanding BEC after release from the ODT as a function of expansion
time. Each datapoint is averaged over 50 independent experimental cycles and the
errorbar indicates the standard error of the mean. The fit indicates an RMS velocity
of 2.92 mm/s but higher velocities have been observed on other days.

mm/s. Because the BEC is trapped, the atoms will be oscillating at the trap
frequency with a positional amplitude of

∆x = ∆v/ω0 = (4 mm/s)/(2π × 27Hz) ≈ 24µm (6.12)

which is fairly small compared to the size of the BEC R =
√

2µ/mω2
0 ≈ 190 µm

(assuming a typical value for the chemical potentical µ = kB × 0.3 µK).
This velocity is sufficient to generate a Doppler shift of several kHz (∆νDopp =

v/λ = (4 mm/s)/(1.557 µm) ≈ 2.6 kHz) which is large enough to have an influ-
ence on the spectroscopy signal. One effect of this is that the time-dependent
excitation signal (figure 6.7) contains a modulation at both the axial trap fre-
quency and at double this frequency, with relative strengths depending on
detuning. A heuristic explanation of this behaviour is that if the laser were
exactly resonant without the oscillation the oscillation brings it in resonance
when the BEC is standing still, which occurs twice per oscillation cycle. If
however, the laser would be just outside of resonance without the oscillation,
some specific velocity will bring it into resonance which occurs only once per
oscillation cycle.

It is not directly obvious how this oscillation affects the spectroscopy line-
shape. In order to better understand what is happening I model the trap as a
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Figure 6.7: Time-dependent ion-MCP signal during excitation. The amplitude of
the signal is modulated with a frequency dependent on the detuning. On resonance
(left), the modulation frequency is the double of the trap frequency (∼ 30 Hz) while
slightly off-resonance (right) the frequency is equal to the trap frequency.
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Figure 6.8: Measurement of the axial trap frequency and damping rate using absorp-
tion imaging. An oscillation is induced using a magnetic field gradient after which
the BEC is held inside the ODT for a certain hold time. The datapoints indicate
the center position of the BEC after 20 ms of expansion time. The BEC undergoes
damped harmonic oscillation inside the trap. From an exponentially damped sinu-
soidal fit (red line) the trap frequency ω0 = 2π × 27 Hz and damping rate 6 s−1 are
derived.
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Figure 6.9: Simulations of the motion of the BEC inside the trap and its effect on the
spectroscopy signal. Left: Time-dependent velocity of the BEC in the trap subjected
to 1 µm/

√
Hz white noise up to 100 Hz. The RMS velocity is about 4 mm/s. Right:

Simulated ion-MCP signal with velocity noise, assuming a 5 kHz laser linewdith. The
traces from top to bottom indicate the signal for the same velocity trace but different
detuning: Green, +6 kHz; Orange, +3 kHz; Blue, on resonance; Red, -3 kHz; Purple,
-6 kHz.

damped harmonic oscillator with the differential equation [185]

ẍ+ 2γẋ+ ω2
0x =

1

m
F (t). (6.13)

The damping rate γ = 6 s−1 and eigenfrequency ω0 = 2π × 27 Hz can be
measured using absorption imaging as shown in figure 6.8. This damping is
attributed to collisions with the thermal fraction of the gas and is of compa-
rable magnitude to the damping rate found in other experiments [186]. Using
equation 6.13 the motion of the BEC subject to a force can be simulated. This
force is postulated to arise from random fluctuations in the axial trap position.
A deviation of the trap position exerts a force on the BEC given by

F = −mω2
0∆x. (6.14)

Plugging this into equation 6.13 and numerically solving for a white noise input
allows simulation of the movement of the BEC. The result is shown in figure 6.9.
A noise magnitude of 1 µm/

√
Hz in a 100 Hz bandwidth was chosen to produce

about 4 mm/s RMS velocity fluctuations (slightly higher but similar to what
is observed in absorption imaging).

The time-dependent ion-MCP signal corresponding to this motion is given
by the laser profile with a time-dependent detuning

S(t,∆f) ∝ 1

(Γ/2)2 + (∆f + v(t)/λ)2
. (6.15)
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Figure 6.10: Simulated line profile for a randomly oscillating BEC. The black points
are the integrated signal plus a small Gaussian noise term at different detunings of
independent simulations of BEC motion. These simulations assume 1 µm/

√
Hz posi-

tion noise and use the measured trap frequency and damping rate. The blue dashed
line is a Lorentzian profile with a 5 kHz FWHM corresponding to the unmodulated
laser profile, and the red dashed line is a Gausian fit to the simulated datapoints.

Figure 6.9 shows the simulated ion-MCP signal using this formula, showing
qualitative agreement with the observed signals (figure 6.7).

The lineshape observed in spectroscopy is obtained simply by integrating
the time signal S(t,∆) over the probe time. For a 100 ms probe time these
lineshapes will be quite erratic because this probe time is comparable to the
oscillation time (∼ 40 ms). This results in frequency noise on the lineshape
which has a magnitude given by the Doppler shift for the mean velocity during
the excitation. This number can be found by taking the total distance travelled
divided by the probe time i.e. (∆x/T )/λ = (27 µm/100 ms)/1.557 ≈ 0.2 kHz.
Figure 6.10 shows a simulated spectroscopy line profile, which is qualitatively
similar to the observed signals and reproduces the 10 kHz linewidth.

In order to reproduce the observed velocity fluctuations a noise on the axial
trap position of 1 µm/

√
Hz is required which is small compared to the beam

waist of the trap laser. Because of the trap geometry involving refocussing
lenses any beam pointing noise on the incoming trap beam is to first-order
compensated by the returning beam. The most likely source for fluctuations
is therefore beam pointing noise unique to the returning beam. At the time of
writing it has not yet been verified that this noise is of the required magnitude.
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Chapter 7

Conclusions and Outlook

The main goal of the work presented in this thesis was to substantially improve
the previous measurement of the isotope shift on the 2 3S1 → 2 1S0 transition
in order to determine the nuclear charge radius difference. The improved mea-
surement of the 2 3S1 → 2 1S0 transition frequency in 4He reported in chapter 6
is an important step in the pursuit of this goal. The measured value disagrees
slightly with the value measured by van Rooij et al. [21], at a significance of
1.7σ, as shown in figure 7.1. As was mentioned in chapter 6, the discrepancy
may be caused by their estimate of the mean field shift which is slightly too
small compared to the figure found in this work.

The final step, an improved measurement of the 3He transition frequency,
is currently underway. For now, using the 3He measurement from van Rooij
et al., an updated value for the squared nuclear charge radius difference of
δr2 = 1.041(7) fm2 can be found (see figure 1.3 for a comparison with other
measurements and table 7.1 for details of the calculation). Despite a small shift

44 45 46 47 48 49
Transition frequency - 192510702100 (kHz)

2011

2018
Reng18

RvR11

Figure 7.1: Comparison of the two measurements of the 2 3S1 → 2 1S0 transition
frequency in 4He. RvR11 and Reng18 indicate, respectively, van Rooij et al. [21] and
this work (chapter 6).
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Table 7.1: Calculation of the squared nuclear charge radius difference. The calculation
is performed according to Pachucki et al. [31].

Term Value Ref.

+2 3S
F=3/2
1 → 2 1S

F=1/2
0 (3He) +192 504 914 426.4(1.5) kHz [21]

-2 3S1 → 2 1S0 (4He) -192 510 702 148.72(20) kHz Chap. 6

+2 3S
F=3/2
1 hyperfine splitting -2 246 567.056(5) kHz [85]

-2 3S → 2 1S (point nucleus) +8 034 065.91(19) kHz [31]
Total nuclear size shift -223.47(1.5) kHz
÷Proportionality constant ÷-214.66(2) kHz/fm2 [31]
δr2(3He− 4He) 1.041(7) fm2

in the direction of the result of Shiner [84], the improved accuracy means that
the discrepancy still stands at 2.6σ. The uncertainty on this updated value is
completely determined by the uncertainty on the 3He frequency however, and
if a new measurement can be performed with similar accuracy to what was
attained in 4He, the nuclear charge radius difference can be determined with
an accuracy better than 0.002 fm2.

Future work

If this measurement can indeed be realized, the experimental accuracy on
the isotope shift will not be far behind the current uncertainty of the theory
value. Recent theoretical work is already anticipating significant improvement
however, indicating that further improvements to the experimental accuracy
can advance the resolution on the nuclear charge radius still further. With the
experience gathered in this work a number of technical modifications can be
suggested that may yet yield substantially better experimental accuracy.

Since the most important systematic uncertainties found in chapter 6 can
still be reduced with more accurate measurements, improvements in the ob-
served linewidth should be considered the first line of attack. The Doppler
shift due to trap oscillations described in section 6.B should be investigated
further. If, as is suggested, these oscillations are indeed driven by fluctuations
in the axial trap position they may be compensated by actively stabilizing the
beam pointing of the trap laser beams. Reducing the laser linewidth further
is also of importance. As proposed by Notermans [87], this can be achieved
by actively compensating the phase noise introduced by the fiberlink between
the frequency-comb lab and the He∗ setup (and to a lesser extent the fiberlink
between the frequency comb and the ultrastable laser) and improving the lock
electronics. Finally, stabilizing the magnetic field in the science chamber of
the He∗ setup might make the experiment still less dependent on drifts of the
ambient magnetic field in the lab.
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As discussed in section 2.3, further improvement may be gained by employ-
ing an optical lattice at the magic wavelength. The extra confinement of the
lattice would strongly alter the density of states, allowing spectroscopy to be
done in the Lamb-Dicke regime. This would produce a sharp reduction in the
linewidth of the 3He∗ degenerate Fermi gas, but it would also allow measure-
ments in 4He at lower density, possibly in a thermal gas, to reduce the mean
field shift. The practical implementation of an optical lattice will be challeng-
ing however, because of the high intensity necessary to produce trap depths
exceeding the recoil energy (see section 2.3). Barring an extraordinary increase
in the available laser power, the only ways to produce the intensities required
would be to focus very tightly or to use a resonant build-up cavity.

With these technical modifications the experimental accuracy on the ab-
solute transition frequencies may be further improved. Considering the small
magnitude of various systematic effects estimated in section 6.A such a mea-
surement would mainly be limited by the stability of the Cs-clock (5× 10−14),
i.e. a factor 20 improvement over the result of chapter 6. This limitation is also
technical however, and may be overcome with a better clock or by measuring
the isotope shift directly instead of comparing absolute transition frequencies.
Ultimately there is no reason to suppose that with considerable effort the ab-
solute 2 3S1 → 2 1S0 transition frequency can not be measured to an accuracy
rivalling those of state-of-the-art optical lattice clocks.
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Summary

Named after ῾Ηλιος, the greek titan god of the sun, the helium atom has played
a pivotal role in the development of modern physics. As a two-electron atom,
the study of the electronic structure of helium has allowed physicists to gener-
alize the model of the well-understood one-electron system (i.e. the hydrogen
atom) to the rest of the periodic table. To this day, the most important ex-
perimental method to study atomic physics is spectroscopy, the precise mea-
surement of the frequencies corresponding to the wavelengths of light emitted
or absorbed by the object under study. For the helium atom, this light is
emitted at a number of discrete frequencies which are predicted to exceptional
precision by the theory of quantum electrodynamics (QED). QED is the best-
tested constituent of the standard model of physics, the consistent unification
of all forces of nature except gravity (which does not play a meaningful role
at the length scale of atoms). The non-intuitive quantum effects predicted by
this theory produce minute frequency shifts and by performing equally precise
measurements these effects can be experimentally verified.

Despite the enormous success of QED in explaining phenomena in atomic
physics and beyond, a recent problem found in the hydrogen atom may indicate
that it is not the full story. This problem arose when researchers sought to
measure the frequency shift of a spectral line in hydrogen due to the very small
yet finite size of its nucleus, i.e. the proton. Assuming that QED is correct this
would allow the size of the proton to be determined experimentally to very high
accuracy. These measurements were performed both in regular hydrogen and
also in a variant, muonic hydrogen, wherein the electron has been replaced by
an elementary particle called a muon. The muon is identical to the electron in
every way except for its mass which is 200 times higher. Because of this higher
mass, the muon orbits much closer to the nucleus so that the finite nuclear size
effect is amplified and easier to measure. Surprisingly, the size of the proton
as measured using muonic hydrogen was found to be about 4% smaller than
for regular hydrogen at a high statistical significance. This finding has since
become known as “The proton size puzzle” and, provided no error was made
in the execution and interpretation of these measurements, is evidence of a
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hitherto unknown interaction between fundamental particles indicating that
the standard model is incomplete.

Ultracold metastable helium

Hoping to gain more insight into this problem, researchers have also shifted
their attention to muonic helium. The primary motivation for the work in this
thesis is to contribute to this line of research by providing a very accurate ref-
erence measurement in regular helium to compare the results in muonic helium
to. Performing spectroscopy on helium in the ground state is technically very
difficult due to the required wavelengths which are in the extreme ultravio-
let region of the electromagnetic spectrum. Instead spectroscopy is performed
on the metastable 2 3S1 state. Even though this state is very highly excited
(its internal energy is 19.82 eV, enough to ionize any other atom except neon)
and will therefore eventually decay into the ground state, it is very long-lived
(8000 seconds) and has a transition to the 2 1S0 state at the near infrared
wavelength of 1557 nm. This transition is sensitive to the nuclear finite size
and is very narrow (in technical terms, it has a very high quality factor of
2.5× 1013) which allows for very accurate measurements.

A precision measurement of the helium nucleus can then be performed by
very accurately measuring the difference of this transition frequency between
helium atoms which have a nucleus containing two protons and two neutrons
(4He, the vast majority of all helium found on earth) and those with a nu-
cleus containing two protons and a single neutron (3He, roughly one atom
for every 100,000 4He atoms found on earth). A downside however is that
the transition breaks two electric dipole selection rules so that we speak of a
doubly-forbidden transition. While forbidden in this case does not mean im-
possible, the transition is more than a quadrillion (1015) times weaker than
the normal dipole-allowed transitions that are typically observed in the helium
spectrum.

In order to be able to drive this extremely weak transition more easily, the
helium gas is cooled down to less than one-millionth of a degree above absolute
zero (-273.15◦C) using laser cooling techniques. At such low temperatures the
thermodynamic behaviour of the gas is driven by quantum statistics which
depend strongly on a fundamental binary property of the particles that make
up the gas; a particle can either be a boson (integer spin) or a fermion (half-
integer spin). In chapter 3 the difference in quantum statistics depending on
this property is observed to lead to a dramatic difference in the absorption
lineshape found for 4He (a boson), and 3He (a fermion). These lineshapes
are in good agreement with existing theoretical models when the effects of the
so-called ac-Stark shift (see next section) are taken into account.
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A magic wavelength optical dipole trap

To keep the atoms at extremely low temperature they must remain isolated
from the environment in some sort of trap that does not heat the atoms up again
too quickly. The type of trap used in this work is called an optical dipole trap
and it consists of an intense focused laser beam that produces an energy shift
of the atoms known as the ac-Stark shift. When the wavelength of this laser
is properly chosen the shift is strongly negative so that the laser beam forms a
potential well and the atoms experience a pulling force when they move out of
the center of the laser beam. In the previously most accurate measurement of
the 2 3S1 → 2 1S0 transition frequency the optical dipole trap was an important
source of experimental uncertainty. Although the atoms in the 2 3S1 state
experienced a strong negative energy shift, this shift was strongly positive for
the excited 2 1S0 state, producing a large systematic frequency shift which had
to be corrected for.

Most of the work described in this thesis has been to implement a so-called
magic wavelength trap which is a remedy to exactly this problem. The sign and
magnitude of the ac-Stark shift depend on the polarizability of an atomic state
and for certain wavelengths (known as magic wavelengths) the polarizabilities
of two states are exactly the same. In an optical dipole trap at that wavelength
both states experience exactly the same potential irrespective of the intensity or
spatial profile of the laserlight. For the 2 3S1 and 2 1S0 states the wavelength
dependent polarizabilities are calculated in chapter 4 allowing a number of
magic wavelengths to be identified. The most promising of these is found in
the ultraviolet part of the electromagnetic spectrum at 319.815 nm for 4He.
In order to generate an optical dipole trap at this wavelength a powerful laser
system was built which is the subject of chapter 5.

With this new laser system as well as a number of other improvements,
a new measurement was performed of the 2 3S → 2 1S0 transition in 4He
which is discussed in chapter 6. Besides the transition frequency, this measure-
ment allowed a very accurate determination of the magic wavelength which
is in excellent agreement with the value calculated in chapter 4 as well as a
more accurate calculation performed by another group since then. The theory
developed in chapter 3 was used to model the energy shift caused by the inter-
action between the 2 3S1 and 2 1S0 atoms which allowed the determination of
the scattering length charazterizing low-temperature collisions between these
states. Finally, the transition frequency measurement was improved by almost
a factor ten, corresponding to a relative accuracy of 1.0 × 10−12, the highest
accuracy to which any optical transition in the helium atom has ever been mea-
sured up to now. If the distance of the moon to the earth were to be measured
at the same accuracy the measurement error would be approximately equal to
the thickness of the cover of this thesis.
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Samenvatting

Het helium atoom, vernoemd naar ῾Ηλιος, de zonnegod uit de Griekse mytho-
logie, heeft een cruciale rol gespeeld in de ontwikkeling van de moderne natu-
urkunde. Met zijn twee elektronen leidde de ontrafeling van de structuur van
het helium atoom tot het begrip hoe de theorie van het één-elektron systeem
(d.w.z. het waterstof atoom) gegeneraliseerd kon worden naar de rest van
het periodiek systeem. Nog altijd is de spectroscopie, het nauwkeurig meten
van de frequenties die overeenkomen met de golflengtes van licht die worden
uitgezonden of geabsorbeerd door een object, de belangrijkste experimentele
methode in de atoomfysica. In het geval van het helium atoom wordt dit
licht enkel bij een aantal specifieke frequenties uitgezonden welke nauwkeurig
voorspeld worden door de kwantumelektrodynamica (QED, van het Engelse
quantum electrodynamics). De QED is het best geteste onderdeel van het
standaardmodel van de natuurkunde, de consistente vereniging van alle bek-
ende natuurkrachten behalve de zwaartekracht (welke geen rol van betekenis
speelt op de lengteschaal van atomen). Door deze frequenties met eenzelfde
hoge nauwkeurigheid te meten kunnen de zeer niet-intüıtieve kwantumeffecten
die deze theorie voorspelt experimenteel worden bevestigd.

Hoewel de QED uitzonderlijk succesvol is geweest in het verklaren van
fenomenen uit de atoomfysica en daarbuiten is er recent een probleem ontstaan
in de spectroscopie van het waterstofatoom dat mogelijk niet volledig binnen
de QED begrepen kan worden. Dit probleem ontstond toen onderzoekers de
frequentieverschuiving van een spectraallijn in waterstof probeerden te meten
die veroorzaakt wordt door de zeer geringe doch eindige grootte van de atoomk-
ern oftewel het proton. Vanuit de veronderstelling dat QED volledig juist is
zou deze grootte daarmee experimenteel met zeer hoge nauwkeurigheid bepaald
kunnen worden. Deze metingen zijn uitgevoerd in normaal waterstof maar ook
in een variant daarvan, muonisch waterstof, waarvan het elektron vervangen
is door een elementair deeltje genaamd het muon. Het muon is identiek aan
het elektron in elk opzicht met uitzondering van de rustmassa welke 200 maal
groter is. Vanwege deze hogere massa beschrijft het muon een veel kleinere
baan rondom de atoomkern wat de frequentieverschuiving door de eindige

149



Samenvatting

kerngrootte uitvergroot en daardoor makkelijker te meten maakt. Tegen alle
verwachtingen in bleek de grootte van het proton bepaald in muonisch water-
stof met hoge statistische significantie ongeveer 4% kleiner te zijn dan dezelfde
waarde bepaald in normaal waterstof. Deze vondst staat bekend als de “pro-
tonstraalpuzzel” en, gegeven dat er geen fout is gemaakt bij de interpretatie of
uitvoering van deze experimenten, vormt bewijs van een tot dusver onbekende
wisselwerking tussen elementaire deeltjes wat aangeeft dat het standaardmodel
incompleet is.

Ultrakoud metastabiel helium

In de hoop meer grip op dit probleem te krijgen hebben onderzoekers hun
aandacht sindsdien ook naar het heliumatoom verlegd. De voornaamste mo-
tivatie voor het werk in dit proefschrift is om aan deze onderzoekslijn bij te
dragen door een zeer nauwkeurige meting in het normale heliumatoom uit
te voeren zodat deze vergeleken kan worden met muonisch helium. Spectro-
scopie van helium in de grondtoestand is technisch niet eenvoudig is vanwege de
vereiste golflengten welke in het extreem ultraviolette deel van het elektromag-
netisch liggen. In plaats daarvan wordt er gewerkt met de metastabiele 2 3S1

toestand. Hoewel deze toestand met een interne energie van 19.82 eV bijzonder
hoog aangeslagen is en daarom uiteindelijk terug naar de grondtoestand zal ver-
vallen, is de natuurlijke levensduur uitzonderlijk lang (8000 seconden) en kan
vanuit deze toestand een overgang gemaakt worden naar de 2 1S0 toestand met
een golflengte in het nabije infrarood van 1557 nm. Deze overgang is gevoelig
voor het effect van de eindige kernstraal en heeft een zeer hoge kwaliteitsfactor
(2.5× 1013) waardoor zeer nauwkeurige metingen gedaan kunnen worden.

Een precisiemeting van de heliumkern kan uitgevoerd worden door het ver-
schil in deze overgangsfrequentie te meten tussen heliumatomen met een kern
bestaande uit twee protonen en twee neutronen (4He, waaruit vrijwel al het
aardse helium bestaat) en atomen met een kern bestaande uit twee protonen
en slechts één neutron (3He, waarvan op aarde ruwweg één voor elke 100,000
4He atomen gevonden wordt). Een nadeel van deze overgang is echter dat twee
selectieregels voor elektrische dipool overgangen gebroken worden waardoor we
over een dubbel-verboden overgang spreken. Hoewel verboden in dit geval niet
gelijk staat aan onmogelijk is de overgang meer dan een biljard (1015) maal
zwakker dan normale dipool-toegestane overgangen die typisch in het helium-
spectrum gevonden worden.

Om deze extreem zwakke overgang iets gemakkelijker te kunnen maken
wordt het heliumgas tot minder dan één miljoenste graad boven het absolute
nulpunt (-273.15◦ C) afgekoeld met behulp van laserkoeltechnieken. Bij zulke
lage temperaturen wordt het thermodynamisch gedrag van het gas bepaald
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door de kwantumstatistiek welke sterk afhangt van een fundamentele binaire
eigenschap van de deeltjes waar het gas uit bestaat; een deeltje kan ofwel een
boson zijn (de zogenaamde spin van het deeltje is een geheel getal), danwel
een fermion (spin van het deeltje is de helft van een oneven getal). In hoofd-
stuk 3 wordt het grote verschil beschreven dat deze eigenschap veroorzaakt
voor de kwantumstatistiek waardoor de vorm van de absorptielijn voor 4He
(een boson) radicaal anders is dan voor 3He (een fermion). De geobserveerde
lijnprofielen kunnen goed verklaard worden met bestaande theoretische mod-
ellen wanneer het effect van de zogenaamde dynamische Starkverschuiving (zie
volgende paragraaf) op de juiste manier wordt meegenomen

Een optische dipoolval bij een magische golflengte

Om de atomen langere tijd op zeer lage temperatuur te houden is het nodig
ze goed te isoleren van de veel warmere omgeving door middel van een “val”
die niet teveel opwarming veroorzaakt. Het type val dat in dit werk gebruikt
wordt heet een “optische dipoolval” en bestaat uit een intense gefocusseerde
laserbundel welke een energieverschuiving bij de atomen verzoorzaakt die bek-
end staat als de dynamische Starkverschuiving. Bij een goed gekozen golflengte
van de laser is deze verschuiving sterk negatief waardoor de laserbundel een
potentiaalput vormt en de atomen een aantrekkende kracht ondergaan wan-
neer ze zich van de optische as van de laserbundel af bewegen. In de voorheen
meest nauwkeurige meting van de 2 3S1 → 2 1S0 overgangsfrequentie was de ge-
bruikte optische dipool val een belangrijke bron van experimentele onzekerheid.
Hoewel de atomen in de 2 3S1 toestand een sterke negatieve energieverschuiv-
ing voelden was deze juist sterk positief voor de aangeslagen 2 1S0 toestand
waardoor een grote systematische frequentieverschuiving ontstond waarvoor
gecorrigeerd moest worden.

Het grootste deel van het werk beschreven in dit proefschrift is de im-
plementatie van een zogenaamde magische golflengte val waarmee getracht
wordt dit probleem op te lossen. Het teken en de grootte van de dynamische
Starkverschuiving hangen af van de polarizeerbaarheid van een toestand en voor
bepaalde golflengtes van licht (de zogeheten magische golflengtes) kunnen de
polarizeerbaarheden van twee verschillende toestanden exact aan elkaar gelijk
zijn zodat beide toestanden in een optische dipoolval bij deze golflengte gevan-
gen kunnen worden in exact dezelfde potentiaal ongeacht de intensiteit of het
ruimtelijk profiel van de laserbundel. Berekeningen van de polarizeerbaarhe-
den van de 2 3S1 en 2 1S0 toestanden staan beschreven in hoofdstuk 4. Op
basis van deze berekeningen worden een aantal magische golflengten gevonden
waarvan de meest bruikbare gevonden wordt bij 319.815 nm voor 4He, in het
ultraviolette deel van het elektromagnetisch spectrum. Om bij deze golflengte
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een optische dipoolval te creëren is een krachtige laser gebouwd welke het on-
derwerp van hoofdstuk 5 vormt.

Met deze nieuwe laseropstelling, alsmede een aantal andere verbeteringen,
is een nieuwe meting uitgevoerd van de 2 3S → 2 1S0 overgang in 4He, hetgeen
beschreven staat in hoofdstuk 6. Naast de overgangsfrequentie leidde deze
meting tot een zeer nauwkeurige bepaling van de magische golflengte welke
in uitstekende overeenstemming is met de berekeningen in hoofdstuk 4 maar
ook met meer nauwkeurige berekeningen die sindsdien door anderen gedaan
zijn. De theorie van de absorptielijnvorm die ontwikkeld is in hoofdstuk 3 is
gebruikt om de wisselwerking tussen de 2 3S1 en 2 1S0 atomen te beschri-
jven waardoor de zogeheten verstrooiingslengte, die botsingen tussen deze toe-
standen bij lage temperatuur beschrijft, bepaald kon worden. Ten slotte is de
meting van de overgangsfrequentie met bijna een factor tien verbeterd tot een
relatieve nauwkeurigheid van 10−12, tot nog toe de meest nauwkeurige optische
frequentiemeting in het heliumatoom. Wanneer de afstand van de aarde tot
de maan met dezelfde nauwkeurigheid zou worden gemeten zou de meetfout
overeenkomen met de dikte van de kaft van dit proefschrift.
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Dit proefschrift had niet to stand kunnen komen zonder de medewerking, bij-
dragen, hulp en steun uit een brede kring om mij heen. Gegeven dat het
onbegonnen werk is om aan iedereen recht te doen wil ik een aantal mensen
met name bedanken.

Allereerst zou ik elke promovendus een begeleider toewensen die zo voor je
klaar staat als mijn begeleider Wim V dat voor mij heeft gedaan. Zijn deur
stond altijd voor me open voor een gesprek over natuurkunde, of het nou direct
met het experiment te maken had of niet. Uit de archiefkasten op zijn kantoor
bleek altijd nog wel een interessant achtergrondartikeltje te komen of er was nog
wel een mailtje van Drake of Pachucki dat zeer van pas kwam bij het schrijven
van mijn proefschrift. Ook toen het nodig was om persoonlijke zaken prioriteit
te geven heb ik mij daarin altijd zeer gesteund gevoeld. Dank daarvoor.

Lange tijd heeft Remy samen met mij op de metastabiel helium BEC op-
stelling gestaan. Ondanks ons gevoel voor humor is deze samenwerking zeer
productief geweest getuige de mooie verzameling artikelen waarvan wij beiden
auteur zijn. Ik zal altijd met net zo veel plezier terugdenken aan onze weten-
schappelijke discussies als aan onze minder wetenschappelijke gesprekken onder
het genot van een manke monnik.

Toen Remy naar Californië vertrok stond ik enige tijd alleen op de op-
stelling maar al gauw kreeg ik versterking van Yuri. Ik ben ervan onder de
indruk hoe snel hij zich het experiment eigen heeft weten te maken waardoor
hij uiteindelijk de laatste metingen van mij over heeft kunnen nemen. Rafaël
joined the team while I was already writing but nevertheless proved instrumen-
tal in understanding the final systematic effects. Ook Maarten leverde tijdens
zijn sabbatical een bijdrage aan de frequentiemeting. Niet alleen vanwege zijn
uitgebreide kennis en ervaring maar ook omdat dankzij zijn PR-inspanningen
onze meting tot in Nieuw-Zeeland de kranten heeft gehaald.

Als je nog eens wat op wil steken van je promotieonderzoek is het geen
slecht idee eens met Kjeld door het frequentiekamlab te lopen. Ook hem wil
ik bedanken, niet alleen heeft hij zijn frequentiekam en ultrastabiele laser ter
beschikking gesteld, hij heeft ook mijn analyses en manuscripten van scherpe
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kritieken en commentaar voorzien. Wanneer je Kjeld er eenmaal van hebt kun-
nen overtuigen dat je meting goed in elkaar zit heb je geen refereecommentaar
meer te vrezen.

During a crucial period of the final measurement campaign it was necessary
to share the comb with Sayan and Matthias of the HD+ experiment, Cunfeng
and Joël of the H2 experiment, and Frank of the NICE-OHMS experiment.
Despite having to share we were all able to use the comb effectively by syn-
chronizing our measurements and cleverly choosing comb rep rates. The data
taken during this period have led to no less than three high-profile publications.
I believe we can all be extremely proud of this achievement which is in no small
part thanks to our strong ability to cooperate.

Ook de andere leden van de metastabiel helium groep mogen uiteraard niet
ontbreken. Toen ik begon als promovendus begon Ruud als masterstudent
en bleef daarna ook aan als promovendus. Derhalve was Ruud een constante
factor tijdens mijn promotietraject en een hele aimabele en collegiale factor
bovendien. Wanneer het op laserkoelen en koude atomen aankwam kon je van
niemand in het lab meer leren dan van Steven. Zijn overstap naar het KNMI
is een groot verlies voor de atoomfysica geweest. I very much enjoyed my
conversations with Hari and Adonis, as well as the excellent indian lunches
Hari used to bring to work.

Wanneer er in de aml-groep iets gemaakt moet worden is de technicus Rob
altijd de eerste en belangrijkste verdedigingslinie. Dat de opstelling ondanks
een aantal stroomuitvallen, lekkages en van ouderdom gesneuvelde apparatuur
goed is blijven werken valt grotendeels op zijn conto te schrijven. Ook de
mensen van de mechanische en elektronische werkplaats hebben bijgedragen
aan het goed (blijven) functioneren van de opstelling. In het bijzonder wil ik
Tim Kortekaas noemen voor zijn hulp bij de transfer-lock opstelling.

Ik heb mij ruim vier jaar lang zeer thuis gevoeld in de aml-groep onder
leiding van mijn copromotor Wim U. Met name uit gesprekken met Edcel,
Jeroen, die er genoegen in leek te scheppen obscure systematische effecten te
verzinnen en te vragen of we daar al aan hadden gedacht, Tjeerd, Matthijs,
Stefan en Chantal heb ik veel op kunnen steken. Daarnaast was er ook veel
gezelligheid tijdens kerstborrels en barbeques, potjes schaak, rondjes schaatsen,
spare-ribs eten, of gewoon borrelen met de leden van de groep. Deze prettige
sfeer is te danken aan Aernout, Allan, Anne, Charlène, Itan, Jurriaan, Laura,
Luca, Marina, Mario, Nicoletta, Rob, Robert, Vasco, en vele anderen.

Naast de collega’s aan de VU wil ik ook een aantal collega’s van andere
universiteiten noemen. Arthur, Alex, Alexander, Atreju, Bas, Benny, Daniël,
Chris, Elwin, Erik, François, Flavio, Frank, Jacco, Julian, Lydia, Maarten,
Maurits, Nivedya, Olivier, Roeland, Sean, Qiang en natuurlijk Jelmer, die ik
eeuwig teleurgesteld heb met mijn vertrek naar de Dark Side.
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vader en moeder die altijd voor me klaar stonden, Andrea met wie ik al bijna
tien jaar lief en leed gedeeld heb en die mij blijft inspireren het beste in mijzelf
naar boven te halen, en ten slotte Elian die mij zelfs op mijn donkerste dagen
nog kan laten glimlachen. Ik kijk ook heel erg uit naar de avonturen die we
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Precision spectroscopy of light atomic systems allows the sizes of nuclei to be 

probed with high accuracy. Surprisingly, different experiments of this type in the 

hydrogen atom have yielded conflicting results, a problem that has since 

become known as the proton radius puzzle.

The work described in this thesis seeks to probe the size of the helium nucleus 

instead, using helium atoms in the metastable state. To achieve this goal, small 

atomic ensembles are laser cooled to less than a microkelvin above absolute 

zero and trapped in the focus of an intense laser beam. By carefully tuning the 

wavelength of the trapping laser to a so-called magic wavelength, the 

distorting influence of the trap laser on the spectroscopy measurement can be 

canceled. By performing ab initio calculations of the atomic polarizability, a 

promising magic wavelength is found in the ultraviolet part of the spectrum and 

a powerful laser system is constructed to operate a trap at this wavelength. 

Using this trap, the frequency of radiation required to drive an exceedingly 

weak transition is measured with extreme accuracy. Thus the single most 

accurate spectroscopic measurement in the helium atom to date is realized, 

probing the size of its nucleus at sub-attometer precision.

A magic wavelength optical dipole trap
for high-precision spectroscopy
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