
VRIJE UNIVERSITEIT

High-Precision Spectroscopy of

Forbidden Transitions in Ultracold
4He and 3He

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. V. Subramaniam
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de Faculteit der Exacte Wetenschappen
op woensdag 15 maart 2017 om 15.45 uur

in de aula van de universiteit,
De Boelelaan 1105

door

Remy Paulus Margaretha Joseph Willem Notermans
geboren te Venray



promotor: prof.dr. W.M.G. Ubachs
copromotor: dr. W. Vassen



voor mijn familie en vrienden

Science is an ongoing process. It never ends. There is no single ul-

timate truth to be achieved, after which all the scientists can retire.

Carl Sagan, Cosmos



This thesis was approved by the members of the reviewing committee:

Prof. Dr. K.S.E. Eikema (Vrije Universiteit Amsterdam)
Prof. Dr. K.H.K.J. Jungmann (University of Groningen)
Prof. Dr. C. Salomon (Ecole Normale Supérieure, Paris)
Dr. R.J.C. Spreeuw (University of Amsterdam)
Dr. Ir. E.J.D. Vredenbregt (Eindhoven University of Technology)

This work is part of the research programme of the Foundation for Fun-
damental Research on Matter (FOM), which is part of the Netherlands
Organisation for Scientific Research (NWO), and was carried out at the
LaserLaB of the Vrije Universiteit Amsterdam.

The cover shows the observed absorption line shapes of a narrow optical
transition in a degenerate Fermi gas (top) and a Bose-Einstein conden-
sate (bottom) of metastable helium. The large difference is caused by
the fundamental difference in quantum statistics between fermions and
bosons.

Printed by Ipskamp Drukkers B.V., Enschede
ISBN: 978-94-028-0502-4



Contents

1 Introduction 1

1.1 Prologue 1
1.2 A revolution in physics 2
1.3 Pushing QED to the limit 4
1.4 Determining fundamental constants 8
1.5 Physics with ultracold He∗ 14
1.6 Outline of this thesis 17

2 Experimental setup 21

2.1 Slowing, trapping, and cooling He∗ 23
2.2 Detecting atoms 38
2.3 Optical setup 51
2.4 Digital control of the experiment 56
2.5 A new spectroscopy laser system 58

3 High-precision spectroscopy of the 2 3S1 → 2 1P1

transition 77

3.1 Introduction 77
3.2 Experimental setup 80
3.3 Transition line shape 82
3.4 Systematic effects 90
3.5 Results 98
3.6 Conclusion 102

4 Line shapes of the 2 3S → 2 1S transition for quantum

degenerate bosons and fermions 105

4.1 Introduction 106
4.2 Experimental setup 107
4.3 Comparing the line shape of a BEC to a degenerate Fermi

gas 108

v



Contents

4.4 Bragg-like scattering in an optical lattice 111
4.5 Determining the 2 3S − 2 1S s-wave scattering length 115
4.6 Conclusion 116
4.A Appendix: BEC line shape model 117
4.B Appendix: Estimating the Rabi frequency 125
4.C Appendix: An optical lattice 139
4.D Appendix: Extracting the s-wave scattering length 148

5 Towards a new measurement of the 2 3S → 2 1S transition159

5.1 Introduction 159
5.2 Magic wavelengths for the 2 3S → 2 1S transition in helium160
5.3 Ramsey-type Zeeman spectroscopy in He∗ 178
5.4 Spectroscopy in the 4He∗ mJ = 0 state 190
5.5 Prospects for 3He∗ 197
5.A Appendix: Collisions between two 4He∗ mJ = 0 atoms 199
5.B Appendix: Trap loss calculations 202

Bibliography 205

List of Publications 235

Summary 237

Samenvatting 241

Dankwoord 245

vi



CHAPTER 1
Introduction

1.1 Prologue

Science is in perpetual motion, and changes in our fundamental under-
standing of the workings of the physical universe are inevitable as we are
presented with new evidence through observations. Of all the methods
an experimental physicist has in his toolbox, spectroscopy is the most
accurate tool available to observe the universe. Applied to a suitable test
object, whose measurable quantities can be calculated to high precision,
physical theories can be tested to extreme limits within the confines of
a (relatively small-scale) laboratory setup.

The test object in this thesis is the helium atom, which is a three-
body system consisting of a nucleus and two electrons. This makes it
simple enough that high precision calculations can be performed for this
system, yet it contains sufficient complexity to be challenging on both
the theoretical and experimental front. My work in this thesis focuses on
high-precision spectroscopy in the helium atom, and in this introduction
I provide an overview of the many different facets of fundamental physics
where the helium atom plays an important role. But first I will discuss
the essential role that spectroscopy played in the ‘quantum-revolution’
of the 20th century, and how it still does to this date.
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1. Introduction

1.2 A revolution in physics

A little over a century ago there was general consensus that mankind’s
understanding of physics was nearly complete. With the grand suc-
cesses of Maxwell’s laws of electromagnetism, Newton’s laws of gravity
and motion, and the framework of thermodynamics, there were few gaps
to be filled to complete our view of the workings of the universe. This
is immortalized by Lord Kelvin’s - the worlds’ foremost natural philoso-
pher at the time - speech in 1900 in which he states that physics is
understood apart from two ‘clouds’ [1]. The first cloud was caused by
the famous experiment by Michelson and Morley which seemed to dis-
prove the ‘luminiferous ether’ theory as no translational variation in
the speed of light could be observed. The second cloud was related to
the Maxwell-Boltzmann theory of equipartition of energy, which could
not explain the specific heat properties of matter based on a continuum
distribution of energy states.

Within five years, four papers were published by Albert Einstein to
address these clouds and they sparked a revolution [2–5]. In the next
decades our understanding of the physical world would transform from
a deterministic view to the exciting yet astonishing world of quantum
and relativistic mechanics, and even relativistic quantum mechanics.
This revolution is now associated with names like Bethe, Bohr, Born,
de Broglie, Dirac, Ehrenfest, Fermi, Feynman, Heisenberg, Lamb, Pauli,
Planck, Schrödinger, and Sommerfeld, and I am definitely doing many
other physicists wrong by reducing the contributions to this single list.
Some of these names will reappear multiple times in this thesis.

The initial test model for the theoretical developments was the hydrogen
atom. This is understandable from a theoretical point of view, as the
two-body system (one electron and one proton) allowed exact analyt-
ical solutions of the electronic level energies. As the energy difference
between energy levels could be measured using spectroscopy, the early
success of quantum mechanics was the explanation of the hydrogen spec-
trum using the model proposed by Bohr and the resulting derivation of
the empirical Rydberg constant in terms of fundamental constants [6].
This paved the road for spectroscopy as the main experimental force be-
hind further refinement and development of the theory. Although very
successful, there already were some problems with the theory proposed
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1.2. A revolution in physics

by Bohr as it could not explain the presence of so-called ‘doublet’ lines
that had been observed in hydrogen spectra already in 1887 [7]. There
soon appeared an explanation by Sommerfeld by introducing elliptical
Keplerian orbitals for the electrons [8], but the real breakthrough was
made by Dirac, who proposed a relativistic quantum mechanical de-
scription of the electron [9]. In this model the observed fine structure
in the hydrogen energy levels could be explained by spin-orbit coupling,
and the degenerate 2S and 2P levels in hydrogen would actually be split
into the 2 2S1/2, 2 2P1/2, and 2 2P3/2 levels where only the 2 2S1/2 and
2 2P1/2 levels would remain degenerate.
Within 30 years since the speech by Lord Kelvin, our understanding
of physics was completely revolutionized both in the realm of the ex-
tremely small and the extremely fast. And yet even the model proposed
by Dirac would soon appear incomplete due to advances in the spectro-
scopic techniques. In 1947 Lamb and Retherford finished an experiment
from which they concluded that the hydrogen 2 2S1/2 and 2 2P1/2 lev-
els were not degenerate but actually split by 0.033 cm−1 (∼ 1 GHz)
[10, 11]. The explanation of this so-called ‘Lamb shift’, given by Bethe
[12], required a new mathematical framework where quantum mechanics
and electrodynamics were incorporated into a single operating model:
quantum electrodynamics (QED).
As if quantum mechanics was not weird enough, QED tells us that the
vacuum is not empty. Given sufficiently short time, particles can ‘pop
up’ in a vacuum and disappear a short time later without violating any
conservation laws. However, these so-called ‘virtual’ particles can still
interact with other particles, and lead to shifts in the electronic level
energies of atoms. The observation of the Lamb shift accelerated the
development of QED as laid out by Tomonaga, Schwinger, and Feyn-
mann. One of the earliest overviews of the theory - authored by Dyson -
would be published a mere two years after the observation of the Lamb
shift [13]. By this time the expected value for any observable parameter
could be calculated in QED theory as a series expansion of contributing
processes as function of powers of the fine structure constant α, where
each higher order involves more complex processes. As there is no a
priori reason to accept that the series expansion converges [14], higher-
order terms can still significantly contribute and require evaluation and
continuous comparison with increasingly accurate measurements.
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1. Introduction

Apart from the Lamb shift, another puzzling discrepancy in the 1940’s
was the observation that the magnetic moment of an electron was differ-
ent from the expected value [15–17]. Within a few years this deviation
was shown to be in agreement with new experiments and fourth-order
QED calculations [18, 19]. Together with the explanation of the Lamb
shift, the validity of QED was established and continued to provide
agreement between theory and experiment for decades to come. By
2012, 65 years after the first results, QED calculations up to tenth order
contributions (which involves 12 672 different QED processes (Feynman
diagrams) for this order alone) can predict the anomalous magnetic mo-
ment with over 9-digit precision [20]. Even more staggering is the fact
that this value is in good agreement with experiment [21]. There are very
few theories in physics that have survived so many orders of magnitude
improvement in experimental accuracy and are still able to correctly
predict the outcome.

1.3 Pushing QED to the limit

Spectroscopy has been an important experimental tool to help develop
the rapidly changing and expanding world of quantum and relativis-
tic mechanics and finally quantum electrodynamics. The robustness of
QED also gives rise to a curiosity; how far can we go before the theory
will break down? And will we encounter new physics?
In a quest for pushing QED to its limit to answer these questions, spec-
troscopic techniques have advanced to the point where experimental
results can be much more accurate than the QED predictions, simply
because the input parameters of the theory (i.e. fundamental constants)
are known with insufficient accuracy. We are now in an interesting
regime where we might want to reverse the former question: if QED is
correct and our experiments are correct, what could we learn about the
fundamental constants? I will discuss both scientific lines of investiga-
tion here, and focus on applications with helium.

Direct test of QED

Apart from hydrogen as a testing ground for the development of quan-
tum mechanics and QED, the helium atom quickly gained interest as
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1.3. Pushing QED to the limit

well. Exact solutions are unavailable as the atom is a three-body sys-
tem, and perturbative approaches are required. As soon as in the early
1950’s the ionization energies of the ground (1 1S0) and first excited
(2 3S1) states of helium were investigated both experimentally and the-
oretically (see, e.g. Refs. [22–24]). For light atomic systems such as
the hydrogen or helium atom, the relativistic and QED effects can be
calculated as small perturbations of the nonrelativistic eigenenergies of
the atomic system and expressed as an expansion series in powers of the
fine structure constant α as [25, 26]

E(α) =
∑

i

meα
iE(i), (1.1)

where me is the electron mass. E(i) can again be expanded as a power
series in terms of the electron-to-nucleus mass ratio me/M

E(i) = E(i)
∞ + E(i)

M + E(i)
M2 + . . . (1.2)

The series expansion looks straightforward, but each term involves its
own effective operator including nonanalytic terms. For neutral helium
the perturbations can nowadays be calculated to 6th order [26, 27] with
very recent progress to 7th order [28], at which the low-lying energy
levels (with principal quantum number n = 1, 2) can be calculated with
accuracies ranging from 36 MHz for n = 1 to ∼ 1 MHz for n = 2 [26].

The QED contributions are largest for these low-lying states, and de-
crease for states with increasing n and angular momentum L. As the
higher-lying state energies can be calculated with much better precision
than the low-lying states, they can be used as ‘anchors’ for testing the
accuracy of the QED calculations of the low-lying states by measuring
transition frequencies between low-lying and high-lying states. An ex-
ample is the 3 3D1 state, which is known to 20 kHz accuracy and used
to determine the ionization energy of the 2 3S1 state to 60 kHz accu-
racy [30, 32], much better than the theoretical accuracy of 2.6 MHz [26].
There is a large body of work involving many measured transitions to
test the theory, of which Refs. [29, 31–44] represent the contributions
of the last 25 years. In parallel the calculations improved significantly
after a breakthrough in the variational calculation techniques by Drake
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1. Introduction

State Experiment [MHz] Exp.-Th. [MHz] Ref.

1 1S0 5 945 204 212 ± 6 38 ± 36 [29, 30]
2 1S0 960 332 040.71 ± 0.06 2.7 ± 1.9 [31]
2 3S1 1 152 842 742.97± 0.06 1.5 ± 2.6 [30, 32]
2 1P1 814 709 147.9 ± 0.2 1.5 ± 0.4 [33]

814 709 148.1 ± 0.3 1.7 ± 0.5 [30, 34]
814 709 148.5 ± 0.5 2.0 ± 0.7 [35]

2 3P 876 106 247.21 ± 0.06 1.2 ± 0.9 [36]

Table 1.1 – The most accurate experimental values of the ionization
energies of the n = 1, 2 levels in 4He. The ionization energies in italics
are determined by combining measurements with accurate calculations
of higher states [30], and the other ionization energies are determined
using the 2 3S1 state as an anchor and combining measured transition
frequencies (which are also shown in Figure 1.1). The experimental
results are compared to the most accurate QED calculations available
[26]. The 2 3P centroid energy is defined as 1

9 [E(2 3P0) + 3E(2 3P1) +
5E(2 3P2)].

in 1987 [45, 46], which allowed the nonrelativistic eigenvalues to be cal-
culated to virtually any numerical accuracy. The theoretical develop-
ments in the calculation of relativistic and QED effects, in particular
by Pachucki, would result in a more than tenfold improvement in the
accuracy in the next decades [26–28, 30, 47–57].

As there has been no general overview of theory and experiment of the
low-lying levels in literature since 2008 [57], the current most accurate
experimental determinations of the ionization energies of the n = 1, 2
states in 4He are listed in Table 1.1 and compared to theory, and Figure
1.1 shows the measured transitions on which these energies are based.
For the determination of the ground state energy of helium a comprehen-
sive historic overview is given in Ref. [58], and the most accurate deter-
mination to date is based on a direct measurement of the 1 1S0 − 5 1P1

transition at 51.5 nm [29] combined with theory [30]. The resulting
6 MHz accuracy in the experiment is much better than the most accu-
rate calculation to date (36 MHz accuracy) [26], and both results are in
agreement. For the 2 3S1 ionization energy the most accurate determi-

6



1.3. Pushing QED to the limit

0

20

21

22

23

24

E [eV]

1S 1P 1D 3S 3P 3D

(1s)2

1s2s

1s2s

1s2p

1s3s
1s3s

1s3p 1s3p1s3d 1s3d

Singlet states

(para-helium)

Triplet states

(ortho-helium)

He+

1s2p

1s4p

1s5p

51.5 nm
668 nm

2058 nm
887 nm

1557 nm
1083 nm

2 x 762 nm

Figure 1.1 – Low-lying energy levels in 4He that are used to test QED.
The lines indicate the transitions and their respective wavelengths used
to determine the ionization energies (see Table 1.1) experimentally.

nation is based on the measurement of the 2 3S1 − 3 3D1 two-photon
transition [32] combined with theory for the 3 3D1 state [30] to 60 kHz
accuracy. The most precise calculation with an accuracy of 2.6 MHz [26]
is in agreement with this result. The 2 3S1 state is of special interest as
it has a lifetime of 7.8× 103 s [59] and is used as a long-lived metastable
state (generally denoted as He∗) from which optical spectroscopy can be
performed at wavelengths which are much easier to generate than the
short wavelengths required for ground-state spectroscopy (see Figure
1.1). The He∗ state plays the central role in this thesis.

Until 2011 the determination of the ionization energies solely depended
on the measurements in the separate triplet or singlet Rydberg series.
The measurement of the 2 3S1−2 1S0 and 2 3S1−2 1P1 intercombination
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1. Introduction

lines in our group [31, 35] opened the path for direct comparison of
ionization energies between the different series, and a direct link between
the accurate 2 3S1 ionization energy and the 2 1S0 and 2 1P1 states
[31, 33, 35]. This network of transitions, as shown in Figure 1.1, provides
a self-consistent set of measurements to test QED. As can be seen in
Table 1.1, the largest discrepancy (∼ 3σ) between theory and experiment
is presently in the 2 1P1 state which will be further discussed in Chapter
3.

1.4 Determining fundamental constants

The advances in the theory in the last decades are big, and the exper-
imental accuracies have improved as well. Significant theoretical im-
provements are now required in order to test QED in the helium atom
further. As we currently find general agreement between theory and
experiment, one can wonder if we cannot use the experimental values to
extract information about the fundamental parameters that are at the
base of the theory.

This approach has been used in other systems. For example, the earlier
mentioned anomalous magnetic moment of the electron presents a test-
ing ground where both QED and experiment reach such high precision
and agreement that the fine structure constant can be determined with
2.5 × 10−10 relative accuracy [20, 21]. Helium can be used for similar
tests, which will be discussed below.

High-precision determinations of fundamental constants allow an ad-
ditional test of fundamental physics: are such fundamental constants
actually constant in time? As there is no physical model explaining the
origin of these constants, there is no reason to assume that they do not
portray any time-dependent behavior. Such variations could be related
to the deep workings of the Universe, as proposed by Dirac [60, 61], but
at the very least such variations could point towards new physics. High-
precision spectroscopy is a great tool for testing such effects as there
are optical transitions in atoms and molecules available that are very
sensitive to variations in the fine structure constant α or the proton-
to-electron mass ratio mp/me [62, 63]. These variations can be tested
with high frequency precision in the laboratory with e.g. atomic clocks
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1.4. Determining fundamental constants

[64, 65] or compared to astrophysical data which provides a long look-
back time to observe a temporal variation in mp/me [66, 67], or α [68],
or possibly even observing a spatial variation in α [69–72]. Alternatively,
agreement between theory and experiment can also provide constraints
on any possible extensions to the Standard Model [73].

Fine structure constant

In helium the long-standing testing ground for the fine structure con-
stant is the fine structure splitting of the 2 3P0,1,2 states as suggested
in 1964 [74]. Although the theoretical developments are more compli-
cated in helium than they would be in hydrogen, the lifetimes of the 3P
states in helium are over two orders of magnitude longer than for the 2P
states in hydrogen and therefore allow for more accurate experimental
determinations.

For almost 50 years spectroscopic measurements have been ongoing to
determine the fine structure splitting with currently (sub-)kHz accu-
racy (e.g. Refs. [75–78] and see Ref. [79] for an overview) using var-
ious techniques such as atomic beam optical spectroscopy, microwave
spectroscopy with separated oscillatory fields, and saturated absorption
spectroscopy. The fine structure splitting is determined with relative
uncertainties in the range 10−7 − 10−8 [79], and combined with theory
can give a value of the fine structure constant with < 3× 10−8 accuracy
[80, 81]. However, the individual experimental results and theory are not
accurate enough to provide a single value and are therefore not yet used
for determining a competitive value of the fine structure constant [82].
The scattering of the individual experimental results could be related to
quantum-interference effects of far off-resonant states, which can slightly
change the line shape of the observed transition. Correcting for this ef-
fect leads to better agreement between the fine structure results [79],
indicating that future experiments which take this effect into account
could reach < 10−8 precision in the spectroscopy and as a result ∼ 10−9

precision in the fine structure constant determination. At this level the
helium experiments become competitive with the electron anomalous
magnetic moment experiments [20, 21] to determine the fine structure
constant. The above experiments all rely on accurate QED calculations

9



1. Introduction

of the energy levels, and therefore an experimental determination of the
fine structure constant is never independent from theory.
A QED-independent determination of the fine structure constant is pos-
sible using atom interferometry. Already in the original work by Som-
merfeld [8] the fine structure constant is written as

α2 =
2R∞
c

h

me
, (1.3)

where R∞ is the Rydberg constant, c the speed of light, h Planck’s
constant, and me the mass of the electron. This definition did not
change even in the relativistic quantum mechanical definition of Dirac
[9]. For an atom with mass M , we can rewrite this relationship as

α2 =
2R∞
c

M

mu

mu

me

h

M
, (1.4)

where M/mu and me/mu are the atom and electron mass in atomic mass
units, respectively. Using atom interferometry the atom recoil velocity
vrec (vrec = ~k/M , which is proportional to h/M) can be measured and
allows a QED-independent determination of α. The Rydberg constant
is known with 5.9 × 10−12 precision [82] and me/mu was recently de-
termined (again using high-precision spectroscopy combined with QED
[83]) to 3 × 10−11 relative precision [82]. The accuracy of the factor
M/mu depends on the atomic species used. Current interferometry ex-
periments have been performed with rubidium or caesium [84–87], of
which M/mu is known with 8 × 10−11 and 7 × 10−11 relative accuracy,
respectively [88].
The most accurate determination to date, using rubidium, determines
the ratio h/M with 1.3 × 10−9 precision [85] and therefore α with
6.6×10−10 precision. This provides an important (nearly) QED theory-
independent check with the electron anomalous magnetic moment mea-
surements (and both results are in agreement). Helium is an interesting
candidate for these measurements as the atomic mass M/mu is known
with better precision (1.6 × 10−11 [88]) than rubidium or caesium and
therefore provides ‘more room at the bottom’ [89, 90]. Furthermore, due
to the very low second order Zeeman shift in the 2 3S1 (mJ = 0) state
(see Chapter 5) the magnetic field sensitivity (one of the limiting factors
in atom interferometry experiments) is much less.

10



1.4. Determining fundamental constants

Size of the helium nucleus

Generally calculations ignore the size of the nucleus of an atom as its
volume is 1015 times smaller than the volumetric extent of the wave-
function of the electron. This can be a good approximation but the
nucleus, even for the smallest atom, has a finite size and the electron
wavefunction will have a finite overlap with the ‘inside’ of the nucleus.
Outside of the nucleus the interaction potential between an electron
and the nucleus is governed by Coulomb’s law, but inside of the nucleus
there can be any sort of charge distribution leading to an energy shift to
the eigenenergy of the electronic state which is usually called the ‘finite
nuclear size effect’.

In the state-of-the-art calculations of level energies for the hydrogen
atom (e.g. Ref. [91]) the leading uncertainty in the results is given
by the uncertainty in the known size of the hydrogen nucleus (i.e. the
proton). If high-precision spectroscopy surpasses the accuracy of the
theory, a determination of the size of the proton is possible, and this
is exactly what was done up to 2009 [92]. By combining the results of
multiple optical transitions that were measured in hydrogen, the Ry-
dberg constant (determining the energy scale of the system) could be
determined and the charge radius of the proton could be determined as
the remaining variable. Combined with electron-proton scattering data
the proton charge radius was determined with 0.78% accuracy [93].

The finite nuclear size effect is proportional to the spatial overlap of
the electron wavefunction and the nucleus. As the spatial extent of the
wavefunction scales with m−3

e , substitution of the electron by a muon
(mµ/me ≈ 207 [82]) will increase the finite nuclear size effect by a factor
8×106 and would be much easier to measure in muonic hydrogen. Once
the measurement results were published in 2010 there was a big prob-
lem: the proton size determined from muonic hydrogen spectroscopy
was 5σ smaller than the accepted value [94], and this discrepancy grew
to 7σ after a second transition was measured in muonic hydrogen [95].
Recently a similar (7.5σ) discrepancy was observed in muonic deuterium
measurements [96]. This ‘proton radius puzzle’ has drawn a lot of at-
tention, as a straightforward explanation of this discrepancy has been
ruled out and much effort has turned to further investigation (see e.g.
Refs. [97, 98]).
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1. Introduction

For atomic helium direct optical transition frequency metrology cannot
be used to determine the absolute size of the helium nucleus as the
calculations are not accurate enough to be sensitive to the finite nuclear
size. For instance, the finite nuclear size effect on the total ionization
energy for the 1 1S0, 2 1S0, and 2 3S1 states is 30 MHz, 2.0 MHz,
and 2.6 MHz respectively [26], but the total accuracy of the theoretical
ionization energies are 36 MHz, 1.9 MHz, and 2.6 MHz [26]. One solution
is to perform spectroscopy in He+ as this is a hydrogen-like system for
which theory is again accurate enough, but the wavelengths required
for optical spectroscopy are very short making such experiments very
challenging. Nonetheless work towards spectroscopy in He+ is ongoing
at MPQ Garching in Germany and at the LaserLaB in Amsterdam.
Spectroscopy experiments have been performed in µ4He+ and µ3He+

(a helium nucleus with a single muon), and the projected accuracy in
the nuclear charge radius determination is 3 × 10−4 (0.5 attometer!)
[99, 100]. No absolute values are yet presented as the theory to calculate
the energy levels of such muonic ions is still under development, and
the uncertainties are dominated by nuclear polarizability contributions
[101, 102].
Although the absolute ionization energies of the low-lying neutral he-
lium states are known to ∼ MHz precision from theory (see Table 1.1),
the isotope shift of transitions can be calculated with sub-kHz precision
as the mass-independent QED terms largely cancel [103, 104]. This pro-
vides a nuclear charge radius difference between two isotopes which can
be compared to the aforementioned experiments with muonic helium
ions involving the same isotopes. There are currently three measure-
ments of 3He-4He isotope shifts that are accurate enough to be used
for nuclear charge radius difference determinations. The first two mea-
surements are done on the 2 3S1 − 2 3P0,1,2 transitions by Shiner and
coworkers [105] and by Cancio Pastor and coworkers [36, 44]. The third
measurement was done on the 2 3S1 − 2 1S0 transition in our group
by Van Rooij and coworkers [31, 106]. The results on the squared nu-
clear charge radius difference δr2 are shown in Figure 1.2, which also
shows the variation in the nuclear charge radius difference caused by
reevaluation of the theory [27, 28, 107].
The current accuracy in the nuclear charge radius difference determined
in our group is σδr2 = 0.011 fm2, or

√
σδr2 ≈ 5 am [27, 31]. This is
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Figure 1.2 – Squared 3He-4He nuclear charge radius difference δr2 based
on the experiments by Van Rooij et al. [31], Cancio Pastor et al. [44],
and Shiner et al. [105]. The red results are based on the isotope shift
theory in 2012 [44, 107], the blue results based on a reevaluation in 2015
[27]. The black results are based on a reevaluation of the isotope shift on
the 2 3S1 − 2 3P0,1,2 transition in 2016 [28]. For comparison scattering
experiment results are also shown [108].

an order of magnitude larger than the expected accuracy of the results
from the µ4He+ and µ3He+ results. In order to provide a competi-
tive accuracy in the nuclear charge radius difference the measurement of
the 2 3S1 − 2 1S0 transition frequency has to be significantly improved.
Important steps towards an improved measurement of this transition in-
volve narrowing and better understanding of the line shapes of trapped
quantum degenerate gases (the subject of Chapter 4) as well as better
control or elimination of systematic shifts on the transition frequencies
(Chapter 5). A new measurement can also shed more light on the dis-
crepancy between the nuclear charge radius difference results as shown
in Figure 1.2.

Nuclear charge radius measurements are also done in heavier (unstable)

13



1. Introduction

isotopes of helium (6He and 8He) to investigate the nuclear few-body
physics behind these so-called ‘halo’ nuclei [109]. As the nuclear charge
radii are determined relative to 4He, a better determination of the 4He
nuclear charge radius would also improve the comparison between theory
and experiment for these systems. An extensive recent overview of this
work, including the ‘proton radius puzzle’-related work in hydrogen and
helium, can be found in Ref. [110].

1.5 Physics with ultracold He∗

Up until now I have focused on using helium as a testing ground for
QED using spectroscopy i.e. as a testing ground for matter and ra-
diation. However, helium (and specifically helium in the metastable
2 3S1 state, He∗) is also a benchmark system for testing atomic physics
and quantum mechanics. Its simple electronic structure allows ab initio
calculations of the molecular potentials of He∗-He∗ collisions, and the
internal energy of 19.82 eV of He∗ atoms allows for single-atom detec-
tion on a microchannel plate (MCP) detector or a delay-line detector.
This opens the path for quantum optics experiments at a single-atom
level that is not easy to reach using the conventional ultracold gases
(generally alkali-metal or earth-alkaline atomic species).

Quantum atom optics experiments became feasible with the advent of
laser cooling of atoms in the 1980’s [111–114]. Once it was possible to
optically decelerate and even stop atoms, advances in magneto-optical
and magnetic trapping allowed clouds of atoms to be cooled to such low
temperatures [115] that new regimes of physics became accessible. Not
much later the first Bose-Einstein condensates were observed [116, 117]
followed by degenerate Fermi gases [118–120]. This opened a whole new
world of physics where many-body interactions can be investigated in
highly controlled environments [121] and atomic interactions can even
be tuned using Feshbach resonances [122].

Soon also Bose-Einstein condensation of 4He∗ was achieved at the Insti-
tute d’Optique [123] and at the ENS in Paris [124], and later at the VU
in Amsterdam [125], ANU in Canberra [126], and MIT in Cambridge
[127]. Recent years have seen additional helium BEC experiments at the
IQOQI institute at the university of Vienna [128], Institute d’Optique
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[129], and Amsterdam [130]. For the fermionic isotope 3He∗ only in Am-
sterdam quantum degeneracy was achieved [131]. Currently the groups
at the Institute d’Optique, VU, ANU, and Vienna are actively working
with ultracold He∗. An overview of the experimental techniques and
investigations with He∗ is given in Ref. [132].

Polarizabilities

The availability of very accurate ab initio transition frequencies and
oscillator strengths of helium (see, e.g. Ref. [56]) also allows ab ini-
tio calculation of the dc and ac polarizabilities of the 3He∗ and 4He∗

states without using advanced calculation techniques [133], although
such methods can be employed to achieve higher accuracy [134, 135]
to put a constraint on the oscillator strengths. We have calculated the
ac polarizabilities of 3He∗ and 4He∗ for a broad wavelength range (see
Chapter 5) in order to build a so-called ‘magic wavelength’ trap. A re-
cent measurement of a tune-out wavelength (wavelength at which the
ac polarizability is zero) of 4He∗ [136] is the first experimental test of
these calculations.

Collisional physics

There is extensive work done on the collisional physics involving He∗

atoms, both in theory [137–146] and experiment [131, 139, 147–156], as
the ab initio molecular potentials provide an excellent testing ground.
The large internal energy of the He∗ atoms allows for exothermal loss
channels through Penning ionization (He∗+He∗ → He++He+e−), which
can be studied in these collision experiments. A beautiful example is the
determination of the s-wave scattering length in the quintet potential of
two colliding He∗ atoms, which was calculated to be 143.0(5)a0 [146] and
measured as 142.0(1)a0 [152]. In this thesis (see Chapter 4) the formerly
unknown s-wave scattering length between a He∗ atom and 2 1S0 atom
is determined and found to be in agreement with ab initio calculations
[157]. Apart from He∗-He∗ collisions, investigations have expanded to
mixtures of He∗ with alkali-metal atoms, specifically He∗-Rb [158–161]
as the collisional physics now involves a very large mass ratio between
the collision partners.
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Atom correlations

With the availability of ultracold atoms and single-atom detection, He∗

is an interesting species for investigation of correlations between atoms.
Single-atom detection on a delay-line detector allows full 3D reconstruc-
tion of the momentum distribution of a cloud of atoms. Measurements
of the second-order correlation functions allowed the first observation
of ‘bunching’ of thermal bosons (also known as the Hanbury Brown-
Twiss effect) with massive particles and the disappearance of this effect
below the critical temperature of Bose-Einstein condensation [162]. A
fruitful collaboration between our group and the group at the Institute
d’Optique lead to the first experimental comparison of the Hanbury
Brown-Twiss effect for fermions and bosons (displaying antibunching
and bunching, respectively) [163]. In the following years fundamental
quantum optics theory was confirmed by measurement of higher-order
particle correlation functions up to sixth order [164, 165], showing that
experiments with massive particles can be very competitive with their
purely optical counterparts. Collective effects like superradiance could
also be observed by measuring the second-order correlation functions
[166, 167], and quantum depletion of a degenerate Bose gas could be
observed due to the excellent signal-to-noise ratio with which the mo-
mentum distribution of a cloud of He∗ can be detected [168].

Fundamental tests of quantum mechanics

He∗ is recently used as the test particle for two fundamental exper-
iments displaying quantum effects of massive bosonic particles which
were initially performed using (massless) photons. In the first experi-
ment pairs of indistinguishable atoms enter a Mach-Zehnder interferom-
eter [169], and if the atoms are truly indistinguishable they will both
simultaneously appear at one of either output ports, but never at both
ports simultaneously. This so-called Hong-Ou-Mandel effect is a result
of multi-particle interference over all possible paths in the interferome-
ter [170], and this is the first time that this effect is demonstrated for
entangled massive bosons.

In the second experiment a single-atom source of He∗ atoms [171] is used
to perform Wheeler’s delayed-choice experiment [172]. In this experi-
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ment a single atom is sent through a Mach-Zehnder interferometer, but
the decision to have an ‘open’ or ‘closed’ interferometer (i.e. whether or
not the final beamsplitter in the interferometer is employed) is chosen af-
ter the atom has entered the interferometer. In the ‘open’ configuration
the atom should appear at either port (which is particle-like behavior),
and in the ‘closed’ configuration both ports will display an interference
signal (wave-like behavior). It should perhaps appear strange and coun-
terintuitive that a decision at a later time could influence the a priori
behavior of a particle, but the experiment shows exactly these results in
either configuration. This demonstrates that the particle- or wave-like
behavior is governed by the quantum description of the whole measure-
ment and not by any (semi-)classical description where the experiment
can be described as a series of separate events.
These experiments using He∗ atoms show how the fundamental princi-
ples of quantum mechanics can now be tested with particles that have a
finite mass and which move much slower than photons. This is possible
because the experimental techniques - single-atom source, single-atom
detection - are available for He∗ atoms but not for many other atomic
species.

Entangling He∗ atoms

As He∗ atoms can be detected with single-atom resolution, they also lend
themselves for advanced quantum atom optics experiments involving en-
tangled particles. By colliding two Bose-Einstein condensates of He∗ a
four-wave mixing process takes place that creates atom pairs whose mo-
menta are entangled [173, 174]. The possibility of creating and detecting
entangled matter waves allows investigation of fundamental quantum
mechanics by observing ‘squeezing’ and violations of classical behavior
[175, 176]. These experiments are clearing the path for advanced tests
of quantum mechanics by performing Einstein-Podolsky-Rosen and Bell-
type experiments [128, 176].

1.6 Outline of this thesis

Helium truly is a workhorse for testing various fields of fundamental
physics as it forms a strong combined front with theoretical accuracy
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and experimental control. In Chapter 2 the experimental setup and
techniques used in this thesis are discussed, including a major upgrade
of the spectroscopy laser system for the measurement of the 2 3S1−2 1S0
transition.
As discussed in Section 1.3, QED theory can be directly tested by deter-
mining the ionization energy of a state using high-precision spectroscopy.
Within this framework, Chapter 3 reports on the first direct measure-
ment of the forbidden 2 3S1−2 1P1 transition from which the ionization
energy of the 2 1P1 state is determined. This provides a crucial test of
QED calculations for this state. Additionally the measurement allows
for the most accurate determination of the lifetime of the 2 1P1 state to
date.
The fundamental difference in quantum statistics between fermions and
bosons is investigated in Chapter 4, which presents the large differences
in line shapes when measuring the 2 3S1 − 2 1S0 transition in a degen-
erate Fermi gas of 3He∗ or a Bose-Einstein condensate of 4He∗ (which
has become possible with the new laser system). This large difference is
caused by the fact that fermions (3He∗) occupy a vastly different spatial
and momentum distribution than bosons (4He∗), and this measurement
therefore is a neat example of how the fundamentally different behavior
of bosons and fermions can be observed in optical spectroscopy. The
line shapes can be calculated from the theoretical description of the
behavior of the quantum degenerate gases, and are shown to be in ex-
cellent agreement with the observed line shapes. As the line shape of the
Bose-Einstein condensate is partially influenced by the unknown s-wave
scattering length of the He∗ atoms and the excited state (2 1S0) atoms,
a value is determined from the measurements for the first time and is
found to be in agreement with new calculations. Surprisingly, the spec-
trum of the Bose-Einstein condensate reveals a double peak structure,
which is explained by the presence of an optical lattice in the optical
dipole trap used to confine the atoms.
Finally Chapter 5 contains two major advances for a better measure-
ment of the isotope shift of the 2 3S1 − 2 1S0 transition frequency. In
the first part so-called ‘magic wavelengths’ are calculated for which a
new optical dipole trap would have a significantly reduced influence on
the measured transition frequency. In the second part a new method is
proposed for measuring the magnetic field-dependence of the transition
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frequency shift. The proposed method is based on a two-pulse measure-
ment scheme, known as a Ramsey measurement, and can be insensitive
to density-dependent shifts that play a significant role at the current
level of accuracy.
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CHAPTER 2
Experimental setup

The first experiments on laser deceleration, cooling, and trapping of
metastable helium atoms in our laboratory started a little over 25 years
ago. The current experimental setup originates from that period, and
has been under continuous development and improvement ever since.
The core vacuum system is the same as used by Rooijakkers [177] to
collimate [178], decelerate, and magneto-optically trap metastable he-
lium atoms [179]. Magneto-optically trapped clouds of over 109 atoms
were achieved by Tol and Herschbach [148] at the commonly used He∗

laser cooling wavelength of 1083 nm, and magneto-optical trapping at
the much shorter wavelength of 389 nm [180] or a two-colour (1083 nm
+ 389 nm) trap [181] was investigated by Koelemeij [182]. The imple-
mentation of a magnetic trap [183, 184] and forced evaporative cooling
enabled significant progress towards quantum degeneracy of 4He∗. With
an improved magnetic trap constructed by Tychkov [185] this culmi-
nated in the observation of Bose-Einstein condensation of metastable
helium [125].

At the same time progress was made by Stas and McNamara [186, 187]
towards cooling and trapping of fermionic 3He∗ [188]. Due to the excel-
lent collisional properties between the two isotopes, sympathetic cooling
of 3He∗ was possible using 4He∗ and a mixture of a degenerate Fermi
gas and a Bose-Einstein condensate of He∗ was achieved [131]. The
experimental setup had advanced to a point where atomic physics and
quantum physics could be investigated with some of the lightest atoms
that can be cooled to quantum degeneracy. It allowed for investigation
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of collisional properties between the isotopes [153, 154] in one of the few
systems where the ab initio molecular potentials are available.

But also fundamental quantum statistics could be investigated in this
experiment, and another major achievement was the fruitful collabo-
ration between the VU and colleagues from the Institute d’Optique in
Orsay. A delay-line detector from France was installed in the setup
in Amsterdam and used to measure the second order correlation func-
tion of an expanding cloud of ultracold 4He∗ or 3He∗. As the atoms
are either bosons or fermions, they display (anti)bunching due to the
(anti)symmetrization requirements on their wavefunctions. This can be
observed as an increase or decrease in the second order correlation func-
tion of the atoms which can be measured using the delay-line detector.
After a short but intense measurement campaign this so-called Hanbury
Brown-Twiss effect was for the first time shown in both massive bosons
and fermions [163, 189].

The experiment got its most recent major upgrade with the implementa-
tion of an optical dipole trap by Van Rooij [190]. The optical dipole trap
allowed new degrees of freedom to be addressed, as now not only the
mJ > 0 (mF > 0 for 3He∗) magnetic substates could be trapped but
all magnetic substates of 4He∗ and 3He∗ became available. This allowed
investigation of spin-dependent collisions and a search for possible Fes-
hbach resonances [156]. As the optical dipole trap became operational,
a new line of research was started by performing high-precision spec-
troscopy in He∗. The optical dipole trap allows for a high degree of
control over the atoms and accurate determination of the various sys-
tematic effects, which resulted in the measurement of the 2 3S − 2 1S
isotope shift between 4He∗ and 3He∗ from which the nuclear charge ra-
dius difference was determined with 1% accuracy [31].

Indeed the experimental setup has a distinguished service record, and
many changes have occurred in its many years of existence. The current
status of the experimental setup will be discussed in this chapter, and
any relevant changes with respect to the previous thesis [190] will be
further elaborated on.
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2.1. Slowing, trapping, and cooling He∗

2.1 Slowing, trapping, and cooling He∗

He∗ source

The design of the source has not changed since the origin of the project
in the early ’90s [177, 178]. A quartz tube with a tantalum needle
inside is fixed to a boron-nitride nozzle, which is mounted in a liquid
nitrogen-cooled copper ring. Behind this ring is a skimmer to collimate
the beam and allow for differential pumping. Helium gas flows into the
quartz tube from the back, and a dc voltage of -2.7 kV is maintained
over the tantalum needle and the skimmer to create a plasma discharge.
The plasma beam exits through the boron-nitride nozzle, where the
velocity of the beam is reduced by a factor of two through collisions
with the wall as it is kept at liquid nitrogen temperature. The discharge
is typically operated with helium flow and pressure such that the source
chamber pressure is 2 × 10−5 mbar and a discharge current of 7 mA is
sustained. Under these conditions the liquid nitrogen cooled beam has
a most probable velocity of 1100 m/s [177].

After long operation (several months), the quartz tube and tantalum
needle are coated with ablated material from the source itself (e.g. the
boron-nitride disc). If this is prolonged, the discharge will suffer from
sudden interruptions and yearly maintenance is therefore required. This
involves cleaning of the quartz tube and removal of deposited materials
on the tantalum needle and can be done within an hour of breaking
the vacuum, although it will take several hours of running the discharge
before it returns to nominal operation.

Recently the liquid nitrogen reservoir was refitted with better isolation
material and the typical refill time of the reservoir is now 1,5 hours
instead of 45-60 minutes.

Collimating and slowing He∗

The basis of the experimental setup is shown Figure 2.1. In order to
improve the flux of He∗ in the main chamber the expanding plasma
beam is collimated in two orthogonal directions using a curved-wavefront
technique [177]. This involves lightly focused collimation beams of which
the wavefront curvature is equal to the curvature of the trajectory of
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Figure 2.1 – A schematic overview of the vacuum system. A dc dis-
charge in the source chamber creates a beam of excited helium atoms,
which are cooled by a liquid-nitrogen temperature nozzle. The cooled
beam is collimated and deflected in a small angle in the collimation sec-
tion, where a knife-edge (not shown) blocks the non-He∗ state atoms.
When operating with 3He∗, the background gas from the source and col-
limation chambers is returned into the recycling system. Through the
Zeeman slower, the atoms enter the magneto-optical trap (MOT) in the
trap chamber. In the current system three large turbopumps (T) are
used, three small turbopumps (ST), a helium-proof scroll pump (Sc) and
several membrane pumps (M) to provide a low backing pressure. Figure
adapted from [190].

the cooled atoms. In this way the atoms remain resonant with the total
wavefront, such that continuous radiation pressure can be exerted on
the atom beam. A special feature in our setup is a slight imbalance
along the horizontal axis of collimation, which causes the beam of He∗

to be deflected in a small angle. As only He∗-state atoms are resonant
with the collimation light, this small deflection allows all other atoms
to be blocked by a knife-edge. In this way the background load on the
main chamber is minimized, which is advantageous for achieving a low
background pressure in the main chamber of 5 × 10−11 mbar.

When operating with the rare 3He∗ isotope, a recycling system con-
taining liquid-nitrogen cooled sodium zeolite molecular sieves is used to
recover 3He∗ atoms which do not pass the knife-edge into the Zeeman
slower. The recycling system was only connected to the source chamber,
but this has been changed to include both the source and collimation
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2.1. Slowing, trapping, and cooling He∗

chamber as shown in Figure 2.1. In this way the usage of 3He∗ has been
extended, without compromising the pump capacity of the source and
collimation chambers.

After the collimation section, the He∗ atoms enter the two meter long
Zeeman slower facing a counterpropagating circularly polarized laser
beam with detuning −250 MHz (∼ −154Γ) from the 2 3S1 − 2 3P2

cycling transition (see Section 2.3) such that the atoms always return
to the same magnetic substate. In the Zeeman slower the He∗ atoms
continuously absorb photons with a recoil momentum opposite to their
own forward momentum, and the atoms will slow down. As the atoms
slow down near the end of the Zeeman slower, the change in Doppler
shift ∆ωD = −~k ·~v is compensated by a spatially changing magnetic field
~B in the Zeeman slower ∆ωZS = µB| ~B|, where |~k| = 2π/λ is the wave
number of the laser beam and µB the Bohr magneton. This ensures that
the atoms remain resonant with the laser beam during the deceleration
to a final velocity of around 50 m/s, which is sufficiently slow to be
captured by the magneto-optical trap.

It is the Zeeman slower section which requires the discharge source to be
liquid-nitrogen cooled as the length of the Zeeman slower scales quadrat-
ically with the initial velocity of the atomic beam. Hence a factor of
two reduction in the initial velocity reduces the required Zeeman slower
length to ‘only’ 2 m. Second, if the polarization of the laser beam is
not perfectly circular the magnetic field in the Zeeman slower cannot
exceed 563 G, as there is a level crossing between magnetic sublevels
which would allow atoms to be pumped to a different state and there-
fore be lost from the Zeeman slower. Although this would not occur for
a perfectly circularly polarized laser beam, this limits the initial velocity
of the atomic beam to approximately 1130 m/s, just above the liquid
nitrogen-cooled atomic beam velocity of 1100 m/s.

Magneto-optical trapping of He∗

The decelerated atomic beam enters the main UHV chamber of the
setup, where the atoms are trapped in a magneto-optical trap (MOT).
Magneto-optical trapping is a well-established technique [113, 114], and
combines velocity-dependent laser cooling with spatially-dependent trap-
ping in a magnetic quadrupole potential. The spatial dependence is cre-
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ated by the quadrupole magnetic field; as the atoms move away from
the center they experience an increasing magnetic field (and Zeeman
shift) shifting them in resonance with a circularly polarized counter-
propagating laser beam. As the photon absorption increases, the atoms
are ‘pushed’ towards the center of the trap where the magnetic field is
smallest (| ~B| = 0 in the center of a simple quadrupole trap). In the cen-
ter of the trap, where the magnetic field is small, the atoms are cooled
by optical molasses.

This is a general description of most MOTs. There are additional com-
plications when working with metastable atoms, as they have a large
internal energy that can be released in a collision. This process is ex-
plained in the next section, and it limits the densities at which one can
operate the MOT as loss rates will become too large. Therefore the
MOT operates with three sets of retroreflected beams with a large top-
hat intensity profile beam diameter of 3 cm, a typical power of 3.5 mW
per beam, and a detuning of −35 MHz (∼ −22Γ) from the 2 3S1−2 3P2

transition. This is a relatively large detuning for MOTs, but it is nec-
essary to reduce the photo-assisted collision rate between 2 3S1 and
2 3P2 atoms, of which the two-body loss rate constant is on the or-
der of 10−7 cm−3/s [147, 151]. The applied magnetic field gradient is
∂B/∂z = 2 ∂B/∂ρ = 22 G/cm (corresponding to a MOT coil current of
32 A [185]). For these experimental settings we typically trap 3 × 108

atoms at a temperature of 0.56 mK and a peak density of ∼ 109 cm−3

with 4 seconds loading time of the MOT. Larger MOTs (with > 109

atoms at T ≈ 1 mK) were obtained in the past [148], but with the
lower temperature in the current configuration we find a better starting
condition for BEC production.

Penning ionization

This section is a small deviation from the description of the experi-
mental setup, as it is important to discuss the collisional properties of
metastable atoms as they have a direct consequence for the design of
the setup and the specific cooling and trapping processes.

At low temperatures collisions between two (or more) atoms are no
longer described by a hard-sphere collision model and a quantum me-
chanical approach is required. In the quantum mechanical picture the
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atoms approach each other in a Born-Oppenheimer molecular potential
with quantized angular momentum states l = 0, 1, 2, ... and the full solu-
tion of this collision is described as a wavefunction expanded in a series
of partial waves [186, 191]. The lowest energy collision, at l = 0 angular
momentum, is called an s-wave collision (l = 1 is p-wave, l = 2 is d-wave,
etc.). The contribution of the different partial waves decreases as the
temperature decreases, and for temperatures below 6.5 mK (10 mK for
3He∗ due to its lower mass) [153] only the s-wave collisions play a role.
In this so-called s-wave regime the collisions are characterized by a single
parameter: the s-wave scattering length a. At zero temperature the col-
lision cross-section σ reduces to σ = 4πa2 for identical bosons, which is
(perhaps surprisingly) very similar to the parametrization of the classical
hard-sphere collision model. The main difference is that the scattering
length is intimately linked to the exact Born-Oppenheimer potential of
the collision instead of the classical ‘size’ of the atoms.
For an s-wave collision of two He∗ atoms, the total electron spin per
atom (~s = 1 as the spins are parallel for the 2 3S1 state) can be added
to a total spin of the two atoms ~S = ~s1 + ~s2 = 0, 1, 2. These three
total spins are associated with the singlet 1Σ+

g , triplet 3Σ+
u , and quintet

5Σ+
g Born-Oppenheimer potentials respectively, depending on the total

spin projection mS . For instance, in a spin-polarized sample of 4He∗

atoms in the mJ = +1 state we have mS = 2 and the collision is
solely described by the quintet potential. For a collision between a
mJ = +1 and mJ = −1 atom we have mS = 0 and the collisions
happen in the singlet, triplet, and quintet potential. Note that the
triplet potential is associated with odd-parity (i.e. p-wave) collisions
and therefore negligible in the s-wave scattering regime.
The electrostatic interactions between the He∗ atoms allow a coupling of
the singlet and triplet potential to other states, thereby releasing a lot
of their internal energy (of 19.82 eV each). The two processes through
which this can happen are called Penning ionization (PI) and associative
ionization (AI):

He∗ + He∗ →
{

He + He+ + e− (PI)
He+2 + e− (AI)

PI and AI (commonly both are referred to as ‘Penning ionization’) have
both been studied extensively for He∗ in experiment [139, 148, 153,
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155, 156] and theory [137, 138, 141, 143], and they provide an inter-
esting path of understanding ultracold collisions involving exothermal
processes. Unfortunately both PI and AI lead to atom loss in a trapped
cloud, as the final states can no longer be laser-cooled or trapped. The
associated loss rate constant was determined to be ∼ 1 × 10−10 cm3/s
for an unpolarized gas of He∗ [148, 155]. Penning ionization therefore
severely limits the possibilities of cold atom experiments, and it is for
this reason that it was long considered impossible to cool metastable
atoms to even lower temperatures to achieve quantum degeneracy.

Collisions for spin-polarized atoms in the mJ = ±1 states occur in the
pure quintet potential, which is a special case as this potential does not
couple to the PI and AI decay channels which would require a (forbid-
den) spin-flip. Of course there are higher-order processes that occur such
as relaxation-induced Penning ionization and magnetic field-dependent
spin-relaxation [141, 156], but typically the two-body loss rate in the
quintet potential is ∼ 10−14 cm3/s, four orders of magnitude less than
PI and AI.

Apart from two-body collisions of He∗ atoms, photo-assisted collisions
also play a role in a MOT. The detuned light in the MOT couples
the 2 3S1 and 2 3P2 atoms to the molecular potentials for two He∗

atoms, of which the singlet and triplet potentials then allow Penning
ionization and the atoms are lost from the MOT [150]. The two-body
loss rate constant is on the order of 10−7 cm3/s [147, 151], three orders
of magnitude larger than the Penning ionization loss channel. At typical
peak densities of 109 cm−3 the lifetime of the cloud is ≪ 1 s and much
shorter than the one-body lifetime due to the background pressure of
the main chamber of tens of seconds. Fortunately this loss rate can be
suppressed by choosing a large detuning from the 2 3S1−2 3P2 transition,
at a cost of a higher MOT temperature. By choosing relatively large
MOT beam diameters, the large volume of the cloud still allows trapping
of an appreciable number of atoms at a lower density.

Magnetic trapping and evaporative cooling

Neutral atoms can have a magnetic moment which in the presence of a
magnetic field B leads to a potential energy U = µBgJmJB for 4He∗

and U = µBgFmFB for 3He∗, where µB = 1.4 MHz/Gauss is the Bohr
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magneton and gJ ≈ 2.002 and gF ≈ 1.335 the Landé factors for the
metastable states (F = 3/2 for 3He∗) [186]. An appropriate magnetic
field geometry can thus be used to trap atoms (in the mJ = +1 or
mF = +3/2,+1/2 states) without using light.
After loading the MOT, the atoms are transferred to the magnetic trap
(MT) so they can be cooled to quantum degeneracy. A spin-polarizing
beam is applied for 2 ms when switching from the MOT to the MT
configuration to pump the atoms to the magnetically trappablemJ = +1
state (mF = +3/2 for 3He∗). This has the advantage of increasing the
atom number in the MT (as the atoms are distributed over all magnetic
substates in the MOT), and the spin-polarized gas is much more stable
against Penning ionization as discussed in the previous section.
The MT cannot simply be a quadrupole magnetic field which has a zero
crossing of the magnetic field in its center. If the spin-polarized atoms
move through the center, the zero magnetic field would lead to depolar-
ization (as there is no well-defined quantization axis any more), and the
atoms would immediately be lost from the trap or even Penning ionize.
This loss of atoms - called Majorana loss [192–194] - is more likely to
happen to atoms that spend more time near the bottom of the trap.
As a result the colder atoms from the total distribution are lost faster
than the hotter ones effectively leading to heating of the cloud. Fur-
thermore, the Majorana heating rate scales inversely proportional with
mass, which does not help when working with helium. This is a serious
limitation for cooling atoms to lower temperatures, although solutions
have been achieved with quadrupole magnetic traps in combination with
optical dipole beams [130].
The Majorana loss issue is solved by using a Ioffe-Pritchard cloverleaf
trap, of which our currently used trap was designed and installed by
Tychkov [125]. This configuration provides a trapping potential with
a non-zero magnetic field in the center so atoms always experience a
quantization axis and Majorana losses are prevented. The cloverleaf
trap exists of six pairs of coils: two concentric pairs of pinch and com-
pensation coils, and four pairs of radial confinement coils (see [185] for
details on the design). The pinch and compensation coils are operated
in Helmholtz configuration in the MT, and the compensation coils are
used in anti-Helmholtz configuration for the MOT to create the required
quadrupole magnetic field.
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Once the atoms are transferred to the MT (with a loss of 25-40% in
the atom number, depending on the exact loading conditions) the tem-
perature has increased to ∼ 1 mK due to the optical pumping and the
increased density. Therefore a single, weak, red detuned beam is used
to Doppler cool the atoms for 2 seconds along the long axis of the trap.
Although this is done along a single axis (i.e. in 1D), the reabsorption
of red detuned photons within the cloud will lead to cooling in all direc-
tions of the cloud [125, 195]. Without much variation a temperature of
∼ 0.13 mK is typically reached (which is approximately three times the
Doppler limit temperature TDop, see Table 2.1 in Section 2.3). As this
process depends on the optical thickness of the cloud, it generally shows
a threshold-like behavior; it works properly over a broad range of atom
numbers, but as soon as the atom number is too low it simply will not
work any more. As a rule of thumb over 2 × 108 atoms are needed in
the MOT in order to have sufficient atoms for this so-called 1D Doppler
cooling.
After the 1D Doppler cooling step the MT is compressed by reducing the
current through the compensation coils. This lowers the magnetic field
in the trap center and increases the magnetic field curvature, thereby
increasing the density and collision rate of the atoms. At this stage
the atoms can be cooled to degeneracy by forced rf-induced evaporative
cooling. The rf induces cascaded transitions from the mJ = +1 states
to the untrappable mJ = 0,−1 states, and by slowly ramping from a
large rf frequency (50 MHz) to a low frequency (4.0 MHz) the hotter
atoms are expelled from the trap and the cloud rethermalizes to a lower
temperature. Using a ramp of 6 seconds we obtain a quantum degenerate
gas in the magnetic trap. After transfer to the optical dipole trap (see
next section) we are left with ∼ 106 atoms predominantly in a Bose-
Einstein condensate and a temperature of ∼ 0.2 µK of the thermal
fraction.
When working with 3He∗ this procedure cannot be used as the atoms
stop thermalizing once the temperature is below the p-wave barrier of
10 mK [153]. Fortunately there are s-wave collisions possible between
3He∗ and 4He∗ atoms with an s-wave scattering length of 27.18(45) a0
[131, 146], which allows for efficient sympathetic cooling. In practice
this means that a MOT of 3He∗ and 4He∗ is loaded and the whole
experimental procedure is performed as explained for 4He∗, resulting
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2.1. Slowing, trapping, and cooling He∗

in a thermalized quantum degenerate 3He∗-4He∗ mixture. A pure 3He∗

cloud in the MT can be achieved by using the rf-ramp to cut away the
4He∗ atoms1. In the dipole trap resonant imaging light is used to blast
the 4He∗ atoms away, and depending on the loading conditions over
106 3He∗ atoms can remain in the dipole trap at T ≈ 0.2 µK. In the
experiments described in Chapter 4 the 3He∗ loading process was not
fully optimized and we typically loaded ∼ 3× 105 atoms at T ≈ 0.2 µK.

Optical dipole trap

Magnetic trapping of neutral atoms was a giant leap forward in achiev-
ing quantum degenerate gases, but it did not allow for trapping of
field-insensitive or high-field seeking states (i.e. the mJ = 0,−1 and
mF = −1/2,−3/2 states). Furthermore, magnetic field gradients can
lead to unwanted systematic shifts in experiments during the measure-
ment itself or by transient fields when switching off the MT. This changed
with the advent of the optical dipole trap.

As optical dipole traps work with laser beams, they allow great spatial
and temporal flexibility [196] because the trapping no longer depends
on magnetic substates but on the wavelength and intensity of the laser
beams. Apart from various geometries, interference between different
laser beams can be used to engineer a periodic potential to investigate
ultracold atom physics in optical lattices [121, 197].

Basic physics of optical dipole traps

The basic operation of an optical dipole trap is based on the induced
oscillating electric dipole ~d(ω) of an atom placed in an oscillating elec-
tric field ~E(ω). The induced dipole and the electric field are related as
~d(ω) = α(ω) ~E(ω), where α(ω) is called the polarizability. The polariz-
ability generally is a complex number, as it depends on the oscillation
frequency ω of the field and on the relative phase of the oscillating dipole
with respect to the field. For a classical damped driven harmonic os-
cillator model with driving frequency ω, resonance frequency ω0 and

1This is possible because the Zeeman splitting for the rf transitions is 2.8 MHz/G
for 4He∗ and 1.9 MHz/G for 3He∗.
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damping rate Γ (also known as the linewidth), the polarizability is [196]

α(ω) = 6πǫ0c
3 Γ/ω2

0

ω2
0 − ω2 − iΓ(ω3/ω2

0)
. (2.1)

The time-averaged interaction energy is

Udip(~r) = −1

2
〈~d · ~E〉 = − 1

2ǫ0c
Re(α(ω))I(~r), (2.2)

with the intensity of the field defined as I(~r) = (ǫ0c/2) × 〈| ~E(ω,~r)|2〉.
The dipole potential and the off-resonant scattering rate for a two-level
system scale as [196]

Udip ∝
( Γ

∆

)I(~r)

ω3
0

, (2.3)

Γscatt ∝
( Γ

∆

)2 I(~r)

ω3
0

, (2.4)

where Γ/2π is the linewidth of the transition, and ∆ = ω − ω0 the
detuning from the resonance frequency. The polarizability needs to be
positive in order to have a trapping potential (Udip < 0 for α > 0)
at an intensity maximum, which holds for red detunings (ω < ω0).
Blue detuned light (ω > ω0) will create an antitrapping potential at an
intensity maximum, which can be used in more complex configurations
[196]. Furthermore, the scattering rate decreases faster with increasing
∆ than the dipole potential. This is the reason why trapping in far
off-resonant light fields is possible at all.

Although the basic principles are the same, an accurate description of
the polarizability of an atom requires a bit more detail as one needs to
take the polarization of the light into account and therefore the rela-
tive transition strengths involved. This is especially needed if there are
multiple optical transitions contributing to the polarizability. This is
explained in Chapter 5 for extended calculations [133] and just briefly
discussed here for the purpose of trapping He∗ atoms. Using the LS cou-
pling scheme, the expression for the polarizability of a 2 3S1 (mJ = +1)
state atom in a light field with polarization state q and angular frequency
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ω is

α(q, ω) = 6πǫ0c
3
∑

n′

∑

J ′

(2J ′ + 1)

(

1 1 J ′

−1 q m′
J

)2

× An′J ′

ω2
n′J ′(ω2

n′J ′ − ω2)
,

(2.5)

where we sum over all transitions 2 3S1 (mJ = +1) → n′ 3P0,1,2 for
each fine structure manifold, and the resonance frequency is ωn′J ′ with
Einstein A coefficient An′J ′ . The polarization state q = −1, 0,+1 of the
electric field determines if we have σ−, π, or σ+ transitions contributing,
and the relative weights of the transitions are given by the 3j symbol
between the big brackets.

The great advantage of working with helium is that ab initio transition
frequencies and Einstein coefficients are readily available for transitions
up to n = 10 [56]. We have used this data to calculate the polarizability
of 4He∗ and 3He∗ for a broad wavelength range in our search for magic
wavelength candidates (see Chapter 5). At the operating wavelength
of 1557.3 nm of our optical dipole trap and for linear polarized light
(q = 0) we find that the polarizability of 4He∗ is

α(λ = 1557.3 nm) = 604 a30 = 9.96 × 10−39 JV−2m2. (2.6)

In this far off-resonant regime (the nearest transition is 2 3S1 → 2 3PJ

at 1083 nm) the polarizability is the same for 3He∗, which means that
the isotopes experience the same optical dipole potential.

A single-beam optical dipole trap

The simplest case for optical trapping is a single focused laser beam.
The intensity profile of a TEM00 mode laser beam with total power P
propagating along the z-axis is

I(r, z) =
2P

πw2(z)
exp

(

− 2r2

w2(z)

)

, (2.7)

where r is the radial coordinate and the 1/e2 intensity profile radius
w(z) = w0

√

1 + (z/zR)2, where the minimum waist w0 is called the
beam waist and zR = πw2

0/λ the Rayleigh length. The peak intensity
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is defined as I0 = 2P/πw2
0. The dipole potential corresponding to this

intensity field can be calculated using Eq. 2.2, resulting in trap depth
U0 = αI0/2ǫ0c. To understand the basic properties of this trap, the
potential around the center of the trapping potential is expanded using
the harmonic approximation:

Udip ≈ −U0

[

1 − 2
( r

w0

)2
−
( z

zR

)2]

. (2.8)

The corresponding axial (longitudinal) and radial (transverse) trapping
frequencies are

ωz =

√

2U0

mz2R
, (2.9)

ωr =

√

4U0

mw2
0

, (2.10)

and the aspect ratio of the trap is ωr/ωz =
√

2πw0/λ ≈ 240 for a
beam waist of w0 = 85 µm and wavelength λ = 1557.3 nm as used in
our experiment. This large aspect ratio is no surprise as the Rayleigh
length zR ≈ 1.5 cm is large compared to the beam waist. A more ur-
gent problem is the fact that this Rayleigh length is comparable to the
distance (3.3 cm) between the windows of the vacuum chamber, and
trapped atoms will simply hit the windows if we trap them in a single
beam optical dipole trap. For magnetically trappable atoms this prob-
lem could be solved by applying a magnetic quadrupole field to provide
more confinement. This is shown to work for He∗ [130, 198], but it pro-
vides serious systematic shifts when doing high-precision spectroscopy.
Therefore a crossed-beam geometry was chosen to trap the atoms.

A crossed-beam optical dipole trap

The large aspect ratio of a single-beam optical dipole trap is reduced
by overlapping a refocused laser beam at an angle θ = 19◦ with the
original beam. A schematic view of this trap is shown in Figure 2.2.
The two laser beams have orthogonal linear polarizations in order to
minimize interference of the light fields which could create an optical
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HWP
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θ =19˚
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Figure 2.2 – Schematic view of the crossed-beam optical dipole trap with
respect to the orientation of the MOT coils (part of the Ioffe-Pritchard
trap). A f = 400 mm lens (‘L’) focuses the incoming beam in the
vacuum chamber, after which it is collimated and the polarization rotated
by 90◦ using a half-wave plate (‘HWP’) and a polarizing beam splitter
(‘PBS’) to prevent any interference effects that could lead to an optical
lattice. The beam is refocused at an angle θ = 19◦ with respect to the
first beam after which it is collected by a beam dump or a power meter.
The MCP detector is placed 17 cm below the center of the trap.

lattice. Defining the long axis of the potential as the z-axis and the
out-of-plane vertical axis as the x-axis, the trapping potential can now
be approximated as

Udip ≈ −U ′
0

[

1 − 2
( z

wz

)2
− 2
( y

wy

)2
− 2
( x

w0

)2]

, (2.11)
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where the trap depth U ′
0 = 2U0 because we have two beams2. The trap

waists are now defined as [196]

w2
z =

[(sin(θ/2)

w0

)2
+
(cos(θ/2)

2zR

)2]−1
≈
( w0

sin(θ/2)

)2
, (2.12)

w2
y =

[(cos(θ/2)

w0

)2
+
(sin(θ/2)

2zR

)2]−1
≈
( w0

cos(θ/2)

)2
. (2.13)

The final approximation is valid to four digits due to the large difference
between zR and w0. Using these approximations the harmonic trap
frequencies are

ωx =

√

4U ′
0

mw2
0

, (2.14)

ωy = ωx cos(θ/2), (2.15)

ωz = ωx sin(θ/2). (2.16)

The crossed-beam dipole potential still has radial symmetry as
ωy/ωx ≈ 0.95, but the axial-radial aspect ratio has now decreased from
the single-beam aspect ratio of 240 to ωy/ωz ≈ 6.0. Hence the crossed-
beam dipole trap provides much more spatial confinement than a single-
beam trap.

Loading atoms in the crossed-beam optical dipole trap

The center of the optical dipole trap should ideally be aligned to exactly
overlap with the center of the magnetic trap, such that the evapora-
tively cooled atoms transfer efficiently into the optical dipole trap. The
alignment of the optical dipole trap is optimized such that the transfer
efficiency of the number of atoms is optimal, but as a result the optical
dipole trap is slightly misaligned with respect to the magnetic trap cen-
ter. This is caused by transient magnetic field gradients which ‘push’
the atoms out of the center of the trap when switching off the magnetic
trap. This is also visible as a distortion in the time-of-flight signals,
but after a hold time of 500 ms in the optical dipole trap the cloud is

2In practice U ′

0 < 2U0 due to various reflection losses.
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thermalized properly again. When working with 4He∗ this is our start-
ing point for measurements, but when working with 3He∗ a 3He∗-4He∗

mixture is loaded in the optical dipole trap to make sure that the 3He∗

atoms are thermalized again. After thermalization the 4He∗ atoms are
blasted away with imaging light which is far off-resonant for the 3He∗

atoms.

The optical dipole trap has not changed much since the previous the-
sis [190], although some changes in its use have been implemented. In
the original spectroscopy scheme [31] the 2 W commercial fiber laser
system (NP Photonics Scorpio) had a dual function of supplying light
for the optical dipole trap and light for performing spectroscopy on the
2 3S− 2 1S transition and therefore the fiber laser frequency was locked
to the frequency comb. Since then we have acquired and implemented
a new spectroscopy laser system (see Section 2.5) and only use the free
running NP Photonics fiber laser system, properly detuned from reso-
nance, for the optical dipole trap. The He*Rb experiment - neighbors
in our laboratory - pick off a few mW of the laser light to seed their own
amplifier system for an optical dipole trap [130, 199].

To make the dipole trap power more versatile, a λ/2 waveplate was
mounted in a motorized rotation stage in combination with a polarizing
beam splitter to allow digital control over the optical dipole trap power.
As we recently noticed drifts in the optical dipole trap power of ∼ 15%
over the course of an hour, a slow digital feedback loop to the rotation
stage was implemented by digital acquisition of a photodiode signal and
digital computation of the correction to the rotation stage angle after
every measurement. As the transmission of the polarizing beam splitter
can be measured as function of the rotation stage angle, one can calcu-
late the local derivative of the power with respect to the angle ∂P/∂θ
and use it to estimate the angular correction ∆θ = ∆P/(∂P/∂θ) for a
measured differential power ∆P with respect to the setpoint. This lin-
earization assumes that the angular corrections are small, as is the slow
drift that is observed. Empirical optimization of the PI settings and the
time constant for integration provides a long term stability of ∼ 0.3%
of the signal3. With the drift in the optical dipole trap - and thereby

3Long term stability is defined here as the standard deviation σ of the dataset
divided by the average µ i.e. σ/µ, which is also known as the coefficient of variation.
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the varying ac Stark shift on the transition frequency - eliminated, in-
terpretation of the measured line shapes is much more straightforward.

In most experiments ∼ 240 mW is sent into the UHV chamber, which
adds to a combined power of both trapping beams4 of ∼ 390 mW. With
a beam waist of w0 = 85 µm a trap depth of U ′

0/kB ≈ 4.5 µK is estimated
with corresponding trap frequencies (ωx, ωy, ωz) = 2π×(359, 352, 59) Hz.
Trap frequencies of (ωrad, ωax) = 2π×(260, 38) Hz are typically obtained
from induced BEC trap oscillation measurements. The frequencies are
lower than expected due to uncertainties in the trap power estimates,
and due to imperfect alignment of the beams. However, the aspect ratio
of the trap is similar to what we estimate, and is reproducible over long
periods of time5. The trap frequencies are measured frequently during
measurement campaigns to have them for reference.

2.2 Detecting atoms

In our experiments the helium atoms are detected by absorption imag-
ing or by temporal flux detection (which are both destructive measure-
ments). Metastable helium allows for efficient detection on a microchan-
nel plate (MCP) detector due to the large internal energy of 19.82 eV,
and we obtain excellent signal-to-noise when measuring the time-of-flight
distribution. Unfortunately this method does not allow in-situ or time-
delayed observation of the atoms. Hence also absorption imaging is used
to observe the atoms.

MCP detection

If the magnetic trap or optical dipole trap is switched off, the atomic
cloud will expand due to its internal energy and momentum distribution
in the trap. The metastable atoms expand from the trap center and
hit an MCP detector (Hamamatsu F4655, surface radius of 7.25 mm),

4With a transmission T = 0.9 per window, the power in the trap Ptrap = P0(T +
T 3) ≈ 1.6P0, where P0 is the power of the first optical dipole trap beam sent into the
UHV chamber.

5Over the course of a few years the alignment of the optical dipole trap of course
has had quite some adjustments but we always obtain the same aspect ratio of the
trap (7) similar to the value of 6.6 determined by Van Rooij [190].
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which is located 17 cm below the trap (see Figure 2.2). The MCP
detector is shielded with a metallic grid connected to ground potential
to prevent attraction of electrons and ions. When a metastable atom
hits a channel on the MCP detector it releases an electron, which is
subsequently accelerated over the ∼ 2 kV potential to the back of the
detector. Through further collisions in the microchannels an avalanche
of electrons is created, and the resulting current can be measured at the
anode of the detector. In this way the flux of metastable atoms through
the surface of the detector can be measured as function of the time-of-
flight. The great advantage of an MCP detector is its large gain which
- in combination with a pulse discriminator - also allows for single atom
or ion detection. Such resolution is experimentally very challenging to
achieve with optical techniques.

If a trapped cloud has a size ∆x0 and momentum distribution ∆p, the
size of the expanding cloud after time-of-flight t is ∆x(t) = ∆x0 +
(∆p/m)t. Once the time-of-flight t ≫ m∆x0/∆p, the size of the cloud
can be effectively described by its momentum distribution and is there-
fore a clean diagnostic tool to determine the temperature of a cloud. As
it turns out, even for the coldest atoms in our experiment the time-of-
flight of t ≈ 180 ms is long enough to be in the regime where the flux of
the cloud is solely proportional to the momentum distribution, and this
is used to determine the temperature of the thermal atoms and chemical
potential of the BEC in a single shot. The advantage of measuring in
this regime is that the time-of-flight distributions can be calculated in a
straightforward manner and therefore provide analytical fit functions to
characterize the gas. A full calculation of the time-of-flight flux signals
can be found in Ref. [185], but an overview is given here of the different
functions used for the different temperature regimes and the bosonic or
fermionic nature of the atoms.

Thermal distribution

At high temperatures - meaning, temperatures that are significantly
larger than the critical or Fermi temperature of the gas - the momen-
tum distribution of the trapped atoms can be described by a classical
Maxwell-Boltzmann distribution independent of its quantum statistical
behavior. In this limit the time-dependent flux integrated over the sur-
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face area of the MCP detector is [185]

Φth(t) = Nth
g√

2πσ(t)

t2 + t20
2t

exp

(

− x20
2σ(t)2

)(

1 − exp

(

− r20
2σ(t)2

))

,

(2.17)

where Nth is the total atom number, g the gravitational acceleration,
σ(t) = t

√

kBT/m the ballistically expanding size of the cloud,
t0 =

√

2h/g the expected time of arrival of a free falling cloud, x0 = h−
gt2/2 and r0 = 7.25 mm the radius of the MCP detector surface. The
heigth h = 17 cm is the distance between the trap center and the MCP
detector. In this limit the only distinction between 3He∗ and 4He∗ is due
to the (relatively large) mass difference. The MCP signal cannot provide
an absolute numberNth by itself, and therefore has been calibrated [184].
However, for the experiments described here the absolute atom number
in the MOT is not relevant, and the MCP can be calibrated in different
ways when using a quantum degenerate gas (as will be shown in the next
sections). An example of the MCP signal as measured when releasing
the cloud from the MOT is shown in Figure 2.3.

Ideal Bose and Fermi gas

At ultracold temperatures where the chemical potential of the gas be-
comes non-negligible compared to the thermal energy of the gas (for
our experiments typically around T ≈ 1 µK), the difference between the
bosonic and fermionic nature of 4He∗ and 3He∗ starts playing a role. The
Bose-Einstein and Fermi-Dirac statistics need to be taken into account
and the ‘simple’ flux description for a thermal gas no longer holds. In
this regime the integrated flux for a Bose gas is [185]

ΦBose(t) =
Nth

g3(z)

g√
2πσ

t2 + t20
2t

×
[

g5/2

(

z exp

(

− x20
2σ2

))

− g5/2

(

z exp

(

− x20 + r20
2σ2

))]

, (2.18)

where the functions gn(ε) =
∑∞

k=1 ε
k/kn are called the Bose functions

or polylogarithm functions, and z = exp(µ/kBT ) the fugacity of the gas.
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Figure 2.3 – Time of flight signal on the MCP detector (gray) by releas-
ing atoms from the MOT. Initially the MCP detects background atoms
during the MOT loading stage. The loading stops at t = 0 s and af-
ter 50 ms the first atoms arrive at the MCP. The signal is fitted using
Φth(t) (Eq. 2.17, red line). From the fit we determine T = 0.54 mK and
Nth ≈ 3.2 × 108.

In the limit where z → 1 (kBT ≫ µ), this flux expression reduces to the
classical Maxwell-Boltzmann flux Eq. 2.17.
For the Fermi gas the integrated flux signal is almost the same as in
Eq. 2.18 apart from the substitution gn(ε) → −gn(−ε), resulting from
the change of a Bose-Einstein distribution to a Fermi-Dirac distribution.
Contrary to the Bose gas which has a phase transition at its critical
temperature, the Fermi gas has a smooth and continuous transition into
the quantum degenerate regime. In a harmonic oscillator trap with
radial and axial trap frequencies ωrad and ωax, geometric average trap
frequency ω̄ = (ω2

radωax)1/3, and containing N identical fermions, the
Fermi temperature TF is [200, 201]

kBTF = ~ω̄(6N)1/3. (2.19)

To illustrate, our typical trap frequencies ωrad = 2π × 260 Hz and
ωax = 2π× 40 Hz result in TF ≈ 1.2 µK for 106 atoms and TF ≈ 0.56 µK
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for 105 atoms. As we are able to cool about 105 − 106 3He∗ atoms
to T ≈ 0.2 µK it is clear that degenerate Fermi gases in the regime
T/TF ≈ 0.2 − 0.4 can be produced, which is definitely cold enough to
observe deviations in the time-of-flight distribution from the Maxwell-
Boltzmann distribution. Furthermore, in this regime the chemical po-
tential of the Fermi gas can be estimated using the Sommerfeld expan-
sion [200]

µ = kBTF

[

1 − π2

3

(

T

TF

)2]

, (2.20)

which implicitly depends on the total number of atoms as shown in
Eq. 2.19. By determining T and µ of the Fermi gas from the MCP
time-of-flight distribution and inverting Eqns. 2.19 and 2.20, one can
determine the total atom number N in the cloud. This approach pro-
vides a self-consistent cross-check with the calibration done using the
Bose-Einstein condensate, as used in Ref. [156] and explained in the
next section.

Bose-Einstein condensate

Whereas fermions gradually enter the quantum degenerate regime when
cooling down, bosons exhibit dramatic different behavior due to the
different quantum statistics. The occupancy of the lowest state increases
monotonously as a cloud of N trapped identical bosons cools down until
the occupation of the lowest state becomes equal to the sum over all
other states. This condition is parametrized by the critical temperature
Tc [202]

kBTc = 0.94~ω̄N1/3, (2.21)

where N = NBEC+Nth is the sum of the atoms in the Bose-Einstein con-
densate and the thermal fraction of the gas. Below the critical temper-
ature Tc the occupancy of the Bose-Einstein condensate in a harmonic
trap scales as [202]

NBEC

N
= 1 −

( T

Tc

)3
. (2.22)
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Combining Eqs. 2.21 and 2.22 using the same typical trap parameters
as for the Fermi gas and realizing that we produce Bose-Einstein con-
densates with ∼ 1 × 106 atoms in the condensed fraction, the critical
temperature is around Tc ≈ 0.6 − 0.8 µK. With a typical temperature
T ≈ 0.2 µK of the thermal fraction and using Eq. 2.22, this is in agree-
ment with the ratio of NBEC/N ≈ 0.97− 0.99 generally observed in the
optical dipole trap.

The wavefunction Ψ0(~r, t) of a Bose-Einstein condensate trapped in a
potential Vext(~r, t) is described by the Gross-Pitaevskii equation [202]

(

− ~
2∇2

2m
+ Vext(~r, t) + g̃|Ψ0(~r, t)|2

)

Ψ0(~r, t) = µΨ0(~r, t), (2.23)

where g̃ = 4π~2a/m is the coupling constant of the interaction term
determined by the the s-wave scattering length a between the atoms.
The limiting case where the kinetic energy of the Bose-Einstein conden-
sate can be neglected with respect to the interaction energy, is called
the Thomas-Fermi approximation. The validity of the Thomas-Fermi
approximation can be estimated by considering the Thomas-Fermi pa-
rameter NBEC(a/aho) [202] using the measured s-wave scattering length
a = 7.512(5) nm [152], the harmonic trap oscillator length defined
as aho =

√

~/mω̄ ≈ 7.5 µm, and NBEC ≈ 106. We estimate that
NBEC(a/aho) ≈ 103 ≫ 1, indicating that the Thomas-Fermi approxi-
mation is valid (and only starts to break down for a condensate with
NBEC ≈ 103).

In the Thomas-Fermi limit the solution of the Gross-Pitaevskii equation
simplifies to the wave function ΨTF(~r, t) =

√

nTF(~r, t), with

nTF(~r, t) =
1

g̃
[µ(t) − Vext(~r, t)], (2.24)

being the density distribution of the Bose-Einstein condensate in the
trap potential Vext(~r, t). For a harmonic potential the density distri-
bution is the well-known inverted parabola with spatial cutoff points
where the chemical potential is equal to the trap potential. Applying
the normalization condition for the total atom number NBEC gives the
Thomas-Fermi relation between the atom number and chemical poten-
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tial of the condensate

µ =
1

2

(

15aω̄3
~
2m1/2

)2/5
N

2/5
BEC. (2.25)

When a Bose-Einstein condensate is released from a trap the internal
(mean field) energy is converted in kinetic energy and determines the
momentum distribution of the cloud6. As the mean field energy is de-
termined by the density distribution, the momentum distribution of the
expanding cloud is described by a rescaled parabolic shape related to the
trapped density distribution of the condensate. If the total condensate
falls on the MCP detector surface, the flux is [185]

ΦBEC(t) = NBEC
15

16
g
t2 + t20

2t2

√

m

2µ
max

[

0, 1 − m

2µ

(

g
t2 − t20

2t

)2]2

.

(2.26)

In general the MCP detects a thermal fraction with a Bose-Einstein
condensate superposed, in which case a fit function Φ(t) = ΦBEC(t) +
ΦBose(t) is used to determine all parameters simultaneously. A typical
MCP signal measured with a Bose-Einstein condensate released from
the optical dipole trap is shown in Figure 2.4.

Only for the largest Bose-Einstein condensates that we can make, the
mean field energy would be large enough for the cloud to expand to
a larger size than the MCP surface, and this would lead to a small
correction of the chemical potential. As the chemical potential can be
related to the number of atoms in the condensate, Eq. 2.25 can be com-
bined with time-of-flight measurements of the Bose-Einstein condensate
to provide an absolute calibration of the MCP detector, as was done in
Ref. [156]. The advantage of this calibration is that the chemical po-
tential is related to the temporal width of the time-of-flight signal and
not to the absolute magnitude, thereby being less sensitive to saturation
effects of the MCP detector. This calibration is still used in the current
measurements, and is found to be in agreement with the alternative
calibration using the Fermi gas as discussed in the previous section.

6The momentum distribution of a trapped Bose-Einstein condensate therefore
looks quite different than the momentum distribution of a released condensate [203].
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Figure 2.4 – Time of flight signal on the MCP detector (gray) by re-
leasing a Bose-Einstein condensate from the optical dipole trap. The
signal is fitted using the bimodal distribution Φ(t) = ΦBEC(t) + ΦBose(t)
(Eqs. 2.18 and 2.26, red line). The individual time of flight signals
are shown for the BEC (black line) and the thermal fraction (black line,
dashed). The chemical potential of the BEC µ/kB ≈ 0.5 µK and the
temperature of the thermal fraction T ≈ 0.4 µK. The atom numbers are
NBEC ≈ 6 × 106 and Nth ≈ 1 × 105.

When measuring the time-of-flight signal of a cloud released from the
magnetic trap the residual magnetic fields can apply an additional force
on the atoms. This can alter the momentum distribution and this, in
combination with large condensates, is observed in Ref. [125]. The so-
called ‘pushing’ of the cloud by transient magnetic fields (which can also
play a role for the thermal flux signals from a MOT) can be parametrized
by substituting t→ t+∆t, where ∆t is a free fit parameter for the timing
offset. This problem is not present when releasing the condensate from
an optical dipole trap.
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Ion MCP detection

A second, unshielded, MCP detector is placed approximately 11 cm
above the trap center and off-centered to prevent blocking of beams.
Applying a negative voltage to the front end of the MCP detector will at-
tract He+ ions created by the Penning ionization process as discussed in
Section 2.1. The ion signal provides a probe of the density of the trapped
cloud as the ion production rate scales nonlinear with the density. This
signal has been used in previous experiments to measure ionizing col-
lision rates [148, 149, 153, 180] or for photoassociation spectroscopy
[150, 181]. It was also used to observe the onset of Bose-Einstein con-
densation, as the sudden increase in density leads to a sudden increase
in ion production due to two- and three-body collisions [125].

In the current experiments the ion MCP is incidentally used for diag-
nostic purposes, but not for quantitative analysis. It was last used to
observe the 2 3S1−2 1P1 transition at 887 nm for the first time by scan-
ning the spectroscopy laser wavelength in a continuously loading MOT.
The increased on-resonance scattering losses would lead to a decrease in
MOT density and therefore lower ion production rate.

Absorption imaging

Although the MCP detector has excellent signal-to-noise ratio and gain,
it is placed at a fixed distance with respect to the trap center and can-
not explore the time-dependent behavior of the expanding cloud for
various expansion times. Therefore we also use the well-known absorp-
tion imaging technique, which is a versatile tool used in almost any cold
atom experiment.

Absorption imaging is a technique which essentially measures the ‘shadow’
of a cloud of atoms on a CCD camera due to the absorption of resonant
light by the atoms. If the trapping potential is well known, the size and
optical thickness of the shadow can be related to the temperature and
atom number of the cloud. Furthermore, absorption imaging can be
used in a time-delayed configuration to observe dynamical effects in the
cloud, from simple atom loss to trap oscillations or density fluctuations.

In our experiment we use a Xenics Xeva-1.7-320 camera, which consists
of a 320 × 256 array of 30 × 30 µm2 pixels. The camera is InGaAs
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based, and was chosen in the last few years over a silicium-based CCD
camera (Hamamatsu C4880) for its large quantum efficiency (80%) with
respect to the silicium-based quantum efficiency of < 1.5%. Although
the Xenics camera has a larger noise floor than the Hamamatsu camera,
its signal-to-noise is five times larger and therefore preferred.

For low intensities I ≪ Isat (see Table 2.1 in Section 2.3), typically
I ≈ Isat/10, the transmitted intensity of a probe beam decreases expo-
nentially with the optical thickness of the cloud as

Iout(x, y) = Iin(x, y)e−σabsn(x,y), (2.27)

where σabsn(x, y) is the optical thickness, and n(x, y) the column density
integrated along the direction of propagation of the probe beam (which
contains the temperature and absolute atom number of the trapped
cloud). The absorption cross section σabs = ~ω0(Γ/2)/I ′sat, with ω0

the transition frequency, Γ/2π the linewidth and I ′sat = fIsat/χ the
effective saturation intensity. The saturation intensity is modified by
a factor f due to the exact population of the magnetic sublevels and
the polarization of the light (f = 17/10 for spin-stretched atoms and
linear polarized light, but f = 18/10 for unpolarized atoms). The
temperature-dependent line shape factor χ is based on a convolution
of Maxwell-Boltzmann velocity distribution of the atoms and the ab-
sorption lineshape. Both f and χ are discussed extensively by Tol [184].

The column density n(x, y) can be determined by measurement of Iin(x, y)
and Iout(x, y) combined with an accurate calculation of the absorption
cross section. This is done by consecutive acquisition of three images on
the CCD camera. The first image Iabs is taken with the probe beam and
the atoms. After waiting for 300 ms another image Iprobe is taken solely
with the probe as the atoms are gone. The third image is taken (again
with a 300 ms interval) without the probe light, thereby providing a
background Ibgr. The normalized transmission can then be computed
as

Iout(x, y)

Iin(x, y)
=

Iabs(x, y) − Ibgr(x, y)

Iprobe(x, y) − Ibgr(x, y)
. (2.28)

A recent addition to this computation was the so-called ‘fringe removal
algorithm’, which removes artefacts in the normalized image caused by
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variations in the intensity of the probe light between Iabs and Iprobe
[190]. This post-processing algorithm improves the quality of the images
significantly. For a 1-to-1 imaging system as used here, the normalized
transmission can be calculated on a pixel-by-pixel basis and directly
correlated to the column-integrated spatial distribution of the cloud by

n(x, y) = − 1

σabs
ln

(

Iout(x, y)

Iin(x, y)

)

. (2.29)

Depending on the the isotope and temperature, this distribution can be
fitted with an appropriate function to extract the physical parameters,
just as for the MCP time-of-flight signals.

Imaging fit functions

A full derivation of the imaging fit functions is given in Ref. [185], and
only the main results are repeated here for reference. For a thermal
distribution of atoms in a harmonic trap, the column-integrated density
distribution is

nth(x, y) =
Nth

2πσxσy
exp

(

− x2

2σ2x
− y2

2σ2y

)

, (2.30)

where Nth is the total atom number and σi the width of the expand-
ing cloud (i = x, y are the two orthogonal axes in the imaging plane).
The width of the expanding cloud along axis i scales with the trap-

ping frequency as σi(t) = σi(0)
√

1 + ω2
i t

2. Assuming thermal equilib-

rium and equipartition of energy, the initial size of the trapped cloud

is σi(0) =
√

kBT/mω2
i . For t ≫ ω−1

i the size of the cloud asymptoti-

cally increases as t
√

kBT/m along every axis. This shows that one can
use the time-dependent expansion of the cloud to do thermometry, but
also that information about the initial density distribution is lost for a
ballistically expanding cloud.

Once the temperature of the cloud is near to the critical temperature
or the Fermi temperature, quantum statistics starts playing a role in
the density distributions similar to the MCP flux distributions. The
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appropriate fit function becomes [185]

nBose(x, y) =
Nth

2πσxσyg3(z)
g2

(

z exp

(

− x2

2σ2x
− y2

2σ2y

))

, (2.31)

with again z = exp(µ/kBT ) the fugacity and gn(ε) the Bose functions
as discussed before. The density distribution of a Fermi gas is obtained
by the substitution gn(ε) → −gn(−ε).
Below Tc the density distribution of the Bose-Einstein condensate can
be described in the Thomas-Fermi limit, and the parabolic density dis-
tribution appears as

nBEC(x, y) =
5

2π

NBEC

rxry
max

[

0, 1 −
(

x

rx

)2

−
(

y

ry

)2]

, (2.32)

with ri (i = x, y) the radius of the trapped or expanding condensate.

If the condensate is trapped, the radius is ri =
√

2µ/mω2
i and known

as the Thomas-Fermi radius [202]. When the condensate expands there
can be a large difference between the x and y direction if they have very
different trapping frequencies (i.e. they represent the axial and radial
directions, respectively). For an aspect ratio ǫ = ωax/ωrad ≪ 1, and a
dimensionless expansion time τ = ωradt the radii increase as [204]

rrad(τ) = rrad(0)
√

1 + τ2, (2.33)

rax(τ) = rax(0)
[

1 + ǫ2
(

τ arctan(τ) − ln
√

1 + τ2
)]

. (2.34)

This is radically different compared to the expansion behavior of the
other (non-condensed) gases. The reason is the large interaction energy
in the condensate, which allows the Gross-Pitaevskii equation to be
rewritten in terms of hydrodynamic equations of a superfluid [202]. In
this regime the hydrodynamic expansion in the orthogonal directions is
not independent as for the thermal gases, leading to the modified time-
dependent behavior as shown here. As a result of the hydrodynamic
behavior the aspect ratio ǫ of the expanding condensate actually inverts
to 2/πǫ as cloud expands faster along the high trap frequency (radial)
axis than along the axial direction; this is generally seen as a smoking
gun for the presence of a condensate.

49



2. Experimental setup

Similar to the MCP fit functions for a thermal Bose cloud and a conden-
sate, the absorption image can be fit by a combined function nth(x, y)+
nBEC(x, y) to extract information about the thermal atoms and the con-
densate simultaneously.

Magnetic field measurements

With the implementation of the optical dipole trap, rf-induced transi-
tions (as mentioned in Section 2.1 to do forced evaporative cooling in
the magnetic trap) became available as a metrology tool to determine
the local magnetic field, as shown by Van Rooij [190]. This is done
in a Stern-Gerlach type of measurement [205], where a short (typically
∼ 40 µs) burst of rf radiation transfers part of the He∗ atoms from
the spin-stretched mJ = +1 (mF = +3/2 for 3He∗) state to the other
magnetic substates, effectively creating a spin-mixture. The atoms are
immediately released from the optical dipole trap, and a magnetic field
gradient is switched on simultaneously to spatially separate the differ-
ent magnetic substates. After a time-of-flight of ∼ 10 ms the atoms
are imaged using the absorption imaging setup, and the population of
the different spin states can be spatially resolved. If the spin-dependent
losses are negligible (which is the motivation for releasing the atoms
immediately after the rf burst), the relative population of the different
spin states, also known as the ‘spin-flip ratio’ can be measured as func-
tion of the frequency of the applied rf field. The magnetic field can be
determined from the resonance frequency at which the largest spin-slip
ratio is achieved, combined with the theoretical known Zeeman shift of
the states as given in Section 2.1.

The magnetic field- or Zeeman shift, measurements were essential in the
2 3S − 2 1S frequency metrology to determine the systematic frequency
shift caused by the background magnetic field [31]. Sub-kHz (typically
0.5 kHz) accuracy could be achieved for a single magnetic field mea-
surement (i.e. a resonance scan), and repetition of the measurement
throughout a single day revealed a Gaussian distribution of the deter-
mined Zeeman shift (magnetic field) with a standard deviation of 2 kHz
[190]. For the future sub-kHz accuracy goal on the 2 3S − 2 1S iso-
tope shift, the Zeeman shift needs to be measured with better accuracy
than currently available and should be better understood. First results

50



2.3. Optical setup

of a new method, based on a Ramsey-type measurement [206], will be
discussed in Chapter 5.

2.3 Optical setup

The previous sections deal with the general operation of the experimen-
tal setup and the detection methods. The optical and laser systems
that are currently used to generate all the required light will be dis-
cussed in this section. The new narrow linewidth laser system used
for the 2 3S1 − 2 1S0 spectroscopy work will be separately discussed in
Section 2.5.

Lasers for trapping, cooling, and imaging He∗

The laser systems had a big revision by Van Rooij [190], who introduced
the ytterbium-doped fiber laser system (Koheras Adjustik Y10 by NKT
Photonics) for laser cooling and trapping purposes. The advantage of the
fiber laser system compared to the old diode laser systems is the narrow
linewidth, relatively large power availability, and day-to-day stability of
the system. Therefore the multiple laser systems were replaced by a
single Koheras fiber laser combined with a Keopsys amplifier for 4He∗

and a Toptica DL100 diode laser combined with a ytterbium-doped fiber
amplifier (NuAMP by Nufern) for 3He∗. We have made this configura-
tion even more robust by replacing the Keopsys amplifier with another
Nufern amplifier and the Toptica laser with a Koheras Adjustik fiber
laser. The wavelength of the fiber laser systems can be temperature
tuned with a responsivity of 6 GHz/K over a range of ∼ 200 GHz, and
allow fast modulation (bandwidth ∼ 20 kHz) with a piezo transducer (0-
200 V) over a range of 4 GHz. The Nufern amplifiers can both amplify
to slightly over 2 W, but are generally used to provide about 700 mW
for the experiment. The two identical Koheras Adjustik/Nufern ampli-
fier configurations for 4He∗ and 3He∗ have the (unfortunately already
proven) advantage of flexibility of configuration in case of malfunction
of a single system.
For laser cooling, trapping, and imaging applications the 2 3S1 − 2 3P2

(D2) transition is used for 4He∗ and the 2 3S1(F = 3/2)−2 3P2(F = 5/2)
(C3) transition for 3He∗, of which the relevant properties are shown in
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Table 2.1 – Relevant atomic and laser cooling properties of 3He∗ and
4He∗. The transition-specific parameters are calculated using the follow-
ing equations: Isat = π~Γ/3λ3, kBTDop = ~Γ/2, kBTrec = ~

2k2/2m with
k = 2π/λ, and vrec = ~k/m. The linewidths Γ/2π differ at the 10−4

level due to the 3He-4He mass difference, which is neglected here.

Atomic property 4He∗ 3He∗ (F = 3/2) Ref.

Mass [amu] 4.00260325413(6) 3.0160293201(25) [88]
Natural abundance ≥ 0.999959 ≤ 0.000041 [207]
Lifetime [s] 7.9(5) × 103 7.9(5) × 103 [59]
Nuclear spin 0 1/2

Laser cooling

Cycling transition 2 3S1-2
3P2 2 3S1 (F = 3/2)-

2 3P2 (F = 5/2)
Wavelength [nm] 1083.33064 1083.46246 [30]
Γ/2π [MHz] 1.62 1.62 [56]
Isat [mW/cm2] 0.167 0.167
TDop [µK] 38.4 38.4
Trec [µK] 2.04 2.72
vrec [m/s] 0.092 0.123

Table 2.1. These transition frequencies are separated by ∼ 35 GHz,
which cannot easily be covered by a single laser system with (e.g. EOM-
generated) sidebands. Therefore both lasers individually frequency sta-
bilized in an identical way, using identical electronics and two saturated
absorption spectroscopy setups (see, e.g. Refs. [186, 187]) consisting of
an rf discharge cell filled with either 3He or 4He to populate the 3He∗ and
4He∗ states. The laser frequency is modulated at a frequency of 2 kHz
using a lock-in amplifier system (EG&G 5209). The Lamb dip signal (i.e.
the saturated absorption peak in the center of a Doppler broadened ab-
sorption dip) measured with a photodiode is demodulated by the lock-in
amplifier system to generate a dispersive ‘error’ signal. The error signal
is fed into a VU-designed digital PID ‘lock box’ to provide a (0-10 V)
feedback signal. This feedback signal is linearly amplified to 0-140 V by
a VU-designed voltage amplifier and sent to the piezo transducer of the
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fiber laser. Manual control over the feedback voltage allows scanning of
the laser frequency when looking for the dispersion signal. The lock-in
amplifier settings for both the 3He∗ and 4He∗ systems are different due
to different signal amplitudes and phase delays, but the PID settings
are quite similar as the laser systems are identical. The fiber lasers are
truly turnkey systems and have excellent day-to-day stability and re-
producibility (they rarely require adjustment of parameters). Relocking
to the transition frequency is only required in strenuous circumstances
(i.e. if there are significant temperature changes in the laboratory).

Optical dipole trap

The optical dipole trap is operated by a 1557-nm Scorpio laser sys-
tem from NP Photonics containing an erbium-doped seed and amplifier
module with a total output of over 2 W. This laser system was simulta-
neously used for trapping and spectroscopy of the 2 3S−2 1S transition
[31], but we have switched to a different laser system for spectroscopy
(see Section 2.5). The Scorpio laser is connected to the laboratory com-
puter using an RS-232 connection for controlling the wavelength and
output power, and for monitoring the performance of the laser system.
Currently the laser is used in a free running mode at a wavelength of
1557.3 nm, and part of the light (∼ 10 mW) is picked off by the He*Rb
experiment to seed an erbium-doped Nufern amplifier (10 W) for their
own optical dipole trap.
For long-term power stabilization of the optical dipole trap power, a
motorized rotation stage (Thorlabs PRM1/MZ8 + TDC001 controller)
is implemented and mounted with a λ/2 waveplate in combination with
a polarizing beam splitter to allow digital control over the optical dipole
trap power. The power is monitored by a photodiode (Thorlabs PDA255),
and digital acquisition (Agilent 34401A digital multimeter) of the signal
allows for small corrections to the optical dipole trap power per single
measurement. In the line shape measurements which take over one hour
to acquire (see Chapter 4), this greatly improved the stability of the
signals.
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Optics and laser beams

Apart from the laser systems, another overhaul by Van Rooij was to
implement single-mode polarization maintaining optical fibers in the
setup [190] to decouple the Zeeman slower, MOT and imaging beams
between the optical table and the cold atom setup. Only the beams
of the collimation section, spin polarization and 1D Doppler cooling
are still free-space, but this does not seem to be negatively affecting
the stability of the experiment. Furthermore, the optical paths of the
3He∗ and 4He∗ light are now overlapped in a robust way using a 2 × 2
fused fiber coupler. In this way the need to realign all optical beams is
reduced significantly by using one output of the fused fiber coupler for
the collimation section and the other output for all other applications.
The initial optical power requirement is currently ∼ 700 mW due to
insertion losses of the fibers and acousto-optical modulators (AOMs),
which is generally 20−30%. This can easily be covered with the current
Nufern amplifier systems (which can go up to 2 W).
The various beams need to be at different detunings with respect to
the absolute transition frequency, and various AOMs are used for this
purpose. The optical power of each beam can be tweaked to its specific
need by adjusting the rf power of the AOM or by redistributing the
light with a half-wave plate and a polarizing beam splitter. The design
and physical layout has not changed with respect to the previous thesis
[190], and only a schematic overview of the optical setup is shown in
Figure 2.5 with all relevant beam powers and detunings.
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Figure 2.5 – Schematic overview of the optical system. The separate
3He∗ and 4He∗ laser systems are locked individually to the respective
laser cooling transitions, and both seed a Nufern fiber amplifier with a
nominal free-space output power of ∼ 700 mW. Both beams are coupled
into a 50 : 50 fiber splitter to guarantee spatial overlap, and one optical
path is fully dedicated to the collimation section. The other path is split
and sent through various AOMs (detunings indicated inside the boxes)
to generate the required detuning. The right-hand side indicates the
purpose of each beam and the optical power as used per isotope at the
experiment. The 4He∗ laser system additionally seeds amplifier systems
for two other 4He∗-based experiments in our laboratory.
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2.4 Digital control of the experiment

The LabView-based control software of the experiment was replaced by
a Python based software control and user interface by Van Rooij [190].
The Python software provides more flexibility when controlling different
devices and interfaces, and was therefore preferred over the old system.
Due to the modular design of the software it has been relatively straight-
forward to add devices and their appropriate control and configuration
commands. The digital and analog control of the experiment ran with
a 64-channel digital card (Viewpoint Systems DIO-64) and a 8-channel
analog card (National Instruments PCI-6713). A timetable of a single
experimental run is programmed to the digital card, and runs indepen-
dent of the clock speed of the computer7. Simultaneously a timetable
is programmed to the analog card, and it runs synchronously with the
digital card (imposed by TTL triggers from the digital card). The out-
put channels of the digital card are 5 V TTL triggers, and the output of
the analog card spans a ±10 V range with ∼ 5 mV resolution (12-bit).
The digital card has a clock frequency of 50 MHz, enabling a maximum
speed of 25 MHz (i.e. a timing resolution 40 ns). The rise/fall time of
the TTL pulses is ∼ 50 µs, which means that we are able to configure
TTL pulses with < 1 µs resolution but the minimum pulse duration is
∼ 100 µs. This is no limiting factor for our experiments, but the timing
resolution was initially used for our Rabi and Ramsey-type measure-
ments with rf pulses (see Chapter 5) until we switched to an arbitrary
waveform generator.

After a breakdown of the main experiment computer in January 2016
(with the obsolete Windows XP operating system), the DIO-64 View-
port Systems digital card could no longer be supported by the new
operating system (Windows 7) and the whole interface was upgraded to
two 32-channel digital cards (National Instruments PCIe-6536B digital
I/O card with SMB-2163 digital I/O rack) and one 8-channel analog
card (National Instruments PCI-6733). This also required an upgrade
of the back-end control software (which was written in C++) to Python

7This configuration prevents any unwanted buffering or delays caused by back-
ground software of the computer itself. The timetable is uploaded to the digital card
at the beginning over each measurement, and the computer is idle while the sequence
runs on the digital card.
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code and could be implemented based on code further developed by the
other He∗ experiments, who are also using the Python program. The
new digital cards have a clock frequency of 25 MHz, but this reduction of
a factor of two in the timing resolution poses no practical limitations for
the experiment. Also, the new TTL pulse height is only 3.3 V compared
to the former 5 V but no issues were discovered after implementing the
new TTL signals. The new analog card has the same ±10 V range as
the old card but better resolution (2.24 mV, 13-bit). A ground loop in
the new analog board caused the current control of the magnetic trap
to display cross-talk between the different current supplies, which was
solved by isolating the analog signals using Delta Elektronica ISO AMP
modules to provide a floating voltage.

Apart from the digital and analog control, the experiment control soft-
ware also configures devices and reads out data at the end of the mea-
surement through USB, RS-232, or GPIB (i.e. the MCP time-of-flight
signal from an oscilloscope). This is all parallel to the experimental
sequence running from the digital and analog boards. Specific unavoid-
able computer-controlled actions which are timing-sensitive with respect
to the digital board sequence8 are timed by monitoring dedicated TTL
channels from the digital card with a separate National Instruments
DAC module. The complete timetable, filenames, and settings of de-
vices are all stored in a single script file per single measurement, such
that all data acquired from various devices is fully traceable for (auto-
mated) analysis afterwards.

The Xenics camera is initiated and controlled via a separate program
alongside the main program, but it can be controlled via the main pro-
gram user interface. Data acquisition and processing occurs through the
separate program, but the main program is able to access the files and
generate the absorption images for analysis.

During the original 2 3S−2 1S measurement [31] the NP Photonics laser
was digitally frequency stabilized to a femtosecond frequency comb. The
infrastructure existed of a fiber link to the frequency comb laboratory,
a free-space optical system to create a beatnote between the NP Pho-
tonics laser light and the frequency comb on an avalanche photodiode

8For example, a controlled ramp of the optical dipole trap power by rotating the
Thorlabs rotation stage during the optical dipole trap loading stage.
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detector, and a frequency counter to measure the beatnote. The mea-
sured beatnote frequency was transferred via an ethernet connection
to the experiment computer, where a continuous PID feedback signal
was calculated and sent to the NP Photonics laser using a National
Instruments DAC module. The continuous ethernet connection was me-
diated by a secondary computer using a Linux-based operating system
in order minimize interference with the experimental control sequence
on the Windows computer. This infrastructure was also used in the
2 3S1 − 2 1P1 experiment to frequency stabilize the Coherent 899-21
Ti:sapphire ring laser (see Chapter 3), but for the latest work on the
2 3S − 2 1S transition (Chapter 4) it has become obsolete as the fre-
quency stabilization scheme is completely different to achieve a much
smaller linewidth of the spectroscopy laser. This will be discussed in
the next section.

2.5 A new spectroscopy laser system

In the first observation and measurement of the 2 3S − 2 1S transition
by Van Rooij [31, 190], the spectroscopy laser was digitally frequency
stabilized to the frequency comb (see Sections 2.3 and 2.4). The 30 ms
integration time of the frequency counter used in this configuration lim-
ited the bandwidth of the feedback loop to 35 Hz. As a result of this
bandwidth the linewidth of the spectroscopy laser at the ∼ 1 s timescale
of the measurement phase was on the order of 80− 100 kHz as observed
in the linewidth of the absorption spectra. A histogram of the frequency
deviations of the spectroscopy laser with respect to the frequency comb
at the 30 ms timescale showed a Gaussian FWHM of 67 kHz [190],
which can be roughly interpreted as a lower limit of the stability of the
frequency-stabilized spectroscopy laser.

As a result of this broad linewidth no asymmetry in the line shapes
for both 4He∗ and 3He∗ was observed although this could be expected.
Without any additional information the absorption features were anal-
ysed using Gaussian line shape functions. In this case any nonlinear
effects would appear as a nonlinear shift in the determined transition
frequency. For 4He∗ no nonlinearities in the ac Stark shift extrapolations
was observed, nor an apparent density-dependent (mean field) shift. For
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the 3He∗ spectra, saturation effects seemed to occur in the ac Stark shift
extrapolation, which had to be taken care of by ensuring full thermal-
ization of the Fermi gas in the optical dipole trap [190]. Even with all
this work, the ac Stark shift extrapolation uncertainty of 1.4 kHz was
the limiting factor in the accuracy of the transition frequency, followed
by the accuracy of the mean field shift determination for 4He∗.
In order to make the next leap to sub-kHz absolute accuracy, the linewidth
of the spectroscopy laser has to be reduced significantly for two reasons.
First, it will simply improve the statistical accuracy in determining the
absolute transition frequency. Second, a sufficiently narrow spectroscopy
laser will reveal any asymmetry in the line shape of the spectrum caused
by any underlying physics. A back-of-the-envelope calculation of the rel-
evant broadening scales for the line shapes of both 3He∗ (given by the
Fermi temperature ∼ 40 kHz) and 4He∗ (mean field shift of the 4He∗

state ∼ 10 kHz) suggests that a spectroscopy laser linewidth of < 10 kHz
would be sufficient to observe any asymmetries in the line shapes. Of
course there are other solutions as well and these are proceeding in par-
allel to the improvement of the spectroscopy laser linewidth, as will be
discussed in Chapter 5.

Parts of the improvements and used infrastructure mentioned in this
section are developed and maintained in collaboration with the Ultrafast
Laser Physics and Precision Metrology group of Kjeld Eikema.

Frequency comb for precision metrology

The problem with high-precision metrology of optical transition fre-
quencies (1014 − 1015 Hz) is that they are difficult to measure using
conventional electronic techniques. From a metrology point of view the
problem also lies with the fact that the definition of the SI second is
in the microwave frequency regime, defined by the 9 192 631 770 Hz hy-
perfine transition of the caesium-133 atom [208, 209], especially as it
is typically mediated in the radio frequency regime by a standardized
10 MHz or 100 MHz reference oscillator frequency. The over six orders of
magnitude difference between the SI second frequency reference and the
optical frequencies poses a serious problem in measuring absolute opti-
cal transition frequencies. Initially this was solved by a phase-coherent
chain of lasers, starting from the far infrared range (λ ≈ 100 µm) down
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Figure 2.6 – The schematic output of a frequency comb, both in the time
and frequency domain. A continuous train of pulses separated by time
T and with a fixed phase relationship governed by a phase ϕceo can be
described in the frequency domain as a regular comb-like mode structure
with mode separation frep = 1/T and an overall offset frequency fceo.
The frequency of the n-th mode is given as fn = fceo + n× frep.

to the visible range (λ ≈ 650 nm) [210], but this was far from a prac-
tical situation as it required multiple lasers being phase-locked for an
extended amount of time.

At the turn of the century a solution was presented using femtosecond
pulse mode-locked lasers now known as frequency combs [211–214]. By
generating a continuous train of phase-coherent pulses separated by a
time T within a cavity, the Fourier spectrum of the light portrays a
regular (comb-like) mode structure with frequency spacing frep = 1/T .
This is schematically shown in Figure 2.6, and the frequency of the n-th
(n is an integer) mode is

fn = fceo + n× frep, (2.35)

where fceo is the carrier-envelope offset frequency, related to the exact
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phase and group velocity inside the cavity. Both fceo and frep are in the
rf (10 − 500 MHz) domain. In the optical domain the frequency range
of the comb is around fn ≈ 1015 Hz, and we find that typically n ≈ 106.
In this way the frequency comb relates the optical frequency fn to rf
frequencies fceo and frep, which are easily compared to the SI standard.
The mode number n can be calculated from other measurements or cal-
ibrations, thus the frequency comb allows direct measurement of optical
frequencies with over 12-digit absolute accuracy [215, 216], depending
on the reference standard (i.e. a rubidium or caesium atomic clock).

The first frequency combs were build using a Ti:sapphire gain medium
and therefore operated at the 800 nm wavelength regime, but nowadays
they are extending into the XUV regime [29, 217] up to the mid-infrared
[218, 219] with appreciable powers to do spectroscopy. Additionally, fre-
quency combs with fiber-based technology are now commercially avail-
able in the 1300-1600 nm (and frequency-doubled) wavelength range due
to developments in the optical telecommunications industry.

For the experiments discussed here we use an erbium-doped fiber laser
frequency comb (Menlo Systems, hosted by the Ultrafast Laser Physics
and Precision Metrology group) operating in the 1500 nm range with
a bandwidth of 100 nm. The optical range of the frequency comb is
extended with an optical amplifier and photonic crystal fiber to allow
frequency doubling for a secondary comb operating in the 550-900 nm
range. For the measurement on the 2 3S1 − 2 1P1 transition (see Chap-
ter 3) the fceo and frep of the comb were referenced to a GPS-controlled
rubidium clock (FS725 by Stanford Research Systems), which provided
a 10−12 long term stability. At the time of the line shape measurements
on the 2 3S − 2 1S transition (see Chapter 4) the rubidium clock was
upgraded to a stand alone caesium clock (CsIII Model 4310B by Sym-
metricom) with a long term stability of < 10−13. This is required for
a sub-kHz absolute accuracy on the determination of the 2 3S − 2 1S
transition frequency.

Ultrastable laser

Whereas a frequency comb spans a broad wavelength range, progress
has also been made in so-called ultrastable lasers. Ultrastable lasers
are generally characterized by a very high quality factor ν0/δν, where
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ν0 ≈ 1015 Hz is the nominal optical oscillation frequency and δν the fre-
quency noise9. The high stability of these lasers is achieved by locking
them to a very stable reference, generally a cavity [221]. As the locked
laser frequency depends on the exact cavity length, these cavities are
designed to be insensitive to mechanical vibrations [222] and tempera-
ture fluctuations [223, 224], and are kept in vacuum to reduce acoustic
vibrations. With these efforts stabilities (i.e. the inverse of the quality
factor) of 10−15 can be achieved at the timescale of 1 s (i.e. δν < 1 Hz)
which is four to five orders of magnitude better than the stability of a
rubidium or caesium clock reference signal at the same timescale. An
ultrastable laser will always have a long-term drift due to slow drift in
the cavity length or chemical processes affecting the cavity length, and
should be referenced to a clock to correct for this drift. Combining
ultrastable lasers with even better frequency references (i.e. ultranar-
row atomic transitions in the optical regime which have extremely high
quality factors) is a pathway to a new generation of clocks surpassing
the current SI standard by multiple orders of magnitude [225–229]. Al-
ternatively, direct comparison of frequency ratios of different transitions
measured with ultrastable lasers allows determination of relative changes
of fundamental constants [64, 65, 230, 231].

The Ultrafast Laser Physics and Precision Metrology group also has an
ultrastable laser (ORS1500 by Menlo Systems) in a separate temperature-
controlled room near the optical frequency comb setup. The laser oper-
ates at 1542 nm with a linewidth specified to be below 2 Hz, resulting
in a short term (1-10 s) stability of around 10−15. The linear drift of the
ultrastable laser is specified to be better than 0.15 Hz/s, and we have
observed a drift of ∼ 0.023 Hz/s over almost a year.

Transfer lock

Apart from the small bandwidth of the feedback loop used in the previ-
ous measurement [31, 190], direct frequency stabilization to the erbium-
doped fiber frequency comb is not optimal as the comb modes themselves
have a linewidth of ∼ 100 kHz limited by the stability of fceo. With the

9The phrase ‘frequency noise’ is very ambiguous as it has to referred to a specific
time scale and type of noise [220].
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new ultrastable laser system available in our laboratory we can circum-
vent this by implementing a so-called ‘transfer lock’ scheme.

The phrase ‘transfer lock’ or ‘transfer oscillator’ refers to the basic prin-
ciple of the technique; by creating a phase-locked loop between an ultra-
stable laser and a less stable laser, the stability of the ultrastable source
will be transferred to the latter. An example of this technique is dual
locking to a single Fabry-Pérot cavity [232, 233]. Other experiments rely
on the reduction of the linewidth of frequency comb modes [234, 235];
locking of a laser to a stable comb mode also constitutes a transfer lock.
The latter method is interesting as the large bandwidth of the frequency
comb allows for flexible design with respect to the wavelength of the ul-
trastable laser and the less stable laser [236, 237]. One can also imagine
a transfer lock scheme involving an ultrastable laser at an optical fre-
quency and an atomic clock at a microwave frequency through fceo and
frep [238].

An even simpler scheme is to use a frequency comb simply as the ref-
erence oscillator which allows comparison of two other oscillators by
creating a so-called ‘virtual beatnote’ between the individual beatnotes
of the lasers with the comb. This transfer lock scheme can be designed
in such a way that the frequency comb does not add any noise in the
process, simply providing a common oscillator to compare two other op-
tical frequencies [239]. This scheme has already shown its usefulness in
various high-precision measurements [65, 240, 241].

In our experiment we use a simplified version of the transfer lock scheme
as suggested by Telle [239], as we currently do not need to get a spec-
troscopy laser linewidth of ∼ 1 Hz, but < 10 kHz would already suffice,
with considerable ease of implementation compared to the full scheme.

Creating a ‘virtual beatnote’

By spatially overlapping the optical modes from two laser sources with
different optical frequencies f1 and f2, the total electric field will os-
cillate with the sum (f1 + f2) and difference (f1 − f2) frequencies and
associated higher modes. If f1 and f2 are close enough, even if they
are in the optical frequency domain, the difference frequency f1 − f2
can be in the radio- or microwave-frequency domain and can be mea-
sured electronically using a photodiode (as long as f1 − f2 is within the
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bandwidth of the device). Using the proper electronic filters and am-
plifiers, the lowest measured difference frequency is generally called the
‘beatnote’ fb = f1 − f2.
Creating a beatnote between a frequency comb and a single-frequency
laser f1 produces a beatnote fb,1 following the resonance condition

f1 = fceo + n1 × frep ± fb,1, (2.36)

where fb,1 is the lowest frequency difference between f1 and the near-
est comb mode and can be negative. If a wavemeter with sub-frep/2
frequency accuracy is available, the absolute mode number n1 can be
determined and the absolute frequency of the single-frequency laser is
known. Producing a beatnote with a second single-frequency laser pro-
vides a second beatnote fb,2 defined by

f2 = fceo + n2 × frep ± fb,2, (2.37)

where the absolute mode number n2 6= n1
10. As both fb,1 and fb,2 are in

the rf domain, we can mix them again and filter the difference frequency
to obtain the virtual beatnote fvirt:

fvirt = fb,1 − fb,2, (2.38)

fvirt = (f1 − f2) − (n1 − n2) × frep. (2.39)

Note that the carrier-offset frequency already dropped out perfectly in
fvirt, assuming that the rf signals are still coherent when they are mixed.
Furthermore this assumes that fb,1 and fb,2 have the same sign, other-
wise the carrier-offset frequency gets doubled in the virtual beatnote and
the noise correspondingly doubles instead of being cancelled. The vir-
tual beatnote exists of a detuning term f1− f2 and a residual frequency
correction from the repetition rate of the frequency comb, and is equiv-
alent to (f1 − f2)Mod(frep). Establishing a phase-locked loop with the
virtual beatnote to a stable reference oscillator and providing feedback
to the spectroscopy laser, will effectively phase-lock the spectroscopy
laser to the ultrastable laser thereby creating the transfer lock.
In the full scheme by Telle [239] the beatnote frequencies are mixed in
such a way that the second term on the right hand side of Eq. 2.39

10If n2 = n1 it is easier to directly create a beatnote between the two lasers.
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does not add any noise in the virtual beatnote, making it completely
independent of the frequency comb. In our case we do not compensate
for this, but as ∆n/n ≈ 1% for the two wavelengths in our experiment
(1542 nm and 1557 nm) the residual noise is acceptable for achieving
our spectroscopy laser linewidth goal.

Transfer lock setup

An overview of the full transfer lock scheme is shown in Figure 2.7. The
fiber-coupled output of the frequency comb is split from the full spec-
trum at the relevant wavelengths of 1542 nm and 1557 nm using two fiber
Bragg gratings specified for a 1 nm bandwidth around these wavelengths.
The optical paths between the different lasers are all fiber-coupled and
mixed using fused fiber couplers such that they have perfect mode over-
lap. The beatnotes between the two lasers are separately measured by
VU-constructed ac-coupled and fiber-coupled photodiodes with 150 MHz
bandwidth. The frequency comb is configured such11 that the ultra-
stable laser beatnote fstab ≈ 60 MHz and the spectroscopy laser (Ko-
heras Adjustik E15 by NKT Photonics, linewidth specified < 1 kHz12)
beatnote is fspec ≈ 100 MHz.

After bandpass-filtering and amplification, the spectroscopy laser beat-
note is down-mixed with a direct digital synthesizer (DDS, AD9912
by Analog Devices) at a frequency of fDDS ≈ 30 MHz to a new spec-
troscopy laser beatnote of f̃spec = fspec − fDDS ≈ 70 MHz. The ad-
dition of the DDS allows for external control of the absolute spec-
troscopy laser frequency without breaking the phase-locked loop. The
down-mixed beatnote is split by a −3 dB splitter to be monitored by
a zero-dead time counter (FXM50 by K+K Messtechnik) for absolute
frequency calibration of the spectroscopy laser, and the other port is
mixed with the ultrastable laser beatnote to obtain the virtual beatnote

11If the laser frequencies are known, the required repetition rate can be numeri-
cally calculated by simultaneously solving beatnote Eqs. 2.36 and 2.37 with chosen
frequencies for the virtual beatnote (Eq. 2.39) and individual beatnotes fstab and
fspec as boundary condition.

12The short-term linewidth of the NP Photonics laser previously used for spec-
troscopy is specified to be 5 kHz.
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Figure 2.7 – Schematic overview of the transfer lock setup. Using fiber
optics, the optical frequencies of the three lasers are mixed on two sep-
arate ac-coupled photodiodes. The beatnotes are band-pass filtered and
amplified; the nominal frequencies are shown in the Figure. The spec-
troscopy laser beatnote is separately down-mixed with a direct digital
synthesizer (‘DDS’) to allow for external control of the absolute laser fre-
quency in the phase-locked loop. This beatnote (at ∼ 70MHz) is split by
a −3 dB splitter to be measured by a zero-dead time counter (‘Counter’)
and mixed with the ultrastable laser beatnote to obtain the virtual beat-
note at ∼ 10MHz. The virtual beatnote is discretized using a digital clock
divider (‘DCD’) simultaneous with the 10MHz reference signal from the
atomic clock. Both discretized signals are fed in a phase-frequency detec-
tor (‘PFD’) which produces an error signal based on the relative phases.
A home-built low-noise analog proportional-integral (‘PI’) controller pro-
vides feedback on the piezoelectric controller of the spectroscopy laser,
thereby achieving a phase-locked loop. The symbols for the different rf
components (all from Minicircuits) are explained below the figure.
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fvirt = f̃spec− fstab ≈ 10 MHz. The virtual beatnote is monitored by an
identical zero-dead time counter and sent to a digital clock divider.
The VU-constructed digital clock divider discretizes the analog oscillat-
ing signal to a block-pulse signal (with optional fractional time-division)
for better comparison in the phase-frequency detector. Simultaneously
the 10 MHz reference signal from the atomic clock is sent in the digital
clock divider and consequently the phase-frequency detector, of which
the basic principle is explained in Ref. [242]. The VU-constructed phase-
frequency detector is able to follow up to 32π cycle slips, but nominally
operates in a ±π phase range for which it outputs 0 − 4 V (i.e. the
phases are ‘locked’ at an output voltage of 2 V). The error signal from
the phase-frequency detector is fed in a low-noise analog proportional-
integral controller with a bandwidth of ∼ 25 kHz, which is sufficient to
cover the 20 kHz bandwidth of the piezoelectric controller of the spec-
troscopy laser. With a frequency sensitivity of the laser with respect to
the piezoelectic controller voltage of 16 kHz/mV, the electronic noise of
the feedback signal should be < 100 µV which is achieved by the custom
built PI controller13.

Frequency metrology infrastructure

A full overview of the metrology infrastructure in the laboratory is dis-
cussed to complete the description of the new spectroscopy laser and fre-
quency stabilization scheme, as shown in Figure 2.8. The spectroscopy
laser is situated near the frequency comb to minimize the length of
the feedback loop in the transfer lock, and the spectroscopy light is
transported to the He∗ experiment using a ∼ 80 m uncompensated fiber
link. The ultrastable laser and caesium clock are located in a small
temperature-stabilized and quiet room (the ‘isolated room’) inside the
Ultrafast Laser Physics and Precision Metrology laboratory, and an-
other uncompensated fiber link of ∼ 25 m allows for a beatnote at the
frequency comb.
The external control of the absolute frequency of the spectroscopy laser,
set by the in-loop DDS, is controlled by a local computer near the fre-
quency comb. This computer also communicates with the frequency

13We thank Tim Kortekaas of the electronics workshop who designed and built
the controller.
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Figure 2.8 – Schematic overview of the full metrology infrastructure, in-
cluding the spatial separation between the different laboratories. Within
the Ultrafast Laser Physics and Precision Metrology group laboratory,
both the ultrastable laser and caesium clock are placed in a temperature-
stabilized and quiet ‘isolation room’. A ∼ 25m uncompensated fiber link
connects the ultrastable light to the frequency comb in the main room.
The spectroscopy laser is situated near the frequency comb and transfer-
locked to the ultrastable laser (‘TL’), which is shown in detail in Figure
2.7. A ∼ 80m uncompensated fiber link between the labs transports
the spectroscopy light to the experiment. A secondary computer (‘PC
comm.’) interfaces between the labs and allows readout of all relevant
frequencies, and controls the DDS within the TL to set the absolute fre-
quency of the spectroscopy laser. All frequency measurement devices or
sources are referenced to the caesium clock.
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comb and the counters; all relevant frequencies and settings can there-
fore be documented during the measurements. Communication between
the two laboratories is mediated over the local network of the university
to a computer at the He∗ experiment. This computer periodically com-
municates with the computer controlling the full experiment, but the
datastream is small enough to not interfere with the experiment.
All frequency counters and sources relevant for the high-precision spec-
troscopy (in both laboratories) are referenced to the caesium clock. As
the GPS-disciplined rubidium clock is still available, a separate com-
puter logs the pulse-per-second signal of both clocks to enable trace-
ability of the caesium clock (not shown in Figure 2.8). The long-term
stability of the rubidium clock is only 1 × 10−12, and therefore only al-
lows us to observe a gross instability of the caesium clock. The caesium
clock stability floor is specified to be < 5 × 10−14, which is more than
sufficient for the future accuracy goals of the He∗ spectroscopy14.

Transfer lock performance

Simultaneous monitoring of two beatnotes by zero-dead time frequency
counters is necessary to determine the absolute frequency of the spec-
troscopy laser during the measurements, and the difference between two
beatnotes is used to observe cycle-slips in the phase-locked loop. Essen-
tially any two of the three (fstab, fspec, or fvirt) frequencies need to be
monitored to make sure that cycle-slips can be observed. E.g. we could
have chosen to monitor fstab in stead of fvirt, as shown in Figure 2.7,
but the current setup is more convenient as we also observe fvirt on a
spectrum analyzer to quickly see if a phase-locked loop is established.
An example of an almost 17-hour continuous measurement of the in-loop
virtual beatnote (in this specific measurement obtained by subtracting
fstab and f̃spec) is shown15 in Figure 2.9, showing that the optical fre-
quencies of the spectroscopy laser and ultrastable laser are phase-locked

14There currently is an ultrastable optical link from the Dutch metrology institute
VSL to the Dutch National Institute for Subatomic Physics Nikhef in Amsterdam
[243]. Extension of this link to the LaserLaB would allow unambiguous traceability
of the caesium clock beyond the 1× 10−14 level.

15We display the measured frequencies in a density plot as the datapoints are too
close to visualize individually. The raw measurement data itself of course exists of
discrete datapoints taken at a 1 s interval.
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to within a fraction of 1 Hz at the integration time scale of one second.
Any cycle-slips would immediately occur as a gross frequency deviation
from this distribution, and are therefore easy to detect in the post-
processing of this data.
For timescales shorter than one second we look at the rf spectrum of
the virtual beatnote centered around the reference frequency of 10 MHz
and construct the power spectral density (PSD) of the frequency com-
ponents, as shown in Figure 2.10. Indeed we see the ∼ 20 kHz servo
bandwidth of the feedback loop due to the bandwidth of the piezoelec-
tric controller of the spectroscopy laser. Near the carrier frequency we
observe a regular sideband structure as harmonics of 50 Hz, indicating
possible amplitude modulation caused by the voltage supplies. This
is currently no limiting factor for our experiments as the linewidth of
our laser will be in the kHz regime, and most sidebands are more than
20 dBc below the carrier frequency and can be safely ignored. A PSD
of the spectroscopy laser beatnote is not shown as it is fully dominated
by noise from the frequency comb, and an accurate beatnote of the free
running spectroscopy laser was impossible to acquire as it has a specified
short term linewidth of < 1 kHz, but the frequency drifts at ∼ 1 MHz/s.
Figure 2.11 shows the absolute beatnote of the spectroscopy laser and
the frequency comb while the spectroscopy laser is transfer-locked to the
ultrastable laser, and belongs to the same dataset as shown in Figure
2.9. The beatnote has a slow linear drift as it is locked to the ultrastable
laser and the extracted linear drift is ∼ 0.03 Hz/s, similar to the average
drift on a yearly basis. Subtracting this linear drift we observe again a
Gaussian distribution of the beatnote but now with a ∼ 7 kHz FWHM.
This is four orders of magnitude larger than the width of the virtual
beatnote and caused by the linewidth of the frequency comb mode,
underlining the advantage of the transfer lock to the ultrastable laser in
stead of frequency stabilizing to the frequency comb. Figure 2.11 also
reveals a periodic modulation on the beatnote with a period of ∼ 3 hours
(confirmed by a Fourier transform of the data set) which is not visible
in the virtual beatnote. This is caused by a slow feedback loop in the
rubidium clock leading to a slow modulation of frep of the frequency
comb. The caesium clock does not have such a feedback loop, as can be
see in Figure 2.12. It additionally has a better short-term stability than
the rubidium clock.
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Figure 2.9 – In-loop virtual beatnote frequency fvirt measured by sub-
tracting the separately measured beatnote between the frequency comb
and the spectroscopy laser and ultrastable laser, respectively. The vir-
tual beatnote is phase-locked to the 10 MHz reference signal from the
caesium clock, which is therefore subtracted from the frequency. (Left)
continuous measurement of the virtual beatnote over 6× 104 s without a
single cycle slip, and a histogram of the same data set (right) shows a
Gaussian distribution with σ = 0.0907(3)Hz (FWHM = 0.2136(7)Hz).
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Figure 2.10 – In-loop power spectral density (PSD) of the virtual beat-
note shown for a frequency span of 3 kHz (left) and 40 kHz (right). Both
spectra are averaged over five scans and acquired with a 1Hz bandwidth.
The apparent servo bandwidth is ∼ 20 kHz as expected from the piezo-
electric controller bandwidth. Higher harmonics of 50Hz electronic noise
can be observed and are all below −20 dBc.
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Figure 2.11 – Beatnote between the spectroscopy laser and the
rubidium clock-referenced frequency comb while the spectroscopy
laser is transfer-locked to the ultrastable laser (i.e. complemen-
tary to the dataset as Figure 2.9). (Left) linear drift-corrected
(−0.0296(7) Hz/s, 〈fb〉 = 68 039 788(12) Hz) beatnote, and a his-
togram of the same data set (right) shows a Gaussian distribution with
σ = 2.895(8) kHz (FWHM = 6.82(2) kHz).
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Figure 2.12 – Beatnote between the spectroscopy laser and the cae-
sium clock-referenced frequency comb while the spectroscopy laser is
transfer-locked to the ultrastable laser. (Left) linear drift-corrected
(-0.0099(6)Hz/s, 〈fb〉 = 75 942 824(11) Hz) beatnote, and a his-
togram of the same data set (right) shows a Gaussian distribution with
σ = 2.089(7) kHz (FWHM = 4.92(2) kHz). The frequency axes are
identical to Figure 2.11 showing that the beatnote has better short-term
stability and no oscillations as compared to the rubidium clock-referenced
frequency comb.
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Figure 2.13 – Overlapping Allan deviation calculated from the drift-
corrected beatnote as shown in Figure 2.12. After an averaging time of
10 s the Allan deviation decreases as τα, with α = −0.49(1) (dashed
line). The gray triangles for τ > 103 s show the long-term instability of
the beatnote without drift-correction.

The long term stability of the beatnote can also be evaluated by calcu-
lating the overlapping Allan deviation [220], which is a measure of the
fractional stability for various averaging times τ . For the same dataset
as shown in Figure 2.12 the corresponding overlapping Allan deviation
is shown in Figure 2.13. The figure shows that the initial fractional sta-
bility of the spectroscopy laser frequency is ∼ 7×10−12 (i.e. ∼ 1.3 kHz)
and after 10 s of averaging time starts to decrease as τ−1/2, which means
that the signal is dominated by white frequency modulation noise [220].
We see that we can average down to a stability of 2×10−13 in 104 s (i.e.
under three hours), which is sufficient to obtain a sub-100 Hz absolute
accuracy on the spectroscopy laser frequency.

Spectroscopy laser linewidth

The goal of implementing the transfer lock is to reduce the former spec-
troscopy laser linewidth of ∼ 100 kHz to < 10 kHz. Based on the imple-
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mented transfer lock and the observation that the width of the beatnote
of the spectroscopy laser with the frequency comb has decreased, we can
assume that the linewidth has been significantly reduced. In this section
several contributions to the final linewidth of the spectroscopy laser at
the experiment are listed, and how they can be improved in the future.
There are several contributions to the linewidth of the spectroscopy
laser. As shown in Eq. 2.39, the virtual beatnote as used in our ex-
periment still carries a residual contribution of the comb modes as the
mode numbers of the two beatnotes are not equal. The relative differ-
ence of the two modenumbers ∆n/n ≈ ∆λ/λ ≈ 1%, and with a comb
mode linewidth of ∼ 100 kHz, a ∼ 1 kHz linewidth broadening effect
is expected as the full modenumber-compensated Telle scheme [239] is
currently not used.
Furthermore the fiber links in the laboratories are not yet stabilized. For
the fiber link of the ultrastable laser to the frequency comb (∼ 25 m)
linewidth broadening to 100 Hz of the ultrastable laser light is estimated.
The spectroscopy laser will adopt this linewidth in the transfer lock
scheme. In the near future this fiber link will be actively stabilized, but
it is not yet a limiting factor of our spectroscopy laser linewidth.
Another contributing factor to the linewidth of the spectroscopy laser is
the uncompensated fiber link from the frequency comb laboratory to the
experiment (∼ 80 m). Delayed self-heterodyne beatnote measurements
of the roundtrip between the two labs show a ∼ 4 kHz FWHM broad-
ening, meaning that a single trip will broaden the linewidth by ∼ 2 kHz
at the 1 s timescale.
Finally we also have electronic noise from the feedback system. Al-
though the PI controller is designed to be low-noise (< 100µV), the
linewidth can still broaden due to this noise. This can be observed in
a delayed self-heterodyne beatnote measurement using a 100 km fiber
link available in the laboratory. Due to its large length, the fiber link
is very sensitive to acoustic noise, and the pure linewidth of the laser
could not be determined. However, the observed acoustic-noise broad-
ened linewidth can be compared in various circumstances (e.g. for a
free running laser, ‘tight’ PI settings, and ‘loose’ PI settings) to deter-
mine additional broadening effects. These measurements show that the
increase of the laser linewidth due to the electronics is ∼ 1 − 2 kHz at
the 1 s timescale, and would increase (but not oscillate) for higher PI
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settings (i.e. in a ‘tight’ lock configuration).
All contributions have their own spectral behavior and would require
full spectral analysis to obtain the effective linewidth of the spectroscopy
laser [244]. To obtain an estimate the contributions are simply added
and give an estimated 4 − 5 kHz linewidth of the spectroscopy laser
for the experiment. The spectroscopy laser linewidth can be extracted
from the line shape measurements discussed in Chapter 4, and we find
a linewidth of 4.5(3) kHz, which is in agreement with the estimation.
From the inventory of linewidth broadening sources one can conclude
that stabilization of the fiber link would be the next step to improve
the spectroscopy laser linewidth by a factor of two. Reduction of the
frequency comb mode linewidth by stabilizing the frequency comb to
the ultrastable laser [234, 236] or by implementing the full modenumber-
compensated Telle transfer locking scheme [239] will then be the path
towards a sub-kHz linewidth.
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CHAPTER 3
High-precision spectroscopy of

the 2
3
S1 → 2

1
P1 transition

Abstract

We have measured the forbidden 2 3S1 → 2 1P1 transition
at 887 nm in a quantum degenerate gas of metastable 4He atoms
confined in an optical dipole trap. The determined transition fre-
quency is 338 133 594.4 (0.5) MHz, from which we obtain an ion-
ization energy of the 2 1P1 state of 814 709 148.6 (0.5) MHz. This
ionization energy is in disagreement by > 3σ with the most accu-
rate quantum electrodynamics (QED) calculations available. Our
measurements also provide a determination of the lifetime of the
2 1P1 state of 0.551 (0.004)stat (+0.013

−0.000)syst ns, which is the most
accurate determination to date and in excellent agreement with
theory.

3.1 Introduction

Quantum electrodynamics is one of the most thoroughly tested theo-
ries in physics. From QED theory and accurate measurements, the fine
structure constant [20, 21], the Rydberg constant [92], nuclear charge
radii [31, 95] and the electron mass can be deduced [83]. It can also pro-
vide accurate ionization energies for one- and two-electron atoms. To

This chapter is based on: High-precision spectroscopy of the forbidden 2 3S1 →

2 1P1 transition in quantum degenerate metastable helium, R.P.M.J.W. Notermans
and W. Vassen, Physical Review Letters 112, 253002 (2014)
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3. High-precision spectroscopy of the 2 3S1 � 2 1P1 trans...

test QED, both highly accurate calculations and high-precision experi-
mental data are required. Few-body systems such as the hydrogen atom
and helium atom are candidates that fulfill both criteria. Testing and
applying QED in these systems has led to surprising results in recent
years. An example is the 7σ discrepancy in the proton size derived from
muonic hydrogen Lamb shift measurements and the accepted CODATA
value, also referred to as the proton radius puzzle [95, 97]. Recent mea-
surements of the helium 2 3S → 2 1S transition at 1557 nm [31] and
the 2 3S → 2 3P transitions at 1083 nm [44, 105] disagree by 4σ in the
determination of the helium isotopic nuclear size difference, even with a
recent recalculation of QED effects in the isotope shift [27]. These mea-
surements provide a unique comparison with nuclear size measurements
in the muonic helium ion, developed to help solve the proton radius
puzzle [100]. Also recent experiments with trapped highly charged he-
liumlike ions show a significant discrepancy with QED theory, 3σ for
Ti20+ and growing as Z3 [245]. The validity of these results has been
lively discussed [246, 247], and other experiments contradict the results
[248].
In particular for the low-lying states with low angular momentum, ac-
curate measurements of the ionization energies (IE) in helium have al-
lowed stringent tests of two-electron QED [29, 31, 32, 36, 38, 39, 44].
A schematic overview of the lowest states of helium together with tran-
sition wavelengths mentioned in this Chapter are shown in Figure 3.1.
In comparing the experimentally determined IE to QED calculations, a
discrepancy of 6.5 (3.0) MHz in the 2 1P1 IE was identified by Drake
and Pachucki [26, 55, 57]. This discrepancy is based on a measurement
of the 2 1P1 → 3 1D2 transition frequency with 3 MHz accuracy by San-
sonetti and Martin in 1984 [249]. As the QED calculation of this IE is
accurate to 0.4 MHz [26], a more accurate measurement should be able
to determine whether this discrepancy still stands. Recently, two new
determinations of the 2 1P1 IE were reported by Luo et al. based on the
measurements of the 2 1S0 → 2 1P1 [33] and 2 1P1 → 3 1D2 [34] tran-
sition frequencies. As these transitions are electric dipole-allowed, the
measurements could be done using saturated absorption spectroscopy
in an rf discharge cell. The extracted ionization energies for the 2 1P1

state disagree with QED theory at the 3.5σ level.
In this work we report the direct measurement of the forbidden 2 3S1 →
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Figure 3.1 – Schematic overview of the lowest levels in 4He and the
transitions that are mentioned in this chapter. The 2 3S1 → 2 3P2

transition at 1083 nm is used for laser cooling and trapping.

2 1P1 transition at 887 nm in a quantum degenerate gas (QDG) of
metastable 2 3S1 state helium (denoted He∗, lifetime ≈ 7800 s) atoms
confined in an optical dipole trap (ODT). The advantage of performing
spectroscopy in an ODT is the ability to probe very weak transitions
and the simultaneous reduction and characterization of systematic ef-
fects to the kHz level [31]. As the theoretical natural linewidth of this
transition is 287 MHz [250], the accuracy of our measurement is limited
by statistics rather than by systematic effects. Combined with the ac-
curately known IE of the 2 3S1 state this measurement of the transition
frequency enables a determination of the 2 1P1 IE.
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3. High-precision spectroscopy of the 2 3S1 � 2 1P1 trans...

The measured line shape of the transition allows for an accurate de-
termination of the lifetime of the 2 1P1 state. This method does not
require the branching ratios of decay channels, which is the main prob-
lem in fluorescence measurements of the lifetime [251–255], and the only
dominant broadening effect in our experiment can be calculated using
the optical Bloch equations.

3.2 Experimental setup

The 2 3S1 → 2 1P1 transition is forbidden as it violates conservation of
spin. Due to a small mixing of the 2 1P1 and 2 3P1 states, the effective
eigenstate is

√
1 − ǫ2|2 1P1〉+ ǫ|2 3P1〉 with ǫ ≈ 3× 10−4 [256]. It is this

slight mixing with the triplet states which enables the electric dipole
transition with an Einstein A coefficient of 1.4423 s−1, which is seven
orders of magnitude weaker than regular dipole-allowed transitions in
the helium atom [56]. Therefore this transition has, to our knowledge,
never been observed before. In order to obtain a good signal with rea-
sonable laser power, the atoms need to be probed on a timescale of
about 1 s, and we achieve this by trapping a QDG of 4He* atoms in an
ODT. For this we use the same experimental setup as used to measure
the doubly forbidden 2 3S → 2 1S transition [31]. We produce a QDG
consisting of a thermal gas and a Bose-Einstein condensate (BEC) in
a crossed-beam ODT, which is created using an NP Photonics Scor-
pio fiber laser operating at a wavelength of 1557.3 nm. Details on the
production and physics of ultracold metastable gases can be found in
[132] and Chapter 2. The advantage of using a QDG for spectroscopy
is the small ODT trap depth required to trap the gas, which minimizes
systematic transition frequency shifts. The ODT is kept shallow at a
depth of about 1.3 µK, and after thermalization the temperature of the
gas is approximately 0.2 µK. We apply a small homogeneous magnetic
field in the ODT to maintain spin polarization of the gas, which is re-
quired to have a trap lifetime > 10 s. The small Zeeman shift is directly
measured using rf transitions between the 2 3S1 mJ = +1, 0,−1 states
with kHz accuracy and therefore does not provide a limitation for our
experimental accuracy [31].

A schematic overview of the ODT and the metrology infrastructure is
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ATOS 
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Fiber laser 

frequency comb

Ti:sapphire ring laser

APDCounter

Lab 

computer

1557 nm fiber laser

Figure 3.2 – Schematic overview of the setup. The crossed dipole trap is
created using a fiber laser and the trapping beam power is measured using
a power meter. The spectroscopy light is generated using a Ti:sapphire
ring laser. The beatnote between the spectroscopy laser and the frequency
comb is measured with an avalanche photodiode (APD) connected to a
frequency counter and digitally sent to the lab computer. The computer
then calculates and sends a proportional-integral (PI) feedback signal to
the Ti:sapphire laser to stabilize the spectroscopy laser frequency. The
lab computer also interfaces with the frequency comb, enabling us to
register and control the frequency comb settings.
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shown in Figure 3.2. The probe beam is generated using a Coherent 899-
21 Ti:sapphire laser with an output power of 0.4 W at 887 nm. During
the measurements the wavelength is registered using an ATOS waveme-
ter. Simultaneously we use an erbium-doped fiber laser frequency comb
that is stabilized using a GPS-controlled rubidium clock to create a beat-
note with the probe laser [31]. Combining the wavemeter data with the
beatnote data provides the absolute frequency of the probe laser.

Additionally, we stabilize the Ti:sapphire laser frequency to the fre-
quency comb using a proportional-integral (PI) control loop. We con-
trol the Ti:sapphire laser frequency by keeping the beatnote frequency
constant and scanning the repetition rate of the frequency comb. Due
to the relatively slow loop time of 30 ms of the PI control loop, our laser
has a Gaussian line shape with an average FWHM of approximately
1 MHz, with an accuracy of < 5 kHz, during the measurements.

In our experiment we measure a line scan over the resonance using 90
individual measurements with a frequency interval of 20 MHz. For every
individual measurement, a new QDG sample has to be produced. Once
the QDG is loaded in the ODT, an approximately 50 mW probe beam
excites the atoms to the 2 1P1 state during 1 s. The excited atoms decay
in 0.55 ns to the 1 1S0 state and leave the trap. Then the ODT is turned
off and the remaining atoms fall due to gravity and hit a microchannel-
plate (MCP) detector. The MCP current is measured to determine the
time-of-flight (TOF) distribution of the atoms. This TOF distribution
is fit using a bimodal distribution, which describes the momentum dis-
tribution of the BEC and thermal fractions. From the fit we obtain the
atom number of both fractions, the temperature of the thermal fraction
and the chemical potential of the BEC. Having measured the remaining
total number of atoms at all 90 points, the line shape can be normal-
ized by the far off-resonance remaining atom number. In this way we
reconstruct the absorption line shape of transition.

3.3 Transition line shape

As the lifetime of the excited state is only 0.55 ns and the measured
transition is too weak for stimulated emission to occur, the excited atoms
decay to the 1 1S0 ground state before they even have the chance to
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3.3. Transition line shape

move out of the trap potential (which is anti-trapping for the 2 1P1

state). The recoil kick of the emitted 58-nm photon is large enough for
the ground state atom to leave the trap. In this process we ignore the
alternative decay path 2 1P1 → 2 1S0 → 1 1S0 which also takes place
but at a branching ratio of 0.1% compared to the single-photon decay.
Still, as the 2 1S0 state experiences an anti-trapping potential in the
optical dipole trap atoms decaying via this channel will be observed as
a loss indiscernable from the primary channel. Therefore any atom that
is excited, will leave the trap. This means that even if the probe beam
is off-resonant all atoms will eventually be lost from the trap. In the
limiting case of infinitely long interaction time, one would then observe
an infinitely broad transition. In practice the one-body lifetime of the
gas is finite (τ ≥ 10 s), but this is not relevant for this experiment as the
interaction time is much shorter (∼ 1 s). This effect leads to broadening
which should be corrected for. Therefore we calculate the population
of the three states that are involved in this problem and evaluate the
population of the initial state as a function of interaction time to see
what happens to the linewidth as measured in the experiment.
We use a simple three-level system consisting of the metastable 2 3S1
state, the excited 2 1P1 state and the 1 1S0 ground state. The off-
resonant scattering rates of the most probable transitions from the 2 3S1
and the 2 1P1 states to higher states either due to the 886.6 nm or 1557.3
nm light is negligible (> 107 linewidths detuned) compared to the Rabi
frequency of the 2 3S1 → 2 1P1 transition. Photo-ionization of the 2 3S1
state due to reabsorption of a 58-nm photon emitted during the decay
of the 2 1P1 state is also fully negligible [257]. A schematic overview
of the three-level system is shown in Figure 3.3, where we have the
Einstein A coefficient A21 = 1.442 s−1 and added two decay channels
A13 = 1.272 × 10−4 s−1, and A23 = 1.801 × 109 s−1 [56]. For linear
polarized light, the Rabi frequency in this system is defined as

Ω2
R =

3πc2

~ω3
0

A21I0, (3.1)

where I0 = 2P/πw2
0 is the intensity of the spectroscopy beam, P the

spectroscopy beam power and w0 the beam waist. The transition fre-
quency is given by ω0/2π. For a typical probe beam power of P ≈ 50 mW
and a beam waist of w0 ≈ 2.5 mm, the Rabi frequency ΩR ≈ 2π× 30 kHz.

83



3. High-precision spectroscopy of the 2 3S1 � 2 1P1 trans...

A
21

A23
W

R

A 13

D

Ρ33

H1 1S0L

Ρ22

H2 1P1L

Ρ11

H2 3S1L

Figure 3.3 – Schematic of the level scheme as used in the OBE model.
The populations of the three atomic states are denoted ρ11, ρ22 and ρ33,
respectively. The different states are coupled through the decay channels
A23 and A13 and the spontaneous emission rate A21. The Rabi frequency
ΩR represents the interaction with the probe beam, which can have a
detuning ∆ with respect to the resonance frequency.

The optical Bloch equations (OBEs) describing the populations of the
states of this three-level system are based on the OBEs described by
Van Leeuwen and Vassen for a similar system in helium [106] and are

ρ̇11 = A21ρ22 − A13ρ11 + i
ΩR

2
(ρ21 − ρ12),

ρ̇22 = −(A23 + A21)ρ22 − i
ΩR

2
(ρ21 − ρ12), (3.2)

ρ̇33 = A23ρ22 + A13ρ11.

We can simplify this system of differential equations by writing A13 = Γ1

and A23 = Γ2 and applying the approximation Γ2 ≫ A21 ≫ Γ1. Note
that the linewidth of the measured transition Γ = A21+A23 ≈ Γ2 (which
is accurate up to 9 digits). The OBEs describing the coherences between
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the states are

ρ̇12 = −
(Γ1 + Γ2

2
+ i∆

)

ρ12 + i
ΩR

2
(ρ22 − ρ11),

ρ̇13 = −Γ1

2
ρ13, (3.3)

ρ̇23 = −Γ2

2
ρ23,

where ρij = ρ†ji. Introducing the parameters p = (ρ12 + ρ21)/2 and
q = i(ρ21 − ρ12)/2, we get

ρ̇11 = ΩRq,

ρ̇22 = −Γ2ρ22 − ΩRq,

ρ̇33 = Γ2ρ22,

ṗ = −Γ2

2
p+ ∆q, (3.4)

q̇ = −Γ2

2
q − ∆p+

ΩR

2
(ρ22 − ρ11),

ρ̇13 = 0.

The full solution of the population of the initial state, ρ11, is

et
Γ2
2 ρ11(t) =

√
S + Γ2

2 + 4∆2

2
√

2
cosh

(

t

τ1

)

+
Γ2√

2

√
S +D+

√
S
√√

S +D−
sinh

(

t

τ1

)

+

√
S − Γ2

2 − 4∆2

2
√

2
cos

(

t

τ2

)

+
Γ2√

2

√
S −D+

√
S
√√

S −D−
sin

(

t

τ2

)

, (3.5)
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where the parameters S,D±, τ1 and τ2 are defined as

S ≡ (4∆2 + (Γ2 − 2ΩR)2)(4∆2 + (Γ2 + 2ΩR)2),

D± ≡ Γ2
2 − 4Ω2

R ± 4∆2,

τ1 ≡ 2
√

2
√√

S +D−
, (3.6)

τ2 ≡ 2
√

2
√√

S −D−
.

We recognize the trigonometric terms that represent the coherent ex-
citation, but in our parameter regime these do not play a significant
role as ΩR ≪ Γ2. The hyperbolic terms are related to the decoherence
caused by the decay channel and represent the loss of atoms from the
ODT. Figure 3.4 shows the line shape for our experimental parameters
at three different interaction times. It is clear that the line becomes
broader and deeper as the interaction time increases, which is caused by
the loss of atoms from the trap to the 1 1S0 state. As the function is
symmetric in ∆, no systematic error is expected in the determination of
the absolute transition frequency by using a different (but symmetric)
line shape function.
The function ρ11(∆) as shown in Figure 3.4 is a function dependent on
many parameters and in our experiment we use a simple Lorentzian line
shape function defined as

y(x) = C0 − C1

(C2

2

)2 1

(x− C3)2 + (C2/2)2
, (3.7)

where C0 represents the background, C1 the amplitude of the Lorentzian
(which we also call the ‘depletion’ and is related to ρ11 as C1 = 1 −
ρ11(∆ = 0)), C2 is the FWHM and C3 the center frequency. As ρ11(∆)
and a Lorentzian function are both symmetric functions, this has no
effect on the determination of the transition frequency. To extract the
linewidth from these fits we compare the analytical result ρ11(∆) with a
Lorentzian line shape and correct for any deviations between these two
functions. The lifetime of the 2 1P1 state leads to a Lorentzian distribu-
tion in the frequency domain. The fact that we have a slightly different
line shape in our experiment is caused by the way the measurement is
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Figure 3.4 – Population of the initial 2 3S1 state (ρ11) as function of
the detuning ∆ for different probe times t. As we increase the probe time
the line shape becomes broader and deeper. This is the broadening effect
due to the depletion of atoms in the trap.

performed. However, by directly correcting the fitted Lorentzian distri-
bution for deviations from the analytical line shape, the lifetime of the
2 1P1 state can still be extracted from these measurements. An exam-
ple of a Lorentzian fit to the analytical result for typical experimental
conditions is shown in Figure 3.5. From the structure in the residu-
als, we conclude that the Lorentzian is accurate beyond the 1% level,
after which it deviates from the analytical model most at the center
and around ∆ = ±Γ/2. This problem is parametrized by calculating
the difference between the Lorentzian FWHM and the analytical model
FWHM as a function of the on-resonance depletion of the trap (simply
called ‘depletion’). As the depletion gets larger, the discrepancy between
the Lorentzian function and the analytical model increases. For a de-
pletion in the range of 0.4-0.6 (i.e. 40%-60% on-resonance loss of atoms,
which corresponds to a ρ11(∆ = 0) of 0.6-0.4), the correction factor on
the FWHM is on average 0.6% and relevant at our level of accuracy.
The correction on the depletion is an order of magnitude smaller and
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Figure 3.5 – Lorentzian fit (white dashed line) to the analytical model
and the residuals (black dots). From the residuals, which are at 10−3, we
infer that the Lorentzian fit is good to the percent level, but is ‘quenched’
compared to the analytical model. This means that the magnitude of the
central peak is larger in the fit than it actually is, and the linewidth of the
Lorentzian fit is slightly smaller than the actual linewidth of the curve.
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Figure 3.6 – Relative increase of the Lorentzian linewidth compared to
the natural linewidth (Γ′/Γ) as function of the on-resonance depletion
of the trap. The points are calculated from Lorentzian fits and the curve
is an spline-based interpolation function.

negligible.

The previous two corrections are related to the difference between the
Lorentzian line shape and the analytical model. The next issue, and the
reason why we need to calculate the OBEs, is the linewidth broadening
due to depletion of the trap. By comparing the linewidth Γ′ deter-
mined by a Lorentzian fit to the ‘real’ linewidth Γ used in the analytical
model, the relative increase in linewidth as function of depletion of the
trap is calculated and shown in Figure 3.6. Although the increase in
linewidth can be calculated to arbitrary precision, the deviation between
the Lorentzian line shape and the analytical model becomes larger than
our accuracies for a depletion > 0.75 and the comparison of both models
becomes less reliable. However, in our experiments our largest depletion
is ∼ 0.6 and this effect is still smaller than our corrections. As we deter-
mine the trap depletion experimentally, we can calculate the correction
for the linewidth as measured in the experiment and obtain the natu-
ral linewidth. Any experimental uncertainties in the depletion and the
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linewidth are propagated through all aforementioned corrections. The
correction is not insignificant, as the linewidth is increased on average
by 23% just because of depletion of the trap.

Finally, asymmetric broadening effects due to the finite size of the QDG
in the ODT and due to the momentum distribution of the gas [203,
258] are below 50 kHz1 and therefore negligible both compared to the
linewidth of the transition and the statistical accuracy of the frequency
determination.

3.4 Systematic effects

Due to the large (287 MHz) linewidth of the transition, the accuracy
in the transition frequency determination is limited by statistics rather
than systematics. As will be shown in Section 3.5, the statistical uncer-
tainty in the determined transition frequency is 0.5 MHz. The system-
atic effects are known which much better precision and therefore do not
contribute to the final error budget, but will be discussed here.

Recoil shift

As an atom absorbs a photon, conservation of momentum increases the
atom momentum by the photon momentum ∆p = ~k, where k = 2π/λ
is the wavenumber. As a consequence the kinetic energy of the atom
increases by ∆E = ∆p2/2m = ~

2k2/2m ≈ h×63.5 kHz, and the absolute
transition frequency should be corrected for this energy shift. Note that
the accuracy in the recoil shift correction is limited by the accuracy
of the measured transition frequency (∼ 9 digits accuracy) and known
atomic mass (12 digits accuracy [88]) and therefore does not contribute
to the error budget.

1With the trap frequencies known, the size of the thermal cloud is simply
xi =

√

kBT/mω2
i
, and for the Bose-Einstein condensate with known chemical po-

tential µ the size is xi =
√

2µ/mω2
i
. In the harmonic approximation this allows a

quick estimate of the spatial variation of the ac Stark shift, which is below 50 kHz
for the most extreme experimental conditions (i.e. cloud temperature, atom numbers
and ODT powers).
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Table 3.1 – Polarizabilities of the 2 3S1 and 2 1P1 states at 886.6 nm
and 1557.3 nm calculated using Eq. 2.5 and summing over all transitions
up to n = 10. The ac Stark shift contributions are estimated for our
experimental parameters (beam waists and powers).

Wavelength [nm] α(2 1P1) [a30] α(2 3S1) [a30] ac Stark shift [kHz]

886.6 4.1 × 102 -60 -0.3
1557.3 −1.0 × 102 6.0 × 102 30

ac Stark shift

Ab initio calculations of the polarizabilities of both the 2 3S1 and 2 1P1

states at both the wavelength of the ODT and the spectroscopy beam
are combined with previously performed ac Stark shift measurements
[31] as a cross-check. The calculations are based on a simplified model
based on Eq. 2.5 by summing over all transitions up to n = 10 states
which has shown to be within 1% of the extended ac Stark shift calcu-
lations [133] and is therefore more than sufficient for our purposes. The
polarizabilities are given in Table 3.1 together with the estimated ac
Stark shifts, based on estimates for the power and beam waists of both
the ODT and the spectroscopy beam. The absolute accuracy on these
estimates is on the order of 10 kHz due to uncertainties in the calcula-
tion of the peak intensity of the ODT, but are negligible compared to
the statistical accuracy of the frequency determination of ∼ 0.5 MHz.

Zeeman shift

Using the rf resonance method as explained in Chapter 2, the Zeeman
shift is measured a few times during a single day with kHz precision
and on the order of ∆E ≈ h × 1.5 MHz. The individual linescans are
corrected (on a daily basis) with an interpolated value of the Zeeman
shift which is accurate to a few kHz.

Apart from a direct correction of the Zeeman shift, we also consider
the possibility of exciting two transitions (π and σ−) and their effect on
any possible line splitting. For this we calculate the relative transition
strengths based on the geometry of our experiment.
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The Zeeman energy shift of an atomic state is ∆E = mJgJµBB, where
µB is the Bohr magneton, gJ the Landé factor of the fine structure state,
mJ the quantum number of the fine structure magnetic state and B the
magnitude of the local magnetic field. The Landé factor is given as [114]

gJ = 1 +
J(J + 1) + S(S + 1) − L(L+ 1)

2J(J + 1)
. (3.8)

The initial spin-stretched state is 2 3S1 mJ = +1. With an undefined
polarization of the driving field there are two possible transitions: either
a π (∆m = 0) transition to the 2 1P1 mJ = +1 state or a σ− (∆m = −1)
transition to the 2 1P1 mJ = 0 state. Filling in the corresponding
quantum numbers, we find a Landé factor of gJ = 2 for the 2 3S1 and
gJ = 1 for the 2 1P1 state. The differential shift of the π and σ−

transitions are therefore

∆π = −µBB, π-transition, (3.9)

∆σ = −2µBB, σ−-transition. (3.10)

The population of the excited state is proportional to the square of the
transition dipole matrix element µeg, which is defined in the |JmJ〉 basis
as [114]

µeg = e〈J ′m′
J |~ε · ~r|J mJ〉, (3.11)

where ~ε is the polarization unit vector and ~r the position vector. The
transition dipole matrix element can be decomposed in the |LmL, S mS〉
basis using the appropriate Clebsch-Gordan coefficients such that

µeg = e(−1)L
′+S−m′

J

√

(2J + 1)(2J ′ + 1)

×
{

L′ J ′ S

J L 1

}(

J 1 J ′

mJ q −m′
J

)

〈β′L′|r|βL〉, (3.12)

where the term in the curly brackets is a 6j symbol, the term in the
round brackets is a 3j symbol, and β, β′ denote the remaining quantum
numbers that are not used in this calculation. The information about
the polarization of the light (and the induced transition) is now given
by the factor q in the 3j symbol. Here q = 0,±1 depending on the
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induced π, or σ± transition. Filling in all relevant quantum numbers for
the 2 3S1 → 2 1P1 transition we obtain

µπeg = µσ
−

eg = − e√
6
〈α′L′|r|αL〉. (3.13)

The polarization of the spectroscopy light in our experiment is linear,
but the k-vector of the light is incident on the quantization axis of the
B-field with angle θ. This means that the linear polarization unit vector
~ε (see Eqn. 3.11) should be decomposed in a parallel and transverse
component, as in

~ε = sin θ · ~ε‖ + cos θ · ~ε⊥. (3.14)

The parallel component induces π-transitions and the transverse compo-
nent induces σ±-transitions. Therefore the vector ~ε⊥ should be decom-
posed into a superposition of left- and right-handed circularly polarized
light

~ε⊥ =
1√
2

(

~ε+ + ~ε−
)

. (3.15)

This gives us the total decomposition of the incoming polarization into
three components which will induce the three transitions as

~ε = sin θ · ~ε‖ +
1√
2

cos θ · ~ε+ +
1√
2

cos θ · ~ε−. (3.16)

Noting from Eqn. 3.11 that µeg ∝ ~ε, the effective transition dipole
matrix elements weighed by the polarization components give

µπeff = sin θ · µπeg = − sin θ · e√
6
〈α′L′|r|αL〉, (3.17)

µσ
−

eff =
1√
2

cos θ · µσ−

eg = − cos θ · e√
12

〈α′L′|r|αL〉. (3.18)

As the transition strength S ∝ µ2eff and from the geometry of the setup
we find sin θ ≈ 0.1, the ratio of the transition strengths of the π- and
σ−-transitions is

Sπ

Sσ−
= 2

sin2 θ

cos2 θ
≈ 0.02. (3.19)
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This means that the contribution of π-transitions is only significant at
the percent level. A simple simulation of a dual-peak structure with this
amplitude ratio and a differential Zeeman splitting of ∆π−∆σ = µBB ≈
0.7 MHz = Γ/500 shows that there is a systematic shift of ∼ 14 kHz due
to this effect. Although it is necessary to take this effect into account,
again, it is much smaller than the statistical accuracy of the frequency
determination.

Mean field shift

The mean field shift, also known as the cold-collision shift, is caused by
the fact that two colliding 2 3S1 atoms have a different s-wave scattering
length than a 2 3S1 atom colliding with a 2 1P1 atom. This difference
in scattering lengths leads to a different chemical potential for a gas of
purely 2 3S1 atoms and a mixture of 2 3S1 and 2 1P1 atoms as the chem-

ical potential of one component is µi = (4π~2/m)(g
(2)
ii aiini + g

(2)
ij aijnj),

where aij is the respective scattering length, ni the atom number den-

sity and g
(2)
ij the second order correlation function at zero separation

distance2. In the limit of much less 2 1P1 atoms than 2 3S1 atoms the
mean field shift is approximated as

h∆ν = δµ =
4π~2

m
nS(aSS − aSP ). (3.20)

This expression could already be used to make a rough estimate of the
mean field shift as function of the unknown aSP scattering length, but
it is also obvious that this shift diverges for aSP → ∞ which is not a
realistic expectation. To solve this issue we need to include the collision
energy in the description of the mean field shift.

The actual cold-collision cross-section σ is not only a function of the
scattering length a between two atoms, but also of the collision energy
that is described by the relative collision momentum k. The relative
momentum k is defined such that the total kinetic energy of the collision
is Ekin = ~

2k2/2µ, with µ the reduced mass of the system. To first order

2The second order correlation function g(2)(0) = 1 for coherent bosons (i.e. in a
Bose-Einstein condensate) and g(2)(0) = 2 for a thermal Bose gas [259].
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in k, the cross-section is

σ =
4πa2

1 + k2a2
. (3.21)

In the limit of very small collision energy or scattering length, ka≪ 1, we
obtain the hard-sphere scattering result σ0 = 4πa2. In the other limiting
case, ka≫ 1, the collision cross-section is bound as σ(k) = 4π/k2. This
is known as the unitarity limit where the scattering length is so large
that the collision cross-section only depends on the collision energy.

Without any knowledge about the 2 3S1 − 2 1P1 molecular potential,
there is no a priori indication of the sign and magnitude of the 2 3S1 −
2 1P1 scattering length aSP . A suitable model has been used by Kokkel-
mans et al. to calculate the mean field shift and line broadening of a
rubidium clock transition [260]. The mean field shift δω and line broad-
ening γ of the 2 3S1 → 2 1P1 transition can be described by a sum over
all relevant atomic states j as

iδω − γ =
∑

j

nj〈v(iλj − σj)〉, (3.22)

with 〈...〉 defining a thermal average, nj the density of atoms in state
j, v the relative velocity between two colliding particles and λj and σj
the shift and width cross-sections. These cross-sections can be obtained
from the S-matrices of the collisions as

iλj − σj = (1 + δ1j)(1 + δ2j)
π

k2
×
∑

l

(2l + 1)[Sl
(1j),(1j)S

l⋆
(2j),(2j) − 1],

(3.23)

with l the partial wave index. In the s-wave collision regime we can
limit ourselves to l = 0 and the S-matrices become

S(nj),(nj) =
1 − ikanj
1 + ikanj

. (3.24)

For the 2 3S1 → 2 1P1 transition, the density of excited state atoms
can be ignored due to the fast decay to the 1 1S0 ground state, and the
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Figure 3.7 – Mean field shift calculated for any scattering length aSP in
the range −104 a0 < aSP < 104 a0. The shaded area is the uncertainty
in the mean field shift due to the uncertainty in the average density as
given in the text. The maximum shift is ±90 (20) kHz at scattering
lengths of 2700 a0 or −2400 a0.

summation over the states is reduced to a complex function Ω defined
as

Ω ≡ iδω − γ =
4π~

mk
nS

(1 − ikaSS
1 + ikaSS

· 1 + ikaSP
1 − ikaSP

− 1
)

. (3.25)

Here aSS is the 2 3S1 − 2 3S1 scattering length of the 5Σ+
g potential

and is aSS = 7.512(5) nm = 142.0(1) a0, where a0 is the Bohr radius
[152]. From this final expression we can find the broadening and shift
as γ = −Re(Ω) and δω = Im(Ω).

The kinetic energy of the atoms in the BEC can be estimated from the
width of the momentum distribution of the atoms in the BEC [203] and
we find an energy corresponding to a few nK. For the thermal atoms the
temperature is 0.2 µK in our experiments. The absorption of a 887-nm
photon will increase the kinetic energy of a helium atom by about 3 µK
which is much larger than any of the kinetic energies of the thermal and
condensed atoms. Therefore we ignore any initial velocity distribution
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Figure 3.8 – Broadening calculated for any scattering length aSP in the
range −104 a0 < aSP < 104 a0, where the shaded area is the uncertainty
in the broadening due to the uncertainty in the average density as given
in the text.

of the gas and describe the collision energy solely by the recoil energy
of the 887-nm photon.

Using these parameters, and an average peak density of the BEC of
2.0(0.4) × 1013 cm−3, the mean field shift and broadening can be cal-
culated for any possible value of aSP . The results are shown in Fig-
ures 3.7 and 3.8. We find the maximum possible mean field shift to be
±90(20) kHz at scattering lengths aSP = 2700 a0 or aSP = −2400 a0.
Furthermore, the maximum broadening is ≤ 200 kHz, which is negligible
compared to the natural linewidth of 287 MHz.

Although the shift represents almost 20% of the statistical error bar
on our determined transition frequency, the scattering lengths at which
this would occur are very large. In order to ‘accidentally’ have such a
large scattering length, the collision energy should be resonant with a
bound state in the 2 3S1−2 1P1 molecular potential. The typical energy
spacing of such bound states is on the order to 10’s of GHz, and with a
linewidth of approximately 287 MHz the probability of being resonant is
at the percent level and therefore quite unlikely. Furthermore, the used
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Figure 3.9 – Example of a single linescan measurement, showing 90
consecutive measurements over a range of approximately 1.8 GHz. A
Lorentzian fit is used to determine the transition frequency and the
linewidth. The residuals are shown in the lower plot. The frequency
axis is centered on the transition frequency determined in this scan.

model does not incorporate the short lifetime of 0.55 ns of the excited
state. The finite lifetime would reduce the mean field shift even more,
just as any Penning ionization processes that could occur between these
states [261]. These last two arguments allow us to assume that the mean
field shift is much less than ±90 kHz and therefore negligible compared
to the uncertainty in our determined transition frequency.

3.5 Results

An example of a single normalized line scan of the 2 3S1 → 2 1P1

transition is shown in Figure 3.9. The scan spans a range of 1.8 GHz
measured at a 20 MHz interval and would take about 45 minutes to
acquire. The line is fit with a Lorentzian line shape, and from the
residuals shown in Figure 3.9 we see that this is indeed an excellent
fit. In a period of two months in summer 2013 over 100 line scans were
acquired of which 77 remained, as some scans were discarded due to a
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Figure 3.10 – Determined transition frequency averaged per measure-
ment day, based on a total of 77 measurements. The error bars on the
data represent the 1σ standard deviation of the daily average. The fre-
quencies are centered around the final average transition frequency and
the gray bar represents its 1σ standard deviation of 0.5 MHz.

strong variation in the atom number loading or because the spectroscopy
laser went out of lock partially through the measurement. From these
measurements we can determine the absolute transition frequency to
determine the ionization energy and lifetime of the 2 1P1 state.

2 1
P1 ionization energy

Based on a total of 77 line scans, the daily average transition frequency
is shown in Figure 3.10. We obtain a 2 3S1 → 2 1P1 transition frequency
of 338 133 594.4 (0.5) MHz. This value is in good agreement with the
most recent theoretical value of 338 133 594.9 (2.7) MHz [26], where the
accuracy is limited by the QED calculations of the 2 3S1 state.

From our previously measured 2 3S1 → 2 1S0 transition frequency
(192 510 702.1456 (0.0018) MHz [31]) we extract a 2 1S0 → 2 1P1 tran-
sition frequency of 145 622 892.2 (0.5) MHz. This result agrees with the
recent 2 1S0 → 2 1P1 frequency measurement [33] within 0.6 (0.6) MHz.
The 2 3S1 IE of 1 152 842 742.97 (0.06) MHz, derived from a measure-
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Figure 3.11 – Comparison of our experimental result for the 2 1P1 IE
with other experiments [33, 34, 249] and QED theory by Yerokhin and
Pachucki [26]. All recent experimental results show a > 3σ discrepancy
with theory.

ment of the 2 3S1 → 3 3D1 transition frequency [32] and the calculated
3 3D1 IE [52], can now be combined with our result to give a 2 1P1 IE of
814 709 148.6 (0.5) MHz. Comparing this result to both measurements
of Luo et al. [33, 34], we find very good agreement. An overview of
the most accurate experimental results and the QED calculations for
the 2 1P1 IE is shown in Figure 3.11. A discrepancy of > 3σ with the
theoretical IE as calculated by Yerokhin and Pachucki [26] remains. As
QED calculations of most low-lying states of 4He∗ agree very well with
experiment, improved calculations for the 2 1P1 state are now timely.
It may be that the contribution of mα7 terms is not treated well in
this case, as a re-evaluation of these terms has shifted the IE by almost
1 MHz [26, 55].

2 1
P1 lifetime

Based on the same 77 linescans from which we determine the transition
frequency we find a natural linewidth of 289(2)stat(

+0
−7)syst MHz. This
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Figure 3.12 – Previously experimentally determined 2 1P1 lifetimes
[251–255] compared to our result and the theoretical result by Morton,
Moffat and Drake [250]. Our result contains an extended, dashed, error
bar indicating a systematic uncertainty as discussed in the text.

includes the line shape and broadening corrections as discussed in Sec-
tion 3.3, and corresponds to a lifetime of the 2 1P1 state of
0.551(0.004)stat(

+0.013
−0.000)syst ns. This result is shown in Figure 3.12 to-

gether with previously determined lifetimes [251–255] and shows an
improvement in the accuracy compared to the previous most accurate
determination. Our result is in agreement with the previous measure-
ments, which are all based on completely different techniques, and agrees
with a theoretical lifetime of 0.5555 ns, which is accurate to the last digit
and calculated neglecting finite mass and relativistic effects that are ex-
pected below the 0.1% accuracy level [250].

The systematic uncertainty included in this result is based on possi-
ble saturation of the MCP detector, which can lead to broadening of
the line shape. Saturation effects can be expected and have been ob-
served in other experiments with metastable helium BECs [125, 162],
and we investigate any possible nonlinear behavior of the MCP detec-
tor by analyzing the determined linewidths as function of the average
loaded atom number with a quadratic function. From the fits we de-

101



3. High-precision spectroscopy of the 2 3S1 � 2 1P1 trans...

0 1 2 3 4 5 6
150

200

250

300

350

400

450

Average loaded atom number@106D

N
at

ur
al

lin
ew

id
th
@M

H
zD

Figure 3.13 – Experimentally determined linewidths as a function
of the total number of atoms loaded into the ODT. The horizontal
line represents the statistical average of 289(2) MHz. The dotted
line is a quadratic function as mentioned in the text, which gives a
natural linewidth of 282(5) MHz and a quadratic term coefficient of
5(6) × 10−13 MHz/atoms2.

termine a quadratic coefficient 5(6) × 10−13 MHz/atoms2, as shown in
Figure 3.13 and the determined natural linewidth shifts by −7 MHz
from 289(2) MHz to 282(5) MHz. Although this is barely significant, a
systematic uncertainty of −7 MHz is added to the result to indicate the
worst-case shift in the linewidth if we allow a nonlinear response of the
MCP detector in our analysis.

3.6 Conclusion

To summarize, we have measured the 2 3S1 → 2 1P1 transition frequency
in a quantum degenerate gas of 4He∗ to 1.6 × 10−9 relative accuracy.
From this measurement the 2 1P1 IE is determined with 6.7 × 10−10

relative accuracy, in agreement with two recent independent determina-
tions by Luo et al. [33, 34]. We show a > 3σ discrepancy in the 2 1P1 IE
with the most accurate QED calculation by Yerokhin and Pachucki [26],
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indicating that a renewed effort on the QED calculations is required.
We also report the most accurate determination of the 2 1P1 lifetime
to date. This new determination is in agreement with theory and all
previous experimental determinations.
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CHAPTER 4
Line shapes of the 2

3
S → 2

1
S

transition for quantum

degenerate bosons and fermions

Abstract

We observe a dramatic difference in optical line shapes of a
4He Bose-Einstein condensate and a 3He degenerate Fermi gas by
measuring the 1557-nm 2 3S − 2 1S magnetic dipole transition
(8 Hz natural linewidth) in an optical dipole trap. The 15 kHz
FWHM condensate line shape is only broadened by mean field in-
teractions, whereas the degenerate Fermi gas line shape is broad-
ened to 75 kHz FWHM due to the effect of Pauli exclusion on the
spatial and momentum distributions. The asymmetric optical line
shapes are observed in excellent agreement with line shape models
for the quantum degenerate gases. For 4He a triplet-singlet s-wave
scattering length a = +50(10)stat(43)syst a0 is extracted.

The high spectral resolution reveals a doublet in the absorption
spectrum of the BEC, and this effect is understood by the presence
of a weak optical lattice in which a degeneracy of the lattice recoil
and the spectroscopy photon recoil leads to Bragg-like scattering.

This chapter is based on: Comparison of spectral linewidths for quantum degen-

erate bosons and fermions, R.P.M.J.W. Notermans, R.J. Rengelink, and W. Vassen,
Physical Review Letters 117, 213001 (2016)
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4.1 Introduction

The bosonic or fermionic nature of a particle is a fundamental property,
and trapped quantum degenerate gases display dramatic different be-
havior depending on the quantum statistical nature of the gas. At low
temperatures identical bosons accumulate in the lowest state in the trap,
leading to Bose-Einstein condensation. In contrast, identical fermions
cannot occupy the same state due to the Pauli exclusion principle, and
will ‘fill’ all states in the trap from the bottom up until no more atoms
- or states - are available. A drastic difference in line shape of a narrow
optical transition is expected when measured in a Bose-Einstein conden-
sate (BEC) and a degenerate Fermi gas (DFG). In this work we show a
direct comparison of this difference between a BEC of metastable 4He
and a DFG of metastable 3He trapped in an optical dipole trap (ODT).

We do this work in the framework of high-precision frequency metrology
in helium, aimed at testing quantum electrodynamics (QED). Compari-
son of accurate transition frequencies is used to determine fundamental
physical parameters that are difficult to measure otherwise, such as the
nuclear charge radius of an atom. Recently high-precision frequency
metrology in (muonic) hydrogen and deuterium resulted in a remark-
able discrepancy in the determination of the proton and deuteron charge
radius [95, 96]. This discrepancy, also known as the ‘proton radius puz-
zle’, is currently under scrutiny by many groups all over the world and
similar work is ongoing for helium [99, 100]. To determine the 3He-4He
nuclear charge radius difference, we recently measured the doubly for-
bidden 2 3S − 2 1S transition at 1557 nm (natural linewidth 8 Hz) in
both quantum degenerate 4He and 3He with 1.8 kHz and 1.5 kHz ac-
curacy, respectively [31]. The measured isotope shift, combined with
QED calculations, allowed a determination of a squared nuclear charge
radius difference of 1.028(11) fm2 [27]. To compare this determination
to measurements in muonic helium ions [99, 100] we aim to measure
the 2 3S − 2 1S transition frequency with ≪ 1 kHz accuracy. Using a
narrow linewidth spectroscopy laser we are able to observe asymmet-
ric line shapes for a BEC and a DFG of metastable helium as well as
a line splitting in the optical spectrum of the BEC. Quantification of
these effects by understanding the line shapes is essential in achieving
the sub-kHz accuracy goal.
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4.2 Experimental setup

Our experimental setup is similar to earlier work [31] and to a more
recent measurement of the 2 3S1 − 2 1P1 transition at 887 nm [35]. We
load a BEC of typically 106 atoms in the metastable 2 3S1 (mJ = +1)
state (lifetime ∼ 7800 s, internal energy 19.82 eV) into a crossed-beam
ODT operating at 1557.3 nm. The crossing angle between the ODT
beams is 19◦, and the temperature of the thermal atoms in the ODT
is typically T ≈ 0.2 µK. As the fermionic 3He atoms cannot thermalize
once their temperature is below the p-wave barrier, they are loaded si-
multaneously with 4He and sympathetically cooled to degeneracy [131].
The quantum degenerate 3He-4He mixture is loaded into the ODT to
rethermalize, after which the 4He atoms are blown away using reso-
nant light. This procedure leaves a pure DFG of thermalized 3He in
the 2 3S1 (F = 3

2 ,mF = +3
2) state. The spectroscopy beam copropa-

gates with one of the ODT beams in order to overlap with the trapped
cloud. The atoms are probed for a few seconds, after which the re-
maining cloud is released from the ODT. The time-of-flight signal of the
metastable atoms is measured on a microchannel plate (MCP) detector
and used to determine the remaining atom number, temperature and
chemical potential. The measurements alternate with and without the
spectroscopy light in order to have a continuous background measure-
ment to normalize the line shapes.
For this experiment a narrow linewidth fiber laser is transfer-locked to
an ultrastable (< 2 Hz) laser system operating at 1542 nm using a cae-
sium clock-referenced femtosecond frequency comb to bridge the 15 nm
wavelength difference between both lasers. Due to uncompensated fiber
links we estimate a residual ∼ 5 kHz linewidth of the spectroscopy laser,
which is in agreement with the 4.5 kHz linewidth (FWHM) determined
in our line shape fits (see Appendix 4.D). This is a factor 20 improvement
compared to our previous experiment [31].
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4.3 Comparing the line shape of a BEC to a

degenerate Fermi gas

Figure 4.1 shows the optical σ− transitions measured in a BEC [2 3S1
(mJ = +1) → 2 1S0 (mJ = 0)] and DFG [2 3S1 (F = 3

2 ,mF = +3
2) →

2 1S0 (F = 1
2 ,mF = +1

2)]. The uncertainty in the frequency is 1.8 kHz,
and the error bars in the normalized atom numbers are based on the
atom number fluctuations in the measurements. The zero on the fre-
quency axis represents the transition frequency from the bottom of the
trap which is not measured as an absolute frequency. For the DFG re-
sults the atom number N ≈ 3 × 105 and peak density ∼ 1 × 1012 cm−3.
There are three times as many atoms in the BEC compared to the DFG
due to the more complicated loading procedure of the DFG [131], and
the peak density of the BEC is ten times higher. Despite this, the line
shape of the DFG is over five times broader. This is caused entirely by
the broad momentum and spatial distribution of the fermions. In con-
trast, the BEC line shape only has a finite width due to the mean field
interactions (which are absent in a coherent excitation of a Fermi gas
[262]) and the linewidth of the spectroscopy laser. Without the effects
of quantum statistics the width of both line shapes would simply be the
Doppler width (31 kHz for 4He, 35 kHz for 3He). This huge difference
in linewidths based on the quantum statistics of the helium isotopes is
complementary to the observation of bunching and antibunching with
the same atoms [163]. For frequency metrology purposes it is clear that
proper modeling is imperative in order to determine the true transition
frequency.

The line shape for the DFG is calculated using the absorption line pro-
file from Ref. [263] and involves explicit integration of the Fermi-Dirac
distribution of the spatial and momentum states occupied in the ODT,
convolved with a Lorentzian distribution with a FWHM of 4.5 kHz (de-
termined from the BEC fits) to model the finite linewidth of the spec-
troscopy laser. Time-dependent depletion of the DFG does not play
a role because the fermions neither rethermalize nor redistribute over
the trap states during the optical excitation. Using the experimen-
tally determined degeneracy T/TF = 0.33(7) and chemical potential
µ/kB = 0.55(15) µK of the DFG, the calculated line shape is shown in
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Figure 4.1 – Direct comparison of the (normalized) optical line shapes
of the 2 3S − 2 1S transition measured in a degenerate Fermi gas (top)
and a Bose-Einstein condensate (bottom) of metastable helium. The full
lines represent the fits provided by the models discussed in the main text,
and display a small but significant asymmetry. For a clear comparison
only one peak of the observed BEC doublet is shown (see Figure 4.4).
The zero frequency represents the transition frequency from the bottom
of the trap.
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Figure 4.1 (top). As only the relative amplitude and frequency offset of
the line are fitted to the data, the model predicts the line shape per-
fectly. Although hardly visible, the line shape is asymmetric and the
model provides a reduced χ2 = 1.09.
The line shape for light absorption from a BEC is fundamentally dif-
ferent from that of a DFG and was first calculated by Killian for the
absorption on the 1S−2S transition in a hydrogen BEC [264, 265]. Ex-
cellent agreement with the data was demonstrated, but the line shape
function [258] cannot be used in our experiment for two reasons. First,
in [258] it is assumed that the trapping potentials of both the initial and
final state are equal. This assumption is invalid in our ODT as the ratio
of the polarizabilities of both states αs/αt = −1.64(1) (see Chapter 5 or
Ref. [133]), where s and t denote the singlet and triplet state (2 1S atoms
are repelled from the trap). Second, the excitation fraction in [258] was
on the order of 1% and therefore depletion of the condensate during
excitation could be neglected. This is invalid in our experiment as the
excited BEC fraction is typically 20−70% to have an acceptable signal-
to-noise ratio. Therefore we extend the Killian model [258], of which the
full derivation is given in Appendix 4.A, by including the polarizabilities
in the effective potentials of the initial and final state. This results in the
addition of the ac Stark shift to the resonance condition, and an effective
rescaling of the mean field shift term (4π~2n0/m)(ats − att) which be-
comes (4π~2n0/m)(ats − (αs/αt)att). Here n0 is the peak density of the
condensate, att the 2 3S1 − 2 3S1 s-wave scattering length in the pure
5Σ+

g potential, and ats the 2 3S1(mJ = +1) − 2 1S0(mJ = 0) s-wave
scattering length. Although ats has not been measured or calculated to
date, att is very accurately known: atheorytt = 143.0(5) a0 [144, 146] and
aexptt = 142.0(1) a0 [152], where a0 is the Bohr radius.
It is convenient to express the line shape of the BEC using the chemical
potential µ = 4π~2attn0/m, which we determine directly from a time-
of-flight measurement. The line shape S(ν, µ), derived in Appendix 4.A,
is

S(ν, µ) =
15π~Ω2

R

4
N
hν

µ̃2

√

1 − hν

µ̃
, (4.1)

where ΩR is the Rabi frequency of the transition, N the total atom num-
ber of the BEC, ν the detuning from the absolute transition frequency
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including the full ac Stark shift of the trap, and µ̃ = (ats/att − αs/αt)µ
the rescaled chemical potential of the BEC (see Section 4.A). This rescal-
ing shows how the mean field interaction and ac Stark shift affect the
effective potential experienced by the atoms. The line shape of the BEC
is asymmetric with a high-frequency cut-off at ν = 0.

As the atom number of the condensate scales as N ∝ µ5/2 in the
Thomas-Fermi limit and the line shape S(ν, µ) constitutes a one-body
loss process, the decay of the chemical potential of the BEC during the
spectroscopy phase can be written as

dµ

dt
=

2

5

µ

N
S̃(ν, µ) − 2

5
Γµ, (4.2)

where S̃(ν, µ) is the line shape S(ν, µ) convolved with a Lorentzian dis-
tribution to model the spectroscopy laser linewidth (as derived in Ap-
pendix 4.A). We include the one-body lifetime Γ−1 of the gas as the
typical interaction times are long enough (1-6 seconds) that one-body
loss cannot be neglected. The decay of the chemical potential is slow
enough such that the condensate can be assumed to remain in equilib-
rium throughout the excitation. The BEC is held in the ODT for 4-5
seconds before switching on the probe light so two- and three-body loss
processes are negligible. The nonlinear differential Eq. 4.2 is numeri-
cally solved to fit to the line shape as shown in Figure 4.1 (bottom).
Here we use only the frequency offset and ats scattering length as free
parameters, giving a reduced χ2 = 0.94.

4.4 Bragg-like scattering in an optical lattice

Interestingly, we observe a doublet in the BEC spectrum where a sin-
gle peak was expected. This double peak structure is attributed to
the presence of a weak optical lattice in our crossed dipole trap due
to birefringence in our vacuum windows. The ODT laser wavelength
λODT ≈ 1557.3 nm (sufficiently off-resonance from the 2 3S− 2 1S tran-
sition to have negligible scattering) is close to the transition wavelength
and creates a lattice with periodicity d = λODT/[2 cos(θ/2)] and effec-
tive lattice recoil energy El

r = ~
2q2l /2m, where ql = π/d. This recoil en-

ergy is nearly degenerate with the recoil when absorbing a spectroscopy
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Figure 4.2 – (a) In the crossed-beam optical dipole trap geometry we
have a weak optical lattice with periodicity d = λODT/[2 cos(θ/2)].
Absorption of a spectroscopy photon results in a recoil momentum
q′ = 2π cos(θ/2)/λspec in the lattice direction equal to the lattice re-
coil momentum π/d. (b) Band structure of the optical lattice for the
ground (lower red bands) and upper state (upper blue bands) for a typi-
cal lattice amplitude V0 ≈ 2El

r. The BEC is situated at quasimomentum
q = 0 in the lowest band (black dot). Absorption of a photon creates
a quasimomentum q′ ≈ π/d in the optical lattice for the excited state.
Absorption can take place if the spectroscopy laser frequency is resonant
with the lowest or first band at the edge of the Brillouin zone (black dots
at q = π/d), giving rise to the observed bandgap splitting ∆.
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4.4. Bragg-like scattering in an optical lattice

photon in the lattice frame, Er = ~
2q′2/2m ≈ h × 20.0 kHz, with

q′ = 2π cos(θ/2)/λspec, see Figure 4.2(a). The absorbed spectroscopy
photon provides the excited wavefunction a quasimomentum q′ in the
frame of the lattice. This quasimomentum is at the edge of the first
Brillouin zone and therefore at the optical lattice bandgap, as shown
in Figure 4.2(b). The resonance condition can only be satisfied below
or above the bandgap, leading to a line splitting ∆ of the transition,
where ∆ = V0/2 and V0 is the optical lattice modulation amplitude as
observed by the excited state [121, 197].
This excitation in a weak optical lattice is reminiscient of Bragg scat-
tering of a BEC in an applied optical lattice [266, 267]. Contrary to
Bragg scattering, where an applied moving optical lattice causes diffrac-
tion, the direct one-photon optical excitation causes the transition to a
higher momentum state near the edge of the Brillouin zone. We verify
the presence of the weak optical lattice by rotating the polarization of
the second ODT beam with respect to the first. Figure 4.3 shows that
the splitting increases as V0 is increased and in these measurements we
estimate the optical lattice modulation amplitude for the 2 1S state to
be V0 ≤ 6.5El

r for the largest splitting shown. As the polarizability for
the 2 3S atoms is smaller by a factor 1.64, the optical lattice observed by
the BEC is V0 ≤ 4.0El

r for the largest splitting and the ultracold cloud is
in the superfluid regime [268]. Aspect ratio inversion in absorption im-
ages of the expanding cloud confirms this. In this regime the mean field
description is applicable and coupling to higher lattice bands can be ig-
nored. The doublet is simultaneously fit with the same model and fixed
experimental parameters, apart from the line splitting and amplitude
ratio, as shown in Figure 4.3. For the DFG line shape measurements we
have minimized V0 by looking at the BEC spectra shown in Figure 4.3.
At this setting the DFG line shape is much broader than the effect of
the lattice or, equivalently, the Fermi energy EF ≫ V0.
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Figure 4.3 – Absorption spectrum of a BEC in a weak optical lattice for
various rotation angles of the polarization of the second ODT beam with
respect to the first ODT beam from the configuration shown in Figure
4.2(a). The spectra are offset and centered around the midway frequency
of the two lines, and the lines are fits of the time-dependent line shape
model. The spectroscopy interaction times used in these measurements
are (top to bottom): 1.5 s, 2 s, 1.5 s, 4 s, and 6 s and vary as the Rabi
frequency also varies with the rotation angles.
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Figure 4.4 – Double-peak structure of the Bose-Einstein condensate
absorption spectrum due to the weak optical lattice measured for a spec-
troscopy laser probe time of 1 s (top, red) and 3 s (bottom, black). The
uncertainty per data point is indicated by the bottom left inset. The full
lines are fits of the time-dependent line shape model. For the top (red)
and bottom (black) fit we find χ2 = 0.9 and χ2 = 1.3, respectively. A
single absorption line from the top (red) dataset is used in Figure 4.1.

4.5 Determining the 2 3
S − 2 1

S s-wave

scattering length

We measure the time-dependent behavior of the BEC line shapes to
extract the scattering length ats, which is the only unknown param-
eter in the line shape calculations. The optical lattice operates with
splitting ∆ ≈ 35 kHz such that the lattice is as weak (V0 ≈ 2El

r)
as possible but the two lines are separated sufficiently so they can be
individually resolved. Background and lifetime measurements provide
the one-body loss rate Γ−1 ≈ 10 s and the chemical potential of the
BEC at t = 0. The scattering length ats is determined by simulta-
neous fitting of six doublet lines with interaction times ranging from
0.5 s to 3 s (as shown in Appendix 4.D), and Figure 4.4 shows the
lines for 1 s and 3 s. The average reduced χ2 of all fits is 1.1, show-
ing good agreement of the model with the data. From the fits we find
ats = +50(10)stat(43)syst a0. The statistical uncertainty is a 1σ un-
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certainty based on simultaneous χ2 minimization of all data sets. The
systematic uncertainty is a worst-case error bound based on our es-
timation of the Rabi frequency ΩR = 2π × 21(5) Hz (see Section
4.B). Our result is in agreement with the estimated range of possible
scattering lengths based on previous mean field shift measurements [31].
Furthermore the determination is in agreement with a surprisingly accu-
rate theoretical value ats = +42.5+0.5

−2.5a0 [269], based on ab initio 1 3Σ+
g

and 2 3Σ+
g molecular potentials [139] including large ionization widths

which make the calculations insensitive to the actual coupling between
the potentials. This is discussed in more detail in Appendix 4.D.

4.6 Conclusion

To conclude, we have directly compared the fundamental difference be-
tween quantum degenerate fermions and bosons by measuring and calcu-
lating the asymmetric absorption line shapes of a Bose-Einstein conden-
sate and a degenerate Fermi gas of metastable helium. The line shape of
the Fermi gas shows excellent agreement without any adaptations to the
existing model [263]. We extended the line shape of the Bose-Einstein
condensate from the existing model [258] to include ac Stark shift and
time-dependent depletion of the condensate. The model shows good
agreement with the data, and the 2 3S − 2 1S s-wave scattering length
is extracted to be ats = +50(10)stat(43)syst a0, in good agreement with
scattering length calculations.

We also show how a weak optical lattice can induce a line splitting
if the lattice recoil is degenerate with the spectroscopy photon recoil.
The effect is similar to Bragg scattering and allows observation of the
lattice in the optically excited state. Measurement of the line splitting
and the total ac Stark shift on the transition frequency would allow
determination of both the dynamic polarizability of the ground and
excited states. Furthermore, if unresolved, this effect could lead to a
frequency broadening or shift in any spectroscopy measurement in an
optical dipole trap.

This concludes the first part of this chapter concerning the work as
published in [157]. The remainder of this chapter will be devoted to a
detailed discussion of several aspects of the experiment in the appen-
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dices.

4.A Appendix: BEC line shape model

Using the line shape model as calculated by Killian [258] as a starting
point, the ac Stark shift and the time-dependent behavior are introduced
in two steps. Finally the analytic solution of the line shape, convolved
with a Lorentzian laser line shape, is given.

Adding an ac Stark shift

Although the hydrogen experiment is done in a magnetic trap [264, 265],
this does not influence the mathematics for the optical dipole trap
(ODT) case. The trapping potential of an ODT is proportional to the
dynamic polarizability α and the local intensity I(~r) of the optical field
as V (~r) ∝ −αI(~r). As I(~r) is identical for both atomic states, we can ex-
press the potential of the excited state simply as V2(~r) = (α2/α1)V1(~r),
where α1 and α2 are the dynamic polarizabilities of the ground and ex-
cited states, respectively. In the main paper the ground and excited
states are labeled t and s respectively to distinguish between the singlet
and triplet states.
The resonance condition of Killian includes a spatially dependent mean
field shift and we add another spatially dependent term here. Using the
general resonance condition

h(ν − ν0) = V eff
2 (~r) − V eff

1 (~r), (4.3)

where V eff
1,2(~r) are the effective potentials of the ground and excited state.

Note that the definition of ν is slightly different from the definition in
Eq. 4.2 in Section 4.3 as we have omitted the ac Stark, Zeeman and
recoil shift from the definition for simplicity of notation. Filling in the
mean field interaction and the ac Stark shift, we get

h(ν − ν0) =
(α2

α1
− 1
)

V1(~r) + ∆Un1(~r). (4.4)

Here ∆Un1(~r) = (U2 − U1)n1(~r) = (4π~2n1(~r))/m)(a21 − a11) is the
mean field interaction term, with atomic mass m, and scattering lengths
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a21 and a11 for the excited-ground state and ground-ground state colli-
sions, respectively. The ground state density profile is given by n1(~r).
We see how inclusion of the ac Stark effect leads to a spatial dependence
of the resonance condition similar to the mean field interactions.
Mean field interactions between two 2 1S0 atoms are neglected as the
estimated fraction of 2 1S0 atoms is limited to a worst-case upper bound
of 0.2% in the measurement. This estimate is based on the fact that
the 2 1S0 atoms experience an antitrapping potential and are therefore
expelled from the trapping region at a timescale shorter than 2 ms. We
note that this timescale is an upper limit based on worst-case estimates
of atoms leaving the trap from the center along the long axial direction.
In most cases the timescale is much shorter and on the order to 10 µs,
which makes the excited state fraction even lower. As the radiative
lifetime of the 2 1S0 state is 20 ms, spontaneous decay does not play a
role in this process.
We can use the linear relationship between the ground state trapping
potential and the density distribution of the BEC through the Thomas-
Fermi relation µ − U0 = U1n1(~r) + V1(~r), where U0 = V1(r = 0) is
the depth of the trap. This definition is slightly unconventional, and
is caused by the fact that most traps are defined as V (r = 0) = 0 for
convenience. In our case we have defined V1(r → ∞) = 0, which leads
to the slight modification. Substituting this in Eq. 4.4, we find

h(ν − ν0) =
(α2

α1
− 1
)

(µ− U0) +
(

U2 −
α2

α1
U1

)

n1(~r). (4.5)

This resonance condition now only depends on the spatial dependence
of the density distribution of the BEC, and any further analysis is com-
pletely analogous to the work done by Killian. An important check is to
see what happens if the trapping potentials are equal, which is the case
for the hydrogen experiment or, indeed, a magic wavelength ODT. In
this case α1 = α2 and Eq. 4.5 indeed reduces to the resonance condition
as derived by Killian.
The behavior of the resonance condition can also be visualized in a
schematic way as shown in Figure 4.5. Outside of the optical dipole
trap the resonance frequency is the unperturbed frequency ν0, but this
frequency is ac Stark-shifted in the optical dipole trap due to the differ-
ential polarizability of the states (as the polarizabilities α2/α1 ≈ −1.64).
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Figure 4.5 – Schematic overview of the excitation in an energy-position
graph. The unperturbed transition frequency ν0 is ac Stark shifted due
to the different ac polarizabilities α1,2 of the 2 3S1 and 2 1S0 states.
In the Thomas-Fermi limit the Bose-Einstein condensate with chemical
potential µ has a density profile nBEC(r, t) mimicking the trapping po-
tential with depth U0. Due to the spatial dependence of the ac Stark shift
and the mean field shift, the atoms are resonant at a range of positions
between the frequencies νmin and νmax, which are explained in the main
text. During the excitation atoms leave the Bose-Einstein condensate
and lower the chemical potential. As a result also the range of frequen-
cies over which the atoms are resonant becomes narrower and shifts to
higher frequencies.
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Including the mean field interactions two extremes in the shifted transi-
tion frequencies are identified. The center frequency νmax is given as the
sum of the maximum ac Stark shift and the maximum mean field shift
hνmax = [(α2/α1)−1](µ−U0)+(U2/U1−α2/α1)µ, where we use the fact
that µ ∝ a11n1(r = 0). Similarly, at the edge of the Bose-Einstein con-
densate (at the Thomas-Fermi radius R =

√

2µ/mω2 where Udip = µ),
the density is zero and the only contribution is the ac Stark shift to the
minimum shifted transition frequency hνmin = [(α2/α1) − 1](µ − U0).
As the atoms are excited from the Bose-Einstein condensate for t > 0
the condensate shrinks and the chemical potential drops, resulting in a
narrower range of blue-shifted (higher) frequencies for which the atoms
are resonant.

New line shape model

Using the definition by Killian to calculate the line shape for a Doppler-
sensitive profile in a spherically symmetric trap, we start with

S(ν) = π~Ω2
R

∫

4πr2n1(r)dr

× δ
[

h(ν − ν0) +
(α2

α1
− 1
)

(U0 − µ) −
(

U2 −
α2

α1
U1

)

n1(r)
]

, (4.6)

where ΩR is the Rabi frequency. This integral has the analytical solution

S(ν) =
15π~Ω2

RN

4

h(ν − ν0) +
(

α2
α1

− 1
)

(U0 − µ)
(

U2
U1

− α2
α1

)2
µ2

×

√

√

√

√

√1 −
h(ν − ν0) +

(

α2
α1

− 1
)

(U0 − µ)
(

U2
U1

− α2
α1

)

µ
, (4.7)

with N the total number of atoms in the condensate. Eq. 4.7 is also
given in Section 4.3 as Eq. 4.2. This function is valid in the frequency
domain
(α2

α1
− 1
)

(µ− U0) ≤ h(ν − ν0) ≤
(α2

α1
− 1
)

(µ− U0) +
(U2

U1
− α2

α1

)

µ.

(4.8)
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This looks quite similar to Eq. 25 from Killian’s work [258], which be-
comes more apparent if the ac Stark effect is removed by setting α1 = α2

i.e. the ‘magic wavelength’ condition. Also note that U2/U1 = a21/a11
and therefore this result has the nice feature of being dependent on the
- dimensionless - ratios of the polarizabilities and scattering lengths.

Depletion of the condensate during excitation

The weak excitation approximation - as used in [258] - assumes that the
chemical potential of the condensate does not change significantly during
the excitation. In the hydrogen BEC work this is a good approximation
as only a fraction of 10−2 of the condensate is excited. In our case
the excited fraction reaches over 50% and the change of the chemical
potential during the excitation has to be taken into account in the line
shape calculations.
In the Thomas-Fermi limit the relationship between the chemical po-
tential µ and the atom number N of a BEC is the well-known nonlinear
relationship

N =
2

5
2

15
√
m~2aω̄3

µ
5
2 , (4.9)

where m is the atomic mass, a the s-wave scattering length and ω̄ =
(ωxωyωz)

1
3 the geometric averaged trap frequency. The atom number

loss and chemical potential loss are then related as

dN

dt
=
dN

dµ

dµ

dt
=

5

2

2
5
2

15
√
m~2aω̄3

µ
3
2
dµ

dt
=

5

2

N

µ

dµ

dt
. (4.10)

Realizing that the function S(ν) represents the one body atom number
loss dN/dt, we can use this relationship to use Eq. 4.7 as a differential
equation for the chemical potential:

dµ

dt
=

2

5

µ

N
S(ν) =

3π~Ω2
R

2

h(ν − ν0) +
(

α2
α1

− 1
)

(U0 − µ(t))
(

U2
U1

− α2
α1

)2
µ

×

√

√

√

√

√1 −
h(ν − ν0) +

(

α2
α1

− 1
)

(U0 − µ(t))
(

U2
U1

− α2
α1

)

µ(t)
. (4.11)
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Solving this differential equation will result in a function µ(ν, t) which
shows how the chemical potential of the condensate changes as function
of the laser frequency and interaction time.
The above derivation assumes that the condensate stays in equilibrium
throughout the excitation, although we can achieve significant excitation
fractions in the experiment. To see if the condensate can redistribute fast
enough to assume equilibrium, we can compare the change in density
distribution to the sound velocity of the condensate. As the density
distribution scales linearly with the chemical potential, the estimated
upper limit on the relative change in the density distribution is

1

µ

dµ

dt
=

2

5

1

N

dN

dt
≈ 0.13 s−1, (4.12)

where we assume a (large) atom number of N = 106 atoms and a (short)
excitation time of 3 s based on the achieved depletion in Figure 4.4 in
Section 4.5. The sound velocity is [202]

c =

√

µ

m
≈ 2 cm/s, (4.13)

which, for a condensate with a length of ∼ 200 µm (which is an upper
limit), corresponds to a frequency of the density oscillations of 100 s−1.
As this is three orders of magnitude larger than the inverse timescale at
which the density of the condensate changes, we can assume that the
BEC is in equilibrium throughout the excitation.
As the interaction time is on the order of seconds, the condensate also
decreases due to one-body collisions with the background gas. This
is typically characterized by a loss rate Γ, and the simple differential
equation

dN

dt
= −ΓN (4.14)

actually leads to a second term in the differential for the chemical po-
tential as

dµ

dt
= −2

5
Γµ. (4.15)

Two- and three-body losses can, in principle, be implemented in a similar
fashion.
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Adding homogeneous broadening mechanisms

We are not in the limit where the spectral linewidth of the system (∼ few
kHz) is negligible compared to the observed width of the spectral feature
(∼ 15 kHz). In order to properly include a homogeneous broadening
mechanism, we convolve the initial line shape with a broadening function
g(ν) as

S̃(ν) =

∫

ν′
dν ′g(ν − ν ′)S(ν ′). (4.16)

This means that we do not have to change any of the first principle
considerations, but can simply convolve our analytical result of the line
shape with any broadening mechanism (which has to be independent of
the spatial distribution of the atoms) without changing the formalism.

Analytical result for S̃(ν)

Defining the Lorentzian distribution as

g(ν) =
1

2π

γ

ν2 + (γ/2)2
, (4.17)

with γ the full-width-half-max (FWHM), we obtain an analytical solu-
tion of the convolution with the line shape as defined in Eq. 4.7. We
introduce (rescaled) variables to simplify the final expression:

µ̃ ≡
(U2

U1
− α2

α1

)

µ, (4.18)

hν̃ ≡ h(ν − ν0) +
(α2

α1
− 1
)

(U0 − µ), (4.19)

h∆ ≡
√

(hν̃ − µ̃)2 + (hγ/2)2, (4.20)

hδ± ≡ h∆ ± (hν̃ − µ̃), (4.21)

hξ± ≡
√

(hγ)2 ± 8hδ±(hν̃ − µ̃). (4.22)
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The line shape then becomes

S̃(ν) =
30

32

~Ω2
RN

µ̃
5
2

[

2hγ
√

µ̃+

(

hν̃
√

hξ− +
hγ

2

√

hξ+

)

×
(

tan−1

[

−
√

2δ+µ̃/h

2∆ −
√

2δ−µ̃/h

]

− tan−1

[

√

2δ+µ̃/h

2∆ +
√

2δ−µ̃/h

])

−
(

hν̃
√

hξ+ − hγ

2

√

hξ−

)(

Log

[

√

√

√

√

hδ+µ̃

2(h∆)2
+

(

1 −
√

hδ−µ̃
2(h∆)2

)]

− Log

[

√

√

√

√

hδ+µ̃

2(h∆)2
+

(

1 +

√

hδ−µ̃
2(h∆)2

)])]

. (4.23)

This expression is used in Eq. 4.11 to calculate the time-dependent line
shape used to fit the data as shown in Figures 4.1, 4.3, 4.4, and 4.14.

It is interesting to note that most of the parameters in the full analytical
expression 4.23 are fixed or can be determined in our experiment with
sufficient accuracy. For determining the 2 3S1 − 2 1S0 scattering length
the limiting factor in the accuracy turns out to be the Rabi frequency
ΩR, as the overall prefactor of the lineshape contains the ratio Ω2

R/µ̃
5/2

and using Eq. 4.18, there is a near-linear dependence between the scat-
tering length a21 and ΩR. The accuracy in determining a21 is therefore
limited by the accuracy of our estimate of the Rabi frequency, which
will be discussed in Appendix 4.B.

Comparing the line shape model results

The model as presented by Killian [258] is now extended to include
ac Stark shift and time-dependent effects, and it is interesting to see
what sort of line shapes can be expected for the current experimental
parameters. It is also interesting to see how the inclusion of additional
effects, such as the one-body loss and the laser linewidth, affect the line
shapes. Therefore the line shapes for three different cases are shown in
Figure 4.6, starting with the most basic model, Figure 4.6 (a) and (b),
with added one-body losses in Figure 4.6 (c) and (d), and finally the full
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model including the spectroscopy laser linewidth in Figure 4.6 (e) and
(f).

For short interaction times the line shape looks similar to the solutions
developed by Killian [258], but the most striking effect is the formation
of a sawtooth-like line shape for longer interaction times. This is caused
by the fact that the condensate shifts more towards the ‘blue’ side of the
spectrum as it is depleted of atoms (i.e. the chemical potential decreases
towards the bottom of the trap, as schematically shown in Figure 4.5).
Its instantaneous line shape still looks like the weak-interaction line
shape, but when integrated over time it creates a sawtooth-like shape.

As a result of this effect, the line shape as observed in the experiment
(broadened by the spectroscopy laser linewidth of 4.5 kHz) will show a
systematic shift to higher frequencies with increasing interaction time if
the time-dependent behavior is not taken into account, as we can see in
Figure 4.6 (e) and (f). Furthermore, the asymmetry in the line shape
caused by the mean field interactions is reduced significantly, which is
why the line shape is measured at multiple interaction times to deter-
mine the scattering length.

4.B Appendix: Estimating the Rabi frequency

As mentioned in the previous section, the accuracy of the determined
2 3S1 − 2 1S0 scattering length is limited by the accuracy with which
the Rabi frequency of the optical transition is determined. Therefore
the exact quantization axis (i.e. the direction of the magnetic field) of
the atom is calculated together with the projection of the spectroscopy
beam along (and orthogonal to) this axis in order to calculate the Rabi
frequency accurately enough for the scattering length determination.
First the coordinate system and the magnetic fields are defined, after
which the geometric parameters (i.e. polar and azimuthal angles of the
magnetic field) can be calculated. The projection of the spectroscopy
beam onto the magnetic field can be calculated next in order to estimate
the Rabi frequency. Finally the effect of the unknown ellipticity of the
polarization (due to birefringence of the vacuum windows) on the Rabi
frequency is estimated.
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Figure 4.6 – Time-dependent behavior of the line shape of
a Bose-Einstein condensate using typical experimental parameters:
ΩR = 40π rad/s, Γ = ΩR/200, α2/α1 = −1.64, and ats/ass = 50/142.
The initial chemical potential of the condensate is µ/kB = 0.2 µK. Each
figure shows the line shape for interaction times of ΩRt = 20π, 40π, 60π,
and 80π normalized to the background level at the shortest interaction
time shown. The figures on the left-hand side show the line shape as
function of the chemical potential µ(ν), and on the right-hand side as
function of the atom number N(ν) of the condensate. Figures (a) and
(b) show the line shape by solving Eq. 4.11. Figures (c) and (d) show
the line shape by solving Eq. 4.11 and including one-body loss as defined
by Eq. 4.15. Figures (e) and (f) show the line shapes when including a
spectroscopy laser linewidth of 4.5 kHz following Eq. 4.23 and one-body
loss. For short interaction times the line shapes look very similar to the
analytical solution given by Killian [258], but evolve into a distinct saw-
tooth shape. This effect is smeared out significantly with the (current)
spectroscopy laser linewidth.
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4.B. Appendix: Estimating the Rabi frequency

Defining the geometry and calculating the field

The basic coordinate system is defined as shown in Figure 4.7, where
the z-axis is aligned with the MOT z-beam in our experiment, and
therefore represents the axial direction (longitudinal axis) of the ODT
and the symmetry axis of the fine tune field. As the quantization axis is
given by the magnetic field, the magnetic field in this coordinate system
is calculated and used to project the spectroscopy beam on in a later
stage. The background magnetic field

~Bbg = Bx
bg~ex +By

bg~ey +Bz
bg~ez (4.24)

is defined as
Bx

bg = B0 sin(θ) cos(φ),

By
bg = B0 sin(θ) sin(φ),

Bz
bg = B0 cos(θ).

(4.25)

Here B0 = ν0/γ is the magnitude of the magnetic field which can be
measured using rf spectroscopy where ν0 is the resonance frequency (in
Hz) and γ = 2.8 MHz/G the magnetic moment of the state.
Applying a magnetic field along the z-axis

~Bext = Bext~ez, (4.26)

the new magnetic field ~Bnew is

Bx
new = B0 sin(θ) cos(φ),

By
new = B0 sin(θ) sin(φ),

Bz
new = B0 cos(θ) +Bext.

(4.27)

This is rewritten in a form with a new magnitude B′
0 and polar angle θ′

as
Bx

new = B′
0 sin(θ′) cos(φ),

By
new = B′

0 sin(θ′) sin(φ),

Bz
new = B′

0 cos(θ′),

(4.28)

by realizing that

B0 cos(θ) +Bext = B′
0 cos(θ′), (4.29)
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Figure 4.7 – Schematic overview of our coordinate system, where the
z-direction is aligned with the axial direction (longitudinal axis) of the
ODT. The polar angle is θ and azimuthal angle is φ. The radial length
r is equivalent to the magnitude of the field e.g. r = | ~B0|.

and that the magnitude of the new field is

B
′2
0 = (B0 cos(θ) +Bext)

2 +B2
0 sin2(θ),

B
′2
0 = B

′2
0 cos2(θ′) +B2

0 sin2(θ).
(4.30)

This defines the new angles

cos2(θ′) = 1 −
(B0

B′
0

)2
sin2(θ),

sin2(θ′) =
(B0

B′
0

)2
sin2(θ).

(4.31)
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Thus the new magnetic field can be described as

Bx
new = B′

0 cos(φ)

√

(B0

B′
0

)2
sin2(θ),

By
new = B′

0 sin(φ)

√

(B0

B′
0

)2
sin2(θ),

Bz
new = B′

0

√

1 −
(B0

B′
0

)2
sin2(θ).

(4.32)

As both B0 and B′
0 can be measured using rf spectroscopy (using

B0/B
′
0 = ν0/ν

′
0), the new angle θ′ can be determined directly if the

original angle θ is known. No information about the azimuthal angle
φ is obtained as the magnetic field is only applied along the z-axis and
thereby not breaking the symmetry.

Measuring the polar angle θ for Bbg

The derived magnetic field relations can be used to measure θ by apply-
ing an external magnetic field Bext and observing how the total magnetic
field amplitude B′

0 (i.e. the rf resonance frequency) changes as function
of this field. Knowing that

|B′

0| =
√

(B0 cos(θ) +Bext)2 +B2
0 sin2(θ),

|B′

0| =
√

B2
0 +B2

ext + 2B0Bext cos(θ),
(4.33)

the fine tune field calibration measurements can be used for a simple fit
of the latter equation to determine the angle

cos(θ) = 0.614(6),

θ = 52.1(4)◦.
(4.34)

‘Flipping’ the quantization axis

By applying an external magnetic field pointing into the -~ez direction
(i.e. ~Bext = −Bext~ez), the new total magnetic field gives a resonance
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frequency ν ′0 ≈ 1.682 MHz (without external field it is ν0 = 1.4635
MHz). In this case the new angle θ′ is

sin(θ′) =
∣

∣

∣
− 1.4635

1.682
sin(θ)

∣

∣

∣
,

θ′ = 136.6(3)◦.
(4.35)

This means that the new magnetic field vector is pointing in the opposite
direction along the z-axis i.e. the quantization axis has flipped in the z-
direction (but not along the azimuthal coordinate φ). This can be used
as a method to check for systematic effects depending on the absolute
orientation of the quantization axis.

From magnetic field to quantization axis

The quantization axis generally is a unit vector defining the orientation
of the field. In our case the quantization axis is defined by the magnetic
field, and in order to talk about a clean quantization axis, the vectors as
described in the previous sections should be used, but they are divided
by the magnitude of the magnetic field such that ~Q = ~B/| ~B|. This is a
unit vector which is cleaner to deal with when considering the projection
of the spectroscopy light onto the quantization axis.

Defining the spectroscopy light

The spectroscopy light is defined by a k-vector ~k and the polarization of
the light (i.e. the orientation of the electric field ~E), which is orthogonal
to ~k. Although the the electric field is considered in this example, this
approach also works for the magnetic field component (which is orthog-
onal to both ~k and ~E) which is relevant for magnetic dipole transitions.

The spectroscopy beam is defined as ~k = ky~ey + kz~ez = (2π/λ) ×
(sin(α)~ey + cos(α)~ez) when traveling in the y-z plane with an angle
α = −9.5◦ with respect to the z-axis. The polarization of the electric
field ~E = Ex~ex +Ey~ey +Ez~ez is orthogonal to ~k. Defining a azimuthal
coordinate φ′ which defines the orientation of the polarization in the
(x, y, z)-space with φ′ = 0 in the x-z plane if α = 0 (i.e. for φ′ = π/2
the polarization is pointing along the y-axis, similar to the definition of
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φ in Figure 4.7), gives

Ex = E0 cos(φ′),

Ey = E0 cos(α) sin(φ′),

Ez = −E0 sin(α) sin(φ′).

(4.36)

The angles α and φ′ are in principle known, apart from the fact that the
birefringence of the windows might change φ′.

Projecting the spectroscopy light

The goal of all these calculations is to figure out how much of the spec-
troscopy light is actually used for making a transition. In the experiment
a σ− transition is induced, which actually depends on the orthogonal
part of the field with respect to the quantization axis. The projection
along the quantization axis is calculated, from which the remaining (i.e.
orthogonal) part can be deduced.

The normalized projection P of vector ~E on quantization axis vector ~Q
is

P =
~E · ~Q
| ~E|

=
1

E0

∑

i=x,y,z

EiQi =
1

E0B0

∑

i=x,y,z

EiBi, (4.37)

which is

P = sin(θ) cos(φ) cos(φ′) + sin(θ) sin(φ) cos(α) sin(φ′)

− cos(θ) sin(α) sin(φ′). (4.38)

In this expression only φ is completely unknown and the other angles
can be measured or fully controlled. The projection P is along the quan-
tization axis and is relevant for π transitions. For the σ− transitions the
orthogonal projection P ′ =

√
1 − P 2 is the relevant parameter. The

Rabi frequencies ΩR scale linearly with this projection but the magni-
tude (i.e. depletion) of the line shapes scale with Ω2

R and therefore with
P ′2 (or, equivalently, 1 − P 2).
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Figure 4.8 – Orthonormal projection P ′2 for the unknown quantiza-
tion axis azimuthal angle φ, assuming the quantization axis polar an-
gle θ = 52.1◦ and the spectroscopy light polarization rotation angle
φ′ = −16◦ as used in the experiments.

Application to our measurements

Figure 4.8 shows the variation in P ′2 for the full range of possible val-
ues of the quantization axis azimuthal angle φ, given an experimentally
determined polar angle θ = 52.1◦ and a spectroscopy light polarization
rotation angle of φ′ = −16◦ as used in the experiment.

P ′2 - and thereby Ω2
R - varies from 0.4 to 1.0. As there is no additional

information to reduce this range, a systematic uncertainty is set on the
projection as P ′2 = 0.7 ± 0.3 (i.e. ∼ 43% uncertainty). It should be
noted that this uncertainty covers the full range of possible values i.e.
it is a conservative estimate of the uncertainty.

This calculated range of effective projections provides an estimate of the
Rabi frequency ΩR which is defined as

Ω2
R =

6πc2

~ω3
0

A21|〈J1M1|q|J2M2〉|2I0. (4.39)
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Here ω0 is the transition frequency, A21 = 9.1 × 10−8 s−1 the Ein-
stein coefficient as calculated by Pachucki et al. [106], I0 = 2P0/πw

2
0

the peak intensity with P0 the total power and w0 = 0.3 mm the
beam waist of the spectroscopy beam. The remaining matrix element
|〈J1M1|q|J2M2〉|2 = C2

C−G · P ′2, where q = −1, 0,+1 represents the
possible transitions (i.e. σ−, π, σ+, respectively), C2

C−G = 1/3 the cor-
responding Clebsch-Gordan coefficient of the transitions, and P ′2 the
relevant projection of the spectroscopy light onto the quantization axis.
As the m = +1 → m′ = 0 transition is currently under considera-
tion, q = −1 and P ′2 represents the projection orthogonal to the quan-
tization axis, as it is this component which induces a σ− transition.
An additional factor (1/

√
2)2 is added to this term, as the orthogonal

projection H of the linearly polarized light is equally decomposed in
left-handed (LCP ) and right-handed (RCP ) circular polarized light as
|H〉 = (|LCP 〉 + |RCP 〉)/

√
2.

All these elements are combined to calculate the Rabi frequency. Just
for reference the calculation is split for the different terms:

6πc2

~ω3
0

A21 = 0.28 m2/J s, (4.40)

and

I0 =
2P0

πw2
0

=
2 · P ′

0 · T · χ
πw2

0

= 5.5 × 105 W/m2, (4.41)

using a typical measured power of P ′
0 ≈ 95 mW, T = 0.9 is the trans-

mission of the vacuum window, χ = 0.9 represents additional reflection
losses between the position where the optical power is measured and
the vacuum window. Including the Clebsch-Gordan coefficients and the
factor 1/2, the Rabi frequency is Ω2

R = 5.1 × 104 × P ′2

2 (rad/s)2. Using
the calculated range for P ′2 = 0.7 ± 0.3 gives

ΩR = (1.33 ± 0.29) × 102 rad/s = 2π × (21 ± 5) Hz. (4.42)

Checking the polarization of our spectroscopy light

The observations of the apparent presence of an optical lattice in the
ODT means that the polarization of the laser beams is slightly rotated

133



4. Line shapes of the 2 3S → 2 1S transition for quant...

(and possibly made elliptical) due to birefringence of the vacuum win-
dows. It is important to know how much the linear polarization changes,
as it affects the effective Rabi frequency. This effect can be quantified
by considering the following.
Any arbitrary polarization state M̄ can be described in a x− y basis as

M̄ =

[

Ex

Ey

]

=

[

A
B ± iC

]

, (4.43)

where the ± sign represents the handedness of the polarization. This
is not known for now, but the sign can be kept as such as it will drop
out in the later calculations. This polarization state can be decomposed
into normalized linear and circular polarization components as

[

A
B ± iC

]

= c0

[

1
0

]

+ c1

[

0
1

]

+
c2√

2

[

1
±i

]

, (4.44)

resulting in the following relations

c0 = A− C, (4.45)

c1 = B, (4.46)

c2 =
√

2C. (4.47)

The arbitrary polarization state can be written as
[

A
B ± iC

]

= (A− C)

[

1
0

]

+B

[

0
1

]

+ C

[

1
±i

]

. (4.48)

Furthermore the polarization state is required to be normalized, i.e.
|Ex|2 + |Ey|2 = A2 + B2 + C2 = 1. Explicit calculation of M̄ †M̄ using
the decomposition as given in Eq. 4.48 shows that this is indeed the
case.
Rotating this polarization state using a half-wave plate, the final polar-
ization state is given by

[

E′
x

E′
y

]

=

[

cos(φ′) − sin(φ′)
sin(φ′) cos(φ′)

] [

A
B ± iC

]

, (4.49)

where φ′/2 is the angle of rotation of the half-wave plate (following the
definition of φ′ as the polar angle of the spectroscopy polarization).
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Figure 4.9 – Normalized transmission of a polarizing beam splitter be-
fore (left) and after (right) the vacuum chamber whilst rotating a half-
wave plate. The solid lines are fits using Eq. 4.51.

Table 4.1 – Polarization state parameters determined by fitting Eq.
4.51 to the data as shown in Figure 4.9. The polarization state has
a slight deviation in the determined normalization condition (bottom
right), which is explained in the main text.

Vacuum chamber

Parameter Before After

R 42(4) 4.2(1)

A2 (from R) 0.977(2) 0.808(4)

B2 + C2 (from R) 0.023(2) 0.192(4)

B (fit) ∼ 0 0.16(3)

C (fit) 0.150(7) 0.454(6)

C2 (fit) 0.023(2) 0.207(5)

B2 + C2 (fit) 0.023(2) 0.23(1)

A2 +B2 + C2 (fit) 0.999(3) 1.04(1)
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The new x−component is

E′
x = A cos(φ′) − (B ± iC) sin(φ′), (4.50)

or, considering the intensity in stead of the field

|E′
x|2 = A2 cos(φ′)2 − 2AB cos(φ′) sin(φ′) + (B2 + C2) sin(φ′)2. (4.51)

It is this behavior that is expect to be observed if the transmission
through a polarizing beam splitter is measured when rotating an elliptic
polarization state. Figure 4.9 shows the normalized transmission of the
optical dipole trap beam as measured using a polarizing beam splitter
before and after the vacuum chamber. The solid lines are fits to the
data using Eq. 4.51.
It is clear that the polarization is no longer linear after the vacuum
chamber, as visibility of the fringes has decreased significantly. From
these measurements we can already determine most of the parameters
A, B, and C of the polarization state.
The ratio R = |Ex|2/|Ey|2, which represents the ratio of the major and
minor axis of the elliptic polarization, is determined by the ratio of the
maximum and minimum transmission of the light and is given in Table
4.1. From the matrix representation this ratio can be written as

R =
|Ex|2
|Ey|2

=
A2

B2 + C2
. (4.52)

Combined with the normalization condition this gives

A2 =
1

1 + 1/R
, (4.53)

B2 + C2 =
1

1 +R
. (4.54)

The values of R are known from the fits (see Table 4.1) the value for A
can be filled in and this parameter can be fixed in the fits for B and C.
Using this method provides values for B and C from the fits, and can
be cross-checked with the expected value for B2 + C2 and the normal-
ization condition. There is good but not excellent agreement as there
is a deviation from the experimentally determined normalization of the
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polarization state after transmission throught the vacuum chamber (see
Table 4.1). This is probably because this approach neglects nonlinear
effects that also play a role (such as slight ellipticity introduced in the
polarization by non-Brewster reflection off a mirror). However, it is
sufficient to provide an estimate of the ellipticity of the polarization.

The parameter C2 describes the ‘amount’ of circular polarization in the
beam, and this constitutes about 2.3(2)% prior to the vacuum chamber
and 20.7(5)% after the vacuum chamber i.e. a nine-fold increase. As
the handedness of the circular polarization is not known, this percentage
either presents a loss or increase of signal1.

This can be parametrized by defining the new σ−-projection P̃ 2, which
is defined as 2

P̃ 2 =
P ′2

2
(1 − C2) + C2, (4.55)

P̃ 2 =
P ′2

2
(1 − C2), (4.56)

depending whether the circular polarization is allowed to induce a tran-
sition or not. In this definition and in the limit of C2 → 0, P̃ 2 goes
to P ′2/2 (so the factor of 2 needs to be taken into account if the Rabi
frequency should be recalculated). The new effective orthogonal projec-
tion is shown in Figure 4.10. The range of determined values of C2 gives
0.275 ≤ P̃ 2 ≤ 0.48 (or, 0.55 ≤ P ′2 ≤ 0.96). This is within the earlier
calculated range of P ′2/2 = (0.7 ± 0.3)/2 = 0.35 ± 0.15 where a pure
linear polarization was assumed. Further analysis could be done to nar-
row this range down, but as it is already smaller than the conservative
systematic error bar calculated before it is not essential to pursue this.

1The Clebsch-Gordan coefficients for all transitions in this case are equal, but we
cannot make σ+ transitions from the m = +1 state due to selection rules. So if the
handedness allows a σ− transition, it presents an increase in signal but the opposing
situation would present a loss of signal.

2For C2
→ 0 the value of P̃ 2

→ P ′2/2, as only 50% of the orthogonal linear
polarization can be used for a σ− transition. But for C2

→ 1 either all or none of
the orthogonal polarized light can be used for the transition.
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Figure 4.10 – New effective projection P̃ 2 recalculated for the two cases
if circular polarization is present (for either handedness). From our
analysis we know that 0.023 ≤ C2 ≤ 0.207 (vertical lines), and within
that range we have 0.275 ≤ P̃ 2 ≤ 0.48 (horizontal lines).

Concluding remarks about the Rabi frequency

In this Appendix the full three-dimensional orientation of the magnetic
field and the spectroscopy beam field are calculated and determined.
From magnetic field scans using the fine tune coils the polar angle of
the magnetic field could be constrained to θ = 52.1(4)◦ with respect to
the z−axis in our experiment.

Using the angle of incidence α = −9.5◦ of the spectroscopy beam with
respect to the z−axis and the known polarization angle φ′ = −16◦

of the spectroscopy light, the orthogonal projection (squared) of the
spectroscopy light onto the quantization axis is estimated to be P ′2 =
0.7±0.3, without using any assumption on the possible azimuthal angle
φ of the quantization axis. This is the most conservative estimate of this
projection. For the typical spectroscopy beam power used in the exper-
iment this gives a Rabi frequency of ΩR = (1.33 ± 0.29) × 102 rad/s =
2π × (21 ± 5) Hz.
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This analysis is based on the assumption that the spectroscopy light is
linearly polarized. The effect of possible ellipticity of the polarization
due to the birefringence of the vacuum windows is also investigated and
provides a conservative estimate of 0.55 ≤ P ′2 ≤ 0.96. This is within
the previously determined bounds (which are also conservative).

4.C Appendix: An optical lattice

To make sure that the two laser beams that constitute our crossed-beam
optical dipole trap have orthogonal polarizations, a Glan polarizer and
a polarizing beam splitter are used. However, the beams are sent into
the vacuum chamber at an angle of incidence of 9.5◦. As the sapphire
windows of our vacuum chamber are birefringent (with the fast axis
perpendicular to the window plane), this non-orthogonal incidence cre-
ates a slight ellipticity of the polarization in both beams, which are not
orthogonal with respect to each other.

A solution would be to use an AOM to detune the ‘returning beam’
sufficiently so interference does not occur regardless of polarization. This
would however require a full reconstruction of the optical dipole trap,
which is very time consuming. Furthermore it was noticed before that at
the typical ODT powers the AOM would actually cause thermal lensing,
making it experimentally difficult to create an ODT with two identical
beams.

It is necessary to estimate the typical lattice parameters as used in the
experiment to determine in what regime of optical lattice physics the
Bose-Einstein condensate and line shape model can be described.

Physics in an optical lattice

Typical experimental values of the optical lattice parameters are given
in Table 4.2. The discussion is primarily based on an introduction to
optical lattices in Refs. [270] (p. 477) and [202] (Ch. 16).
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Table 4.2 – A list of relevant BEC or optical lattice parameters.

Parameter Value

ODT wavelength λODT 1557.3 nm

Effective lattice wavenumber
q = 2π cos(θ/2)/λODT

3.980 × 106 m−1

Lattice spacing d = π/q 789 nm

Lattice recoil energy Er 20.0 kHz

Spectroscopy photon recoil energy Es
r 20.6 kHz

Scattering length (2 3S1 − 2 3S1) as 7.512(5) nm [152]

Scattering length compared
to lattice spacing as/d

0.0095

Chemical potential µ 0.2 µK, 4.2 kHz, 0.21 Er

BEC interaction parameter
g = 4π~2as/m

1.56 × 10−49 J m3

BEC peak density n0 = µ/g ∼ 1019 m−3

Healing length ξ = ~/
√

2mgn0 732 nm

Healing length compared to
lattice spacing ξ/d

0.93

Axial BEC length lax =
√

2µ/mω2
ax ∼ 1 × 10−4 m

Number of lattice sites Nlatt = lax/d ∼ 126

Lattice harmonic oscillator

length alatt =
√

~/mωz
∼ 2 × 10−7 m

alatt compared to lattice spacing alatt/d 0.25

alatt compared to scattering
length alatt/as

27

Lattice momentum states pl = 2π~l/d l × 8.4 × 10−28 kg m s−1

BEC atom number N0 ∼ 105

BEC atoms per site N0/Nlatt ∼ 103
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The simple interference pattern created by two counterpropagating beams
along the z-axis is defined as

Vlatt(z) = sEr sin2(qz), (4.57)

where Er = ~
2q2/2m ≈ kB×0.94 µK = h×20.0 kHz is the lattice recoil

energy, q = 2π/λODT and s = V0/Er the dimensionless lattice ampli-
tude. If the two counterpropagating laser beams intersect at an angle θ
with respect to each other q is redefined as q = 2π cos(θ/2)/λODT. In
a similar way the lattice period d = λODT/2 cos(θ/2) (and q = π/d).
These are the same definitions as used in Section 4.4.

In such a 1D lattice, the local axial trap frequency per lattice site is
~ωz = hνz = 2

√
sEr (the radial trap frequency is ∼ 250 Hz), and should

be compared to the typical chemical potential of the BEC, which is
around kB × 0.2 µK in our experiment, or 0.21 Er. Even for a value of
s = 1 (which would be a very weak optical lattice), we have µ ≪ ~ωz

and µ ≫ ~ωrad. This shows that the BEC can be described in the
lattice using a radial continuum of states, and only using the lowest
axial harmonic oscillator level.

Band structure

An optical lattice will lead to a band structure which needs to be con-
sidered. In the weak interaction regime the band structure of the lowest
two bands is given as (Eq. 19 [197])

E(q′)
Er

=
(q′

q
− 1
)2

±
√

4
(q′

q
− 1
)2

+
s2

16
, (4.58)

where q′ is the quasimomentum within the lattice, and the +(−) sign
corresponds to first (lowest) band. As the band structure is periodic over
the quasimomentum 2π/d (= 2q), only the first Brillouin zone is shown
in Figure 4.11. Also shown in Figure 4.11 is the bandgap ∆, which is the
energy difference between the lowest and first band at the edge of the
Brillouin zone (i.e. for q = π/d = q′), as function on the dimensionless
trap depth s. In this regime the bandgap follows the simple proportional
relationship ∆/Er = s/2, which is equal to ∆ = V0/2.
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Figure 4.11 – Left: band structure in the weak interaction regime cal-
culated from Eq. 19 [197] using s = 2. Right: bandgap ∆ at q = π/d be-
tween the bottom two bands as function of the dimensionless trap depth s.

Superfluidity and the Mott insulator regime

There are two main parameters which describe most of the physics oc-
curring in an optical lattice, the hopping parameter J and the on-site
interaction parameter U . In the tight-binding approximation (s ≫ 1)
and neglecting interaction energies apart from a two-atom on-site inter-
action energy, they are defined as

J

Er
≈ 4√

π
s3/4e−2

√
s, (4.59)

U

Er
≈
√

8

π
asq

′s3/4, (4.60)

U

J
≈ asq

′
√

2
e2

√
s, (4.61)

where as is the s-wave scattering length between the atoms. Figure 4.12
shows the behavior of these parameters for a typical range of lattice
depths s. These expressions become less valid3 when s ≈ 1 as the
(Wannier) wavefunctions become less localized, and analytical results in
this regime do not seem to be readily available. In the weak-binding

3For instance, the hopping parameter J goes to zero in the limit of s → 0 which
does not make sense as the lattice disappears and hopping should be dominant. Of
course hopping becomes very ill-defined in this limit.
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Figure 4.12 – Left: lattice parameters J/Er (full red line), U/Er

(dashed blue line) plotted for our lattice and atomic parameters from
Table 4.2. The ratio U/J is shown in the figure right. These graphs are
only valid for s≫ 1.

limit (s ≪ 1) a special regime can be entered if µ ≫ sEr, at which
the Bloch bands are no longer well defined and a ‘swallow-tail’ band
structure emerges [271]. However, as µ ≈ 0.21Er (see Table 4.2) this
regime is not accessed.

In the weak-binding regime, lattices with decreasing amplitude have
increased hopping J , which promotes delocalization of atoms over the
lattice, leading to the superfluid state [272]. In this limit of J ≫ U ,
the many-body ground state can be considered as an ideal BEC with all
atoms in the q′ = 0 Bloch state of the lowest band. Technically this state
should be described as a coherent superposition of all lattice sites, but
this is indistinguishable from the regular BEC state (also see discussion
in Sec. IV-B of Ref. [121]).

This limit exists for U/J → 0, and it is interesting to see what happens
when this ratio increases as the optical lattice power is increased. In the
limit of J ≪ U (tight-binding), hopping becomes less favorable and at
some point the Mott insulator state is reached. This transition happens
at a critical value of (U/J)c = 5.8z for n̄ = 1 or (U/J)c = 4zn̄ for n̄≫ 1,
where n̄ is the average atom number per lattice site, and z the number of
nearest neighbours (z = 2 for an optical lattice) [121, 272–274]. As there
are ∼ 103 atoms per site, the critical value of (U/J)c ≈ 8× 103 can only
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be achieved with an optical lattice of depth s = (1/4) ln2
( √

2
asq′

(UJ )c

)

≈
400 (this expression is obtained by inversion of Eq. 4.61).

Experimentally the transition can be observed by looking at time-of-
flight images of the expanding gas. In the superfluid regime these should
display several peaks that are related to quantized momentum states in
the weakly interacting lattice. In this limit the momentum distribution
has discrete momenta pl = 2π~l/d (l is an integer) [202], and corre-
sponding expansion velocities vl = l × 0.126 m/s, i.e. for expansion
times of ∼ 10 ms the peaks are already separated by ∼ 1 mm. When
increasing the lattice amplitude s the superfluid will become more lo-
calized, leading to decoherence between the individual lattice sites. In
momentum space this can be observed by loss of the momentum peaks,
resulting in a single broad momentum distribution in the center - the
Mott insulator state. Using absorption imaging such a transition is not
observed for a broad range of optical lattice powers, indicating that the
Mott insulator state does not occur in the experiment.

Maintaining coherence

Although it is clear what happens in both U/J ≪ 1 and U/J ≫ 1
regimes, the lattice in our experiment is in the transition regime of
U/J ≈ 1. Some clear remarks about this regime are made in Figure
26.4 of Ref. [275]. In the region of U/J ≈ 1, coherence among the
lattice sites is still well maintained, whereas the number variance per
lattice site becomes sub-Poissonian (‘squeezed’). This can be under-
stood as there has to be a transition from the coherent superfluid state
with Poissonian number statistics to the highly correlated Mott insu-
lator state, and in this transition region the onset of correlations leads
to a sub-Poissonian distribution. As the spectroscopy beam addresses
all lattice sites simultaneously in the experiment, the local number vari-
ance is not relevant as long as coherence (and therefore the mean field
description) is maintained.

Does 2D scattering play a role?

One could make the argument that the BEC in the optical lattice would
exist of a stack of independent 2D BEC ‘pancakes’ with modified s-wave
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scattering lengths [121]. This occurs in the limit where the ‘pancakes’
do not interact with each other. In our experimental regime - where the
whole trap is superfluid - this does not play a role. The effective 2D
scattering length scales with the ratio of the harmonic oscillator length
of the lattice and the 3D s-wave scattering length as a2D ∝ e−alatt/as

[121] which is very small (a2D ≈ 7 × 10−22 m) as alatt/as ≈ 27 in the
experiment.

Interband spectroscopy

Based on the discussion of the various optical lattice effects in the pre-
vious sections, the BEC in the experiment can be described as a single
BEC within the lowest band of the optical lattice situated at q′ = 0.
By absorbing a single photon from the spectroscopy laser the atoms
gain a recoil qspec = 2π/λspec, and they will acquire a quasimomentum
q′spec = 2π cos(θ/2)/λspec with respect to the optical lattice.

However, the experimental parameters are such that q′spec = q. This
means that excited atoms end up near the bandgap of the optical lattice
as seen by the excited (2 1S) atoms. Due to the degeneracy of the
lattice recoil and spectroscopy photon absorption recoil the experiment
is always in this regime.

This agrees with the observation that the observed splitting between
the two absorption lines can be manipulated by changing the relative
polarization of the two beams as shown in Figure 4.3. The splitting does
not disappear, which from an experimental point of view is caused by
the fact that it becomes increasingly difficult to constrain the splitting
if the two lineshapes overlap significantly. Second, there might not be a
rotation angle for which the polarizations of both beams are orthogonal,
meaning that it is impossible to completely remove the optical lattice
effect.

It is useful to consider the scenario in which the largest optical lattice is
applied that is shown Figure 4.3. The largest splitting achieved in the
experiment is ∆ ≈ 65 kHz (≈ 3.25Er). Using ∆/Er = s/2 (or looking at
Figure 4.11), this splitting indicates that s ≈ 6.5. This is the splitting
as experienced by the 2 1S atoms (see Figure 4.2), which is proportional
to the optical potential and therefore the polarizability of this state. As
these atoms have a low exitation fraction during our spectroscopy and

145



4. Line shapes of the 2 3S → 2 1S transition for quant...

therefore a much lower density than the 2 3S state atoms, there is no
other relevant macroscopic behavior caused by the 2 1S atoms apart
from the observed bandgap in the lattice.

The ratio of the polarizabilities of the 2 3S and 2 1S states is −1.64 [133],
so the optical lattice depth for the 2 3S atoms is s ≈ 6.5/1.64 = 3.9.
As this is an upper limit, it can be safely assumed that s ≤ 3.9 in all
measurements. The experimental lower limit is achieved by trying to
minimize the splitting with an estimated bandgap ∆ ≈ 7.7 kHz ≈ 0.4Er

corresponding to s ≈ 0.5. Although this is small, the ‘swallow-tail’
bandstructure regime that was briefly mentioned before is not reached
as µ = 0.21Er < sEr = 0.5Er.

To summarize, from the measurements the lattice as observed by the
BEC is estimated to be in the range 0.5 < s < 3.9 which is in the
superfluid regime and the mean field description can still be used for
the line shape model.

Deviations due to misalignment

The observed line splitting is caused by the fact that the lattice laser
wavelength and spectroscopy laser wavelength are nearly degenerate and
we derive some experimental parameters under the assumption that both
wavelengths are equal and that the spectroscopy beam overlaps with the
exact same angle as the optical dipole trap beam. The sensitivity of the
calculations is estimated by assuming a worst-case scenario where the
spectroscopy beam is fully aligned with the optical lattice (i.e. along the
axial direction of the optical dipole trap), as this provides the largest
difference between the lattice recoil energy and the spectroscopy photon
recoil energy.

In this limit the recoil energies differ by Es
r − Er ≈ 0.6 kHz = 0.03Er

(see Table 4.2). This means that, in the band picture, the atom acquires
a quasimomentum q′ = 1.02q and therefore does not end up exactly at
the bandgap. The band splitting near the bandgap has quasimomentum
dependence (also see Eq. 4.58)

∆(q′)
Er

= 2

√

4
(q′

q
− 1
)2

+
s2

16
, (4.62)
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Figure 4.13 – Left: band splitting difference from bandgap ∆(q′ = q)
near the bandgap for s = 3 (dashed), s = 4 (full), and s = 5 (dotted).
Right: band splitting difference from bandgap ∆(q′ = q) for quasimo-
menta q′ = 1.01q (dashed), q′ = 1.02q (full), and q′ = 1.03q (dotted).

which is displayed in Figure 4.13 as function of quasimomentum q′ and
the lattice amplitude s near q′ = 1.02q. First of all the bandgap is
minimal for q′ = q. This means that if q′ 6= q, the previous estimate
will always be an upper limit (i.e. our lattice can only get smaller
by correcting for this effect). Second, in the typical range of variation
the corrections to the bandgap are < 0.01Er i.e. below 1%. This is a
worst-case estimate, and as the alignment and wavelengths are known to
much better precision than this worst-case assumption, such deviations
are negligible compared to the 2-digit accuracy in our analysis.

Concluding remarks about the optical lattice

In this appendix it is shown that the origin of the observed doublet
in the BEC spectrum is understood by absorption of a spectroscopy
photon recoil momentum in the presence of an optical lattice with a
degenerate lattice (Bragg) recoil momentum. This is very similar to
Bragg spectroscopy, but now between bands observed by two different
electronic states [267].

The measured line splitting can be related to the lattice bandgap, and
this gives an estimate of the optical lattice depth. For typical depths
the lattice is relatively weak, meaning that the trapped BEC can be
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considered to be in the superfluid regime (as a single cloud instead of
individual lattice sites) and not in the Mott insulator regime.

In the typical optical lattice regime, the chemical potential of the BEC
is small enough to consider the BEC in the single-band regime i.e. the
BEC is located around quasimomentum q′ = 0 of the lowest band of the
lattice. This means that the description of the BEC spectrum does not
involve higher band contributions. Deviations from the degenerate case
as presented here turn out to be negligible.

This phenomenon can present an opportunity to measure the polariz-
ability of an excited state by observing the doublet splitting as function
of the optical dipole trap wavelength. In the current experiment this is
caused by an ‘accidental’ degeneracy, but an optical dipole trap wave-
length and crossing angle can be chosen such that the resulting lattice
recoil momentum is degenerate with the spectroscopy recoil momentum,
thereby providing a method to measure polarizabilities over a broad
range of wavelengths.

4.D Appendix: Extracting the s-wave

scattering length

With the developed line shape model as discussed in Appendix 4.A, the
Rabi frequency estimate from Appendix 4.B, and our understanding of
the observed doublet in the Bose-Einstein condensate as discussed in
Appendix 4.C, all the necessary information to use the line shape model
is available to extract the 2 3S1 − 2 1S0 s-wave scattering length ats. In
this appendix the data analysis and results are discussed in more detail.

Acquiring the line shape data

The optical lattice amplitude is set such that the doublet splitting is
∼ 35 kHz, so the lines can be resolved individually and the Rabi fre-
quency is large enough that each measurement can be done in a few
seconds. The doublet is measured for six interaction times ranging from
0.5 s to 3.0 s, and the results are shown in Figure 4.14. Each line scan
shows 100 data points which are normalized to 100 background measure-
ments acquired in an alternating fashion during the measurement. The
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results are represented by the chemical potential of the Bose-Einstein
condensate normalized by their background level at the specific inter-
action time. The normalized data is represented using the chemical
potential as this is the parameter for which Eq. 4.23 is solved. For ease
of interpretation the data and line shape fits are rescaled such that they
represent the atom number loss in Figure 4.4, but generally the data is
analysed using the chemical potential representation.

Fitting procedure

For a dataset acquired with a spectroscopy laser interaction time t, the
background chemical potential level is only determined for this time
t. Using the average background chemical potential of all six datasets
(i.e. for 0.5 s ≤ t ≤ 3.0 s) the one-body lifetime of the system can be
constrained as a fixed parameter together with the chemical potential at
t = 0 s, which is necessary for the line shape fitting. Sufficiently accurate
estimates for the laser linewidth can be made by manual optimization
(combined with the laser linewidth estimate from Section 2.5) in order
to initialize the fitting optimization procedure.

For the fits as shown in Figure 4.14 the only free parameters are the
absolute offset frequency, the doublet splitting, the relative amplitude
between the two lines, and the factor [(ats/ass)−(α2/α1)] in which ats is
the unknown s-wave scattering length. The fits of the six lines are per-
formed simultaneously in Mathematica using a numerical optimization
procedure which includes the statistical weight per datapoint i given
as wi = 1/σ2, where σ is the propagated statistical uncertainty in the
determined chemical potential (or atom number) per datapoint. The
statistical uncertainty σ is based on analysis of the Gaussian distributed
shot-to-shot fluctuations of the background level which are ∼ 5%. This
analysis does not take any uncertainties in the frequency axis into ac-
count, which are estimated to be σf ≈ 1.8 kHz predominantly by mag-
netic field fluctuations as determined by Van Rooij [190].

After the first optimization of the fit, the statistical weight per datapoint
is reevaluated by including the frequency uncertainty into the signal
uncertainty as σ2i = σ2+(∂µ/∂ν)2σ2f ,with µ defined by Eqs. 4.2 and 4.23
and ∂µ/∂ν is the sensitivity of the line shape model to the uncertainty
in the frequency. With the updated statistical weights the numerical
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Figure 4.14 – Normalized chemical potential of the BEC doublet mea-
sured for interaction times ranging from 0.5 s (top left) to 3.0 s (bottom
right) and simultaneous line shape fits (red lines). The bottom half of
each plot shows the residuals including the error bars on the data, and
the reduced χ2 for the fit.
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fitting procedure is reinitiated. The new resulting parameters have only
slightly changed with respect to the first iteration (well within the initial
evaluated uncertainties), but have acquired larger uncertainties as an
additional error source is included. The results, including the residuals
and the reevaluated error bars per datapoint, are shown in Figure 4.14.
Based on this procedure χ2 values are calculated and the scattering
length ats is determined. The χ2 values of the individual measurements
can vary, but the ats values of all measurements are always in agreement
with each other within their respective uncertainties.

Systematic effects in the line shape fits

As the line shape model depends on many parameters, the sensitivity of
the scattering length ats as well as the χ2 value of the fits is investigated
for each individual parameter following a method where we vary a single
parameter and consider the variation in the outcome. For parameters
such as the initial chemical potential, lifetime, and laser linewidth, the
sensitivity (i.e. relative change in ats for a relative change in the param-
eter) is approximately 19%, 1%, and 9% respectively. However, these
parameters are known with sufficient accuracy to have a negligible con-
tribution to the error budget compared to the ∼ 25% uncertainty in the
Rabi frequency, which is another parameter in the line shape model.

Within the fit parameter space limited by the experimental allowable
bounds, only a single optimization of the total χ2 of the six measure-
ments could be found to provide a result on the scattering length ats as
shown in Figure 4.15. Using standard χ2 minimization routines [276] the
total χ2 as function of the scattering length ats can be fit with a parabola
to determine the most likely value, and the second order derivative pro-
vides the statistical uncertainty in the determination of that value. The
determined value of the scattering length is ats = +50(10)stat a0.

This result is obtained with a Rabi frequency which is within the esti-
mated range of ΩR = 2π× (21± 5) Hz. Unfortunately the optimization
could not be used to determine a more accurate value of the Rabi fre-
quency as the scattering length is too sensitive to changes in the Rabi
frequency (in other words: χ2 varies only very little when varying the
Rabi frequency). Therefore we consider the maximum variation of the
Rabi frequency and see that the scattering length varies by ±43 a0 within
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Figure 4.15 – Optimization of the total χ2 of all six line shape fits com-
pared to the determined scattering length ats. The uncertainty in ats is
given by the final uncertainty determined by the numerical fitting method
as discussed in Section 4.D. Using a parabola to determine the scatter-
ing length for which χ2 is minimized [276] we find ats = +50(10)stat a0,
which is indicated by the dashed vertical line and the gray area repre-
senting the statistical uncertainty.

this range, whereas the total χ2 changes by less than 1%. This range of
scattering lengths is therefore the limiting systematic uncertainty.

We investigated the sensitivity of this result with all other parameters
within their experimental range, and no changes beyond the quoted
statistical error could be found. As a bonus a similar optimization of
the expected laser linewidth around this minimum provided a linewidth
of 4.5(3) kHz, which is in agreement with the estimates discussed in
Chapter 2.

Based on the discussed optimization procedure the final result on the
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scattering length is

ats = +50(10)stat(43)syst a0. (4.63)

Comparison to earlier mean field shift measurements

As a first comparison to the only other available data on the mean field
shift, the value of the scattering length in Eq. 4.63 can be compared to
the limits set by the mean field shift measurements done by Van Rooij
[31, 190]. In that work the mean field shift was parametrized as

2π∆fmf =
4π~

m
(ats − ass)(n

(2) − n(1)), (4.64)

where n(1) and n(2) are two different densities at which the transition
frequency is measured. Such a measurement provides a limit on the
scattering length differences as

|ats − ass| ≤
m

2~

∣

∣

∣

∆fmf

n(2) − n(1)

∣

∣

∣
. (4.65)

The mean field shift was determined to be zero within an uncertainty
of 1.1 kHz. As the measurements were done at typical densities of
3× 1013 cm−3 and 2×1013 cm−3, this provides a limit on the scattering
length difference range as

|ats − ass| ≤ 74 a0, (4.66)

or, using the known scattering length ass = 142.0(1) a0 [152],

ats = +142(74) a0. (4.67)

As this range is based on the statistical uncertainty with which the
mean field shift is determined, it should be interpreted as a 1σ bound.
As such, it is in agreement with our new determination although the
accuracy has improved (even including the large systematic uncertainty).
Furthermore, the new method depends on the actual line shape of the
transition and not on an overall frequency shift.
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Comparison to theory

Experimentally determined scattering lengths provide an excellent test-
ing ground for molecular theory as the scattering lengths are sensitive
to the exact molecular potential, and in particular to the energy of the
least bound state in the potential [261]. For spin-stretched He∗-He∗ col-
lisions the measurement of binding energy of the least bound state in
the 5Σ+

g potential allowed a 0.07% accurate determination of the s-wave
scattering length [152]. Equally impressive, the theoretical calculation
provided a 0.3% accurate determination [144, 146] in good (2σ) agree-
ment. Due to its relative simplicity, He∗-He∗ collisions are one of the few
systems where the molecular potentials are known with such high accu-
racy [139, 140, 144, 146], and both theoretical and experimental work
have been shown to be in good agreement when predicting for instance
collision rates [141–143, 145, 153, 154] or interactions between He∗ and
alkali-atoms [159, 160].

There have not yet been any measurements on the 2 3S1 − 2 1S0 molec-
ular potential, as a mixture of these states is very unstable due to the
20 ms radiative lifetime of the 2 1S0 state and Penning ionization. How-
ever, this is not the first time that our group is interested in the molec-
ular potential of these states as it once explained the large loss rate
and narrow velocity distribution of metastable atoms for photo-assisted
2 3S1 − 2 3P2 collisions [181]. At that time the presence of an avoided
crossing between the 1 3Σ+

g and 2 3Σ+
g potentials (connecting to the

2 3S + 2 1S and 2 3S + 2 3P states, respectively) could explain the ori-
gin of fast escaping metastable atoms without requiring any calculation
of the scattering length.

With the determined scattering length it is interesting to find out if a
scattering length can be calculated from the ab initio molecular poten-
tials [139]. We are fortunate to collaborate with Daniel Cocks and Ian
Whittingham, who both have been involved with molecular potential
calculations for He∗ for quite some time [142, 143, 277–279]. Based on
our communication with Daniel Cocks and Ian Whittingham [269], a
brief overview of the method used to calculate the scattering lengths
will be given.

As only s-wave collisions are allowed at in the ultracold regime (T ∼
µK), only molecular potentials with gerade symmetry are involved. The
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crossing at 9.5 a0, which is discussed in the text.

only relevant molecular potentials are then the 1 3Σ+
g and 2 3Σ+

g poten-
tials, which are fitted using the long-range potential form

Vlong(R) = −C6

R6
− C8

R8
+ Easymp (4.68)

to determine the C6 and C8 coefficients. The asymptotic energy was
fixed by the atomic energy levels [139]. The short-range potentials are
based on tabulated data from Ref. [139] and shown in Figure 4.16. As
can be seen in the figure, there is an avoided crossing between the po-
tentials at an internuclear separation distance of ∼ 9.5 a0. The coupling
energy of the avoided crossing, defined as half the energy difference be-
tween the two potentials at 9.5 a0, is given in Ref. [139] as 18.5 meV,
although variation of the coupling energy did not change the final results
significantly.
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Penning ionization plays an important role in this molecular potential,
and the total molecular potential has to include a loss channel. This
is included by defining a complex interaction potential containing the
calculated molecular potential and a so-called autoionization width (see
e.g. [143]). As there is no information about the autoionization width for
triplet-singlet collisions, the calculations assume a similar autoionization
width as for the triplet-triplet collisions, as suggested in Ref. [139].

After calculating the wavefunctions in these complex potentials the com-
plex scattering matrix can be calculated as function of the collision en-
ergy. Extrapolating the collision energy to zero this provides an s-wave
scattering length of ats = +42.45 a0−i 36.62 a0. Based on 2% variations
in the molecular potentials the recommended scattering length is [269]

ats = 42.5+0.5
−2.5 a0 − i 36.6+3.4

−2.1 a0. (4.69)

The scattering length has a large imaginary part caused by Penning
ionization. As a result the real part of the scattering length is quite
insensitive to variations in the molecular potentials which is the reason
why it can be calculated with this high precision. In this regime, where
the imaginary part is comparable to the real part, the complex interac-
tion potential approach starts to break down but there is no theoretical
framework yet which can circumvent this [269].

For elastic and inelastic collision rates both the real and imaginary part
of the scattering length should be taken into account (see Appendix 5.A
or Ref. [143]). But for the mean field interactions which are considered
here the situation is more complicated as the real part of the scattering
length is related to an energy shift and the imaginary part is related to a
broadening effect [260]. Using the same model as given by Kokkelmans
[260] and used in Chapter 3 (see Eq. 3.25), the broadening effect is
estimated to be below 1 kHz. The mean field shift, which is defined in
this model as a single frequency shift, is 3-4 kHz. This number cannot
be simply compared with a shift in the measured line shapes as it is
expressed in the asymmetry of the line shapes, but it is of the same
order of magnitude and indicates that these numbers are realistic.

To summarize, from the complex interaction potentials using ab initio
molecular potentials [139] Daniel Cocks and Ian Whittingham calculated
a complex 2 3S − 2 1S s-wave scattering length of ats = 42.5+0.5

−2.5 a0 −
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4.D. Appendix: Extracting the s-wave scattering length

i 36.6+3.4
−2.1 a0. The real part of this scattering length is related to the mean

field shift as observed in our experiment, and is in agreement with the ex-
perimentally determined scattering length of ats = +50(10)stat(43)syst a0.
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CHAPTER 5
Towards a new measurement of

the 2
3
S → 2

1
S transition

Abstract

For a sub-kHz accurate measurement of the 2 3S → 2 1S tran-
sition in helium not only the line shape of the transition, caused
by quantum statistics and interactions, needs to be understood as
was displayed in Chapter 4. Two systematic effects that limit the
accuracy in frequency metrology work are the ac Stark shift and
the Zeeman shift. In this Chapter we discuss how we can improve
their measurement or even eliminate them.

5.1 Introduction

With the improved linewidth of the spectroscopy laser the line shape
of the transition has been resolved with sufficient precision to observe
asymmetric features caused by the quantum statistics and interactions,
as shown in Chapter 4. Although the line shapes contain interesting
physics by themselves, understanding them and their associated sys-
tematic frequency shifts is only a single aspect in the next step for a

This chapter is based on: Magic wavelengths for the 2 3S → 2 1S transition in he-

lium, R.P.M.J.W. Notermans, R.J. Rengelink, K.A.H. van Leeuwen, and W. Vassen,
Physical Review A 90, 052508 (2014) and Ultracold metastable helium: Ramsey fringes

and atom interferometry, W. Vassen, R.P.M.J.W. Notermans, R.J. Rengelink, and
R.F.H.J. van der Beek, Applied Physics B 122, 289 (2016)
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5. Towards a new measurement of the 2 3S → 2 1S trans...

sub-kHz accurate determination of the isotope shift on the 2 3S → 2 1S
transition frequency.

As with all high-precision experiments, the final result is, when the sta-
tistical error is small, only as good as its systematic error budget. In the
final error budget by Van Rooij [190] the two dominating contributions
to the error budget are the mean field shift (which is solved by resolving
the asymmetric line shape), and the ac Stark shift extrapolation. The
ac Stark shift is caused by the non-zero differential polarizability of 2 3S
and 2 1S states at the optical dipole trap wavelength of 1557.3 nm. The
solution for this non-zero differential polarizability is to find an alter-
native wavelength at which we can operate an optical dipole trap for
which this effect is zero; a so-called ‘magic wavelength’. This is not a
new idea: in the optical clock community this is the only way to achieve
the extreme accuracies that even go beyond the current definition of
the SI second [227–229, 280, 281]. In this Chapter I will show how we
calculated candidate magic wavelengths for the 2 3S and 2 1S states,
and how we will implement this.

With the succesful implementation of a magic wavelength optical dipole
trap the ac Stark shift no longer poses the dominant systematic un-
certainty in the transition frequency determination, although there will
be a remaining ac Stark shift from the spectroscopy laser. The next
dominant systematic effect is the Zeeman shift on the transition. The
Zeeman shift was previously measured with kHz accuracy, but with a
standard deviation of ∼ 2 kHz on a daily basis [190] the uncertainty is
too large for a sub-kHz absolute accuracy on the transition frequency.
In this chapter I will discuss how we can improve on this measurement
and perhaps even circumvent it.

5.2 Magic wavelengths for the 2 3
S → 2 1

S

transition in helium

In recent years a growing number of experimental tests of QED in atomic
physics have surpassed the accuracy of theory, allowing new determina-
tions of fundamental constants. High-precision spectroscopy in atomic
hydrogen has been achieved with sufficient accuracy to allow a determi-
nation of the proton size from QED calculations [282], and spectroscopy
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in muonic hydrogen has allowed an even more accurate determination
[94, 95]. Interestingly, the muonic hydrogen result currently differs by 7σ
from the proton size determined by hydrogen spectroscopy and electron-
proton collision experiments. So far there has not been a satisfying ex-
planation for this discrepancy, which is aptly named the proton radius
puzzle [97]. Research in this field has expanded to measurements in
muonic helium ions, a hydrogenic system which has a different nuclear
charge radius [100]. As this work is done for both naturally occurring
isotopes of helium (4He and 3He), the absolute charge radii of the α-
particle and the helion may be determined at an aimed relative precision
of 3 × 10−4 (0.5 attometer), providing a very interesting testing ground
for both QED and few-body nuclear physics.
Parallel to these developments, high-precision spectroscopy in neutral
helium has become an additional contribution to this field in recent
years. Although QED calculations for three-body systems are not as
accurate as for hydrogen(ic) systems, mass-independent uncertainties
cancel when considering the isotope shift [103, 104]. Therefore isotope-
shift measurements in neutral helium can provide a crucial comparison
of the nuclear charge radius difference determined in the muonic helium
ion and planned electronic helium ion measurements.
High-precision spectroscopy in helium is a well-established field, and
transitions ranging from wavelengths of 51 nm to 2058 nm [29, 31, 33–
36, 44, 75–78] have been measured in recent years both from the ground
state and from several (metastable) excited states. Only two transitions
have been measured in both helium isotopes with sufficient precision for
accurate nuclear charge radius difference determinations. The 2 3S →
2 3P transition at 1083 nm [44] and the doubly-forbidden 2 3S → 2 1S
transition at 1557 nm [31, 106] are measured at accuracies exceeding
10−11, providing an extracted nuclear charge radius difference with 0.3%
and 1.1% precision, respectively. Interestingly, the determined nuclear
charge radius differences from both experiments currently disagree by
4σ [27, 44].
In order to determine the nuclear charge radius difference with a preci-
sion comparable to the muonic helium ion goal, we aim to measure the
2 3S → 2 1S transition with sub-kHz precision. One major improve-
ment to be implemented is the elimination of the ac Stark shift induced
by the optical dipole trap (ODT) in which the transition is measured.
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Many high-precision measurements involving optical (lattice) traps solve
this problem by implementation of a so-called magic wavelength trap
[229, 281]. In a magic wavelength trap the wavelength is chosen such
that the ac polarizabilities of both the initial and final states of the mea-
sured transition are equal, thereby cancelling the differential ac Stark
shift.

We calculate the wavelength-dependent (ac) polarizabilities of both meta-
stable 2 3S and 2 1S states and identify wavelengths at which both are
equal for either 4He or 3He. Generally one will find multiple magic wave-
lengths over a broad wavelength range, but our goal is to identify the
most useful magic wavelength for our experiment. Currently [31, 35] we
employ a 1557 nm ODT at a power of a few 100 mW, providing a trap
depth of a few µK and a scattering lifetime1 of > 100 s. For our future
magic wavelength trap we need to produce a similar trap depth with
sufficient laser power at that wavelength. Furthermore, the scattering
rate should be low enough to have a lifetime of at least a few seconds,
providing enough time to excite the atoms with a 1557-nm laser.

The purpose of this chapter is to show that it is possible to calculate
magic wavelengths with sufficient accuracy to design an appropriate
laser system solely based on ab initio level energies and Einstein A co-
efficients without having to resort to advanced theoretical techniques
[134, 283]. Based on the calculations reported here, we are currently
building a laser system at 319.82 nm with a tuning range of 300 GHz
based on similar designs [284, 285].

The polarizabilities for the 2 3S and 2 1S states of 4He are presented
over a wavelength range from 318 nm to 2.5 µm. In this range all magic
wavelengths including estimated required ODT powers and correspond-
ing trap lifetimes are calculated. From these results we identify our best
candidate for a magic wavelength trap. A lot of work, both theoretical
and experimental, has been done for the dc polarizability of the 2 3S
and 2 1S states (see Table 5.1 for an overview). Therefore these are used
as a benchmark for our calculations by also calculating the polarizabil-
ities in the dc limit (λ → ∞). Calculations of the ac polarizability of
the 2 3S and 2 1S states [135, 286] states allow for comparison of the

1The actual lifetime in the trap is limited to 10’s of seconds due to background
collisions.

162



5.2. Magic wavelengths for the 2 3S → 2 1S transition in helium

polarizability calculations at finite wavelengths.
Finally we present a simple extension to 3He which has a hyperfine
structure that needs to be taken into account. Although different the-
oretical challenges arise due to the hyperfine interaction, we can get an
estimation of the 3He magic wavelength candidates and show that they
are equal to the 4He results approximately shifted by the hyperfine and
isotope shift.

Theory for 4He

For an atomic state with angular momentum J and magnetic projec-
tion mJ , the polarizability α induced by an electromagnetic wave with
polarization state q (q = 0,±1) and angular frequency ω due to a single
opposite parity state is [287]

α(n)(J,mJ , J
′,m′

J , q) = 6πǫ0c
3(2J ′ + 1)

×
(

J 1 J ′

−mJ q m′
J

)2
AnJJ ′

ω2
nJJ ′(ω2

nJJ ′ − ω2)
. (5.1)

Here ωnJJ ′ is the 2 1,3SJ → n 1,3PJ ′ transition frequency and AnJJ ′ the
Einstein A coefficient of the transition. The term between two brack-
ets represents the 3j symbol of the transition. The total polarizability
α(J,mJ , q) is given by a sum over all opposite-parity states as

α(J,mJ , q) =
∑

n

∑

J ′

α(n)(J,mJ , J
′,m′

J , q). (5.2)

In a general way the polarizability α can be written as the sum of a
scalar polarizability, independent of mJ , and a tensorial part describing
the splitting of the mJ levels [283, 288]. Within the LS coupling scheme
the tensor polarizability of the 2 3S1 and 2 1S0 states in 4He is zero
and the polarizability is defined by averaging over all mJ states and
therefore independent of mJ . As our experimental work specifically
concerns the spin-stretched 2 3S1 (mJ = +1) state [31, 35], Eqs. 5.1
and 5.2 are used to calculate the polarizability for the mJ = +1 state
assuming linearly polarized light (q = 0). For 3He the calculations
specifically concern the spin-stretched 2 3S1 (F = 3/2,mF = +3/2) and
2 1S0 (F = 1/2,mF = +1/2) states.
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The higher-order contribution to the Stark shift, the hyperpolarizabil-
ity, is estimated using calculations of a similar system [289]. The con-
tribution is many orders of magnitude smaller than the accuracy of our
calculations and therefore neglected.
The summation in Eq. 5.2 can be explicitly calculated for 2 1,3S →
n 1,3P transitions up to n = 10, as accurate ab initio energy level data
and Einstein A coefficients are available [56]. Extrapolation of both
the energy levels and the Einstein A coefficients is required to calculate
contributions of dipole transition matrix elements with states beyond
n = 10. A straightforward quantum defect extrapolation can be used to
determine the energies using the effective quantum number n∗ [290]:

n∗ = n−
∞
∑

r=0

δr
n∗r

, (5.3)

where δr are fit parameters and the quantity n−n∗ is commonly referred
to as the quantum defect. For both the singlet and triplet series, Eq.
5.3 is used to fit the literature data up to n = 10 and to extrapolate to
arbitrary n. This method is tested using a dataset provided by Drake
[290].
Extrapolation of the Einstein A coefficients is more complicated as there
is no relation such as Eq. 5.3 for Einstein A coefficients. Furthermore,
the sum-over-states method does not provide straightforward extrapo-
lation beyond the ionization limit, as the energy levels converge to the
ionization limit for n → ∞. Both problems can be solved by calculat-
ing the polarizability contribution of a single transition 2 3S1 → n 3PJ ′

(or 2 1S0 → n 1P1) as given in Eq. 5.2 and defining the polarizability
density per upper state energy interval as

∆α(n)

∆E
=

2α(n)

En+1 − En−1
, (5.4)

which is evaluated at En. En+1 and En−1 are the energies of the neigh-
bouring upper states with the same value of J ′. The energies are given
by the Rydberg formula En(n∗) = EIP − R∞/n∗2, where EIP is the
ionization potential of the ground state. For ease of notation we have
omitted all the dependent variables of α(n) as defined in Eq. 5.1. The
polarizability density is a function of energy and can not only be used
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to calculate the polarizability contribution from dipole transition matrix
elements to highly excited (Rydberg) states, but additionally allows ex-
trapolation beyond the ionization potential. Using the Rydberg formula,
the polarizability density becomes

∆α(n)

∆E
=
α(n)

R∞

(n∗2 − 1)2

2n∗
, (5.5)

where we have made the approximation that n − n∗ is constant for
increasing n. This approximation already works better than 1% for
n = 2. In the limit n ≫ 1, the polarizability contribution per energy
interval can be written as

dα(n)

dE
=

6πǫ0c
3

R∞
(2J ′ + 1)

(

J 1 J ′

−MJ q M ′
J

)2
CnJJ ′(n∗)

ω2
nJJ ′(ω2

nJJ ′ − ω2)
, (5.6)

where we define

CnJJ ′(n∗) ≡ AnJJ ′(n∗2 − 1)2

2n∗
. (5.7)

As there is no exact analytical model for AnJJ ′ as function of energy, the
method of extrapolation is based on a simple low-order polynomial fit of
the CnJJ ′(n∗) as function of E(n∗) for the n ≤ 10 levels. The result is a
function CnJJ ′(E) that is used to extrapolate AnJJ ′ to arbitrary upper
states and calculate the corresponding polarizability contributions. This
method can be used to calculate the finite polarizability contributions of
all Rydberg states for n → ∞. As the general behavior of the Einstein
A coefficients is proportional to n∗−3 for the Rydberg states, CnJJ ′(E)
will have a finite value at the ionization potential indicating that con-
tributions from the continuum have to be taken into account as well.
As the extrapolation is a function of energy, it is extended beyond the
ionization potential to calculate additional continuum contributions to
the polarizability. This omits all higher order effects such as resonances
to doubly-excited states or two-photon excitations into the continuum,
and it should be considered as an approximation of the continuum.
For a large enough quantum number n, the discrete sum-over-states
method smoothly continues as an integration-over-states method fol-
lowing Eq. 5.6. The ionization potential serves as a natural choice
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as the energy at which the calculation would switch from the discrete
sum to the integration method. But even for large enough n there is
a negligible numerical error in varying the exact cutoff energy Ec at
which we switch between these methods. The calculation of the total
polarizability is therefore performed using the sum-over-states method
to an arbitrary cutoff at Ec = EIP − R∞/n∗2max and continued with an
integration over the remaining states as

αcont(J,mJ) =
∑

J ′

∫ ∞

Ec

dα(n)

dE
dE, (5.8)

where E is the energy of the corresponding state. A low-order polyno-
mial fit of Eq. 5.7 is used to calculate dα(n)/dE such that the integral
of Eq. 5.8 provides an analytical solution. The total polarizability is
therefore easily calculated as a sum-over-states part and an analytical
expression

α(J,mJ) = αcont +

n=nmax
∑

n=1

∑

J ′

α(n). (5.9)

Numerical uncertainties

In this section we discuss the sources of any numerical errors in our
calculations, which are purely based on the technical execution of our
method. The accuracy of our calculations due to our estimation of the
continuum contribution will be discussed in Section 5.2 where our results
are compared to other calculations.

The numerical convergence of Eq. 5.9 is tested by varying nmax. The
polarizability converges as n−2

max and even for nmax = 20 the polariz-
ability is within a fraction 10−4 of the polarizability calculated using
nmax = 5000. The computation of Eq. 5.9 therefore poses no numerical
problems.

A more crucial matter is the fact that our calculations are based on
two extrapolations: that of the level energies and the Einstein A coeffi-
cients. For the n ≤ 10 levels in helium the ab initio calculations of the
level energies and Einstein A coefficients are used [56]. The higher level
energies are extrapolated using Eq. 5.3 and include up to fifth order
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(r = 5) contributions. Variation of the total number of orders (r = 4, 6)
or using a different dataset (such as the NIST database [291] as used in
other recent work [135]) affects the polarizabilities at the 10−8 level and
is negligible.

The limiting factor in the accuracy of the calculations is the choice
of extrapolation of the Einstein A coefficients through extrapolation of
CnJJ ′(E). As mentioned before, no advanced methods are used to calcu-
late transtion matrix elements to higher states or doubly excited states
in the continuum. The heuristic approach we use instead, is to choose
an extrapolation function that is smooth, continuous and provides a
convergent integral in Eq. 5.8. A number of different functions have
been tried which provide a similar quality of the fit, and their effect on
the calculation of the continuum contribution can lead to a polarizabil-
ity shift which is a significant fraction of the continuum contribution
itself. In our calculations this is the limiting factor in the accuracy of
the calculated magic wavelengths. A second order polynomial function
is chosen to extrapolate CnJJ ′(E) as it has the additional advantage of
providing an analytical solution of the continuum contributions.

The absolute accuracy of the calculations will be discussed the next sec-
tion and determines the accuracy given in the calculated magic wave-
lengths later in this chapter.

Results - dc polarizabilities

In order to discuss the absolute accuracy of the calculations, we first
present our polarizabilities calculated in the dc limit (λ → ∞) as a lot
of literature is available for these calculations. After comparison with
the dc polarizabilities, the ac polarizabilities are given in the next sec-
tion including the magic wavelengths at which they are equal for the
2 3S1 (mJ = +1) and 2 1S0 states. Experimental characteristics, such
as the required trapping power and scattering lifetime at the magic
wavelengths, are estimated in order to discuss which magic wavelength
candidate is most suitable for our experiment. After that the tune-out
wavelength (where the polarizability is zero) of the 2 3S1 state near
414 nm is compared to the result calculated by Mitroy and Tang [135].
An overview of previously calculated and measured dc polarizabilities
for the 2 1S0 and 2 3S1 states of 4He is given in Table 5.1 together with
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Table 5.1 – Comparison of calculations and measurements of mJ -
averaged dc polarizabilities of the 2 1S0 and 2 3S1 states in units of a30.

Author (year) Ref. 2 1S0 2 3S1

Crosby and Zorn (1977) [Exp.] [292] 729(88) 301(20)
Ekstrom et al. (1995) [Exp.] [293, 294] 322(6.8)
Chung and Hurst (1966) [295] 801.95 315.63
Drake (1972) [296] 800.2 315.608
Chung (1977) [297] 801.10 315.63
Glover and Weinhold (1977) [298] 803.31 316.24
Lamm and Szabo (1980) [299] 790.8 318.7
Bishop and Pipin (1993) [300] 315.631
Rérat et al. (1993) [301] 803.25
Chen (1995) [286] 800.31
Chen and Chung (1996), B spline [302] 315.630
Chen and Chung (1996), Slater [302] 315.611
Yan and Babb (1998) [134] 800.316 66 315.631 468
Mitroy and Tang (2013), hybrid [135] 315.462
Mitroy and Tang (2013), CPM [135] 316.020
This work 801.19 317.64

our results. For convenience the polarizabilities are given in atomic units
a30 (a0 is the Bohr radius), but they can be converted to SI units through
multiplication by 4πǫ0a

3
0 ≈ 1.64877 × 10−41 JV−2m2. Furthermore, the

dc polarizabilities are calculated using the common convention of aver-
aging over all mJ states and all possible polarizations q [283].

There is general agreement between our results and previously calcu-
lated dc polarizabilities, but comparison with the work of Yan and Babb
[134], which provides the most accurate calculated dc polarizabilities to
date, shows that both our 2 1S0 and 2 3S1 dc polarizabilities are slightly
larger (0.1% and 0.6%, respectively). The difference is comparable to
the uncertainty in the calculated continuum contributions as discussed
before, and we conclude that our absolute accuracy is indeed limited
by the exact calculation of the continuum contributions. It should be
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Table 5.2 – Calculated magic wavelengths λm for the 2 3S1
(mJ = +1) → 2 1S0 transition with the corresponding differential polar-
izability slope dα/dλ and the absolute polarizability α at the magic wave-
length. The last row gives the wavelength and polarizability at which we
currently use our ODT. Additional columns give the laser beam power
required to create a 5 µK deep trap in the exact same crossed-beam ge-
ometry as currently employed and the corresponding lifetime of the gas
in this geometry due to scattering from a nearby 2 3S1 → n 3P0,1,2 tran-
sition. See Appendix 5.2 for details on those calculations.

λm [nm] dα/dλ α [a30] Laser Lifetime Nearest
[a30/nm] power [W] [s] transition

318.611 −7.00 × 104 -809.2
319.815 −4.40 × 103 189.3 0.7 3 2 3S1-4

3P
321.409 −5.38 × 102 55.3 2.3 6 2 3S1-4

3P
323.587 −1.48 × 102 17.2 7.3 6 2 3S1-4

3P
326.672 −5.48 × 101 -1.2
331.268 −2.37 × 101 -13.5
338.644 −1.08 × 101 -24.2
352.242 −5.33 -39.0
411.863 −2.00 4.5 28.0 4 2 3S1-3

3P

1557.3 0.0 603.8 0.2 205 2 3S1-2
3P

noted that the continuum contributions in the dc limit are 7.1 a30 and
3.6 a30, respectively. This only contributes 1% to the total polarizabil-
ity in contrast to e.g. ground-state hydrogen for which the continuum
contribution is 20% of the total polarizability [303].

Results - magic wavelengths

We have calculated the ac polarizabilities of the 2 1S0 and 2 3S1
(mJ = +1) states in the range of 318 nm to 2.5 µm and an overview of
the identified magic wavelengths is shown in Table 5.2. The slope of the
differential polarizability is also given in order to estimate the sensitivity
of the determined magic wavelength due to the accuracy of the calcu-

169



5. Towards a new measurement of the 2 3S → 2 1S trans...

9 1P10 1P11 1P12 1P4 3P13 1P

318 320 322 324 326

-4

-2

0

2

4

Wavelength@nmD

P
ol

ar
iz

ab
ili

ty
@u

ni
ts

of
10

0
a 03
D

Figure 5.1 – Calculated polarizabilities of the 2 3S1 (dashed, blue) and
2 1S0 (dotted, black) states shown together with the differential polar-
izability (full, red) in the wavelength range 318-327 nm. The blue and
black vertical lines indicate the positions of the 2 3S1 → 4 3P and the
2 1S0 → n 1P (n = 9 − 13) transitions, respectively. There are five
magic wavelengths (black dots) in this range, all listed in Table 5.2.

lated polarizabilities. Table 5.2 furthermore provides the trapping beam
power required to produce a trap depth of 5 µK and the corresponding
scattering lifetime to indicate the experimental feasibility of each magic
wavelength.

The magic wavelengths in the range 318-327 nm, as shown in Figure
5.1, are mainly due to the many resonances in the singlet series. The
most promising magic wavelength for application in the experiment is
at 319.815 nm, as the polarizability is large enough to provide sufficient
trap depth at reasonable laser powers while the estimated scattering
lifetime is still acceptable (see Table 5.2).

The magic wavelengths at 318.611 nm and 326.672 nm are not useful for
our experiment as the absolute 2 3S1 polarizability is negative and there-
fore a focused laser beam does not provide a trapping potential. There
are more magic wavelengths for λ < 318.611 nm, but the polarizability
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Figure 5.2 – Calculated polarizabilities of the 2 3S1 (dashed, blue) and
2 1S0 (dotted, black) states shown together with the differential polariz-
ability (full, red) for wavelengths ranging from 327 nm to 420 nm. The
blue and black vertical lines indicate the positions of the 2 3S1 → 3 3P
and the 2 1S0 → n 1P (n = 4 − 8) transitions, respectively. There are
four magic wavelengths (black dots) in this range, all listed in Table 5.2.
The inset shows the wavelength region 411-415 nm, displaying the magic
wavelength at 411.863 nm and the tune-out wavelength of the 2 3S1 state
at 414.197 nm.

of the 2 3S1 state will stay negative until the ionization wavelength of
the 2 1S state around 312 nm. In the range 327-420 nm, shown in Figure
5.2, there are four more magic wavelengths. The magic wavelength at
411.863 nm, previously predicted with nm accuracy [76], is the only one
in this region with a small yet positive 2 3S1 polarizability (see inset in
Figure 5.2). There are no more magic wavelengths in the range 420 nm-
2.5 µm, which is shown in Figure 5.3, and the polarizabilities converge
to the dc polarizabilities for λ > 2.5 µm. The ac polarizability of the
2 1S0 state can be compared to previous polarizability calculations from
dc to 506 nm [286]. Combined with the dc polarizability comparison
and the tune-out wavelength result for the 2 3S1 state, we find that the
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Figure 5.3 – Calculated polarizabilities of the 2 3S1 (dashed, blue) and
2 1S0 (dotted, black) states shown together with the differential polariz-
ability (full, red) for wavelengths ranging from 420 nm to 2.5 µm. The
blue and black vertical lines indicate the positions of the 2 3S1 → 2 3P
and the 2 1S0 → n 1P (n = 2, 3) transitions, respectively. There are no
magic wavelengths in this range and the polarizabilities converge to the
dc polarizabilities for λ > 2.5 µm.

accuracy of our calculations is limited by the exact calculation of the
continuum contributions. We note that around 320 nm the absolute
continuum contributions (26 a30 and 5.5 a30 for the 2 1S and 2 3S states,
respectively) and the corresponding uncertainty have increased, as the
shorter wavelengths are closer to the 2 1S ionization limit at 312 nm.
The uncertainty in the absolute value of the polarizabilities translates
to an uncertainty in the absolute value of the magic wavelength through
the slope dα/dλ of the differential polarizability at the zero crossing. For
the magic wavelength at 319.815 nm this gives a frequency uncertainty
of 10 GHz (0.003 nm), yet for the magic wavelength near 412 nm the
uncertainty is approximately 1 nm due to the very small slope at the
zero crossing. However, the latter magic wavelength is not suitable for
our experiment as the absolute polarizability is very small.
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Tune-out wavelength of the 2 3
S1 state

The zero crossings of the absolute polarizability of a single state occur
at so-called tune-out wavelengths. Mitroy and Tang calculated several
tune-out wavelengths for the 2 3S1 state [135], of which the candidate at
413.02 nm is the most sensitive to the absolute value of the polarizabil-
ity due to a very small slope at the zero crossing. We find this tune-out
wavelength at 414.197 nm (see inset in Figure 5.2), which is considerably
larger. However, the slope of the polarizability at the zero crossing can
be used to calculate that the difference in tune-out wavelength is equiv-
alent to a difference in the calculated absolute polarizabilities. Compar-
ison of the calculated dc polarizabilities (see Table 5.1) shows a similar
difference, so within a constant offset of the absolute polarizability our
tune-out wavelength is in agreement with Mitroy and Tang’s result.

Extension to 3He

The 2 3S → 2 1S transition is also measured in 3He in order to determine
the isotope shift of the transition frequency [31]. Hence a magic wave-
length trap for 3He will be required as well. As 3He has a nuclear spin
(I = 1/2), the measured hyperfine transition is 2 3S (F = 3/2,mF =
+3/2) → 2 1S (F = 1/2,mF = +1/2) and the magic wavelengths need
to be calculated for these two spin-stretched states.

The mass-dependent (isotope) shift of the energy levels is taken into
account by using 3He energy level data [30] and recalculating the quan-
tum defects using Eq. 5.3. The Einstein A coefficients of the transitions
also change due to the different reduced mass of the system [56], but
this effect is negligible compared to the accuracy of the calculations. In
total, the mass-dependent shift of the magic wavelengths is dominated
by the shift of the nearest transitions and is approximately -45 GHz.

The fine-structure splitting decreases as 1/n3 whereas the hyperfine
splitting converges to a constant value for increasing n [304]. In this
regime the (LS)JIF coupling scheme is not the best coupling scheme
because J is no longer a good quantum number. Instead an alternative
coupling scheme is used which first couples the nuclear spin quantum
number I and total electron spin S to a new quantum number K [305].
This new quantum number K then couples to L to form the total angu-
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5. Towards a new measurement of the 2 3S → 2 1S trans...

lar momentum F . In this coupling scheme the transition strengths can
be calculated with better precision compared to the (LS)JIF coupling
scheme, and can be applied for states with n ≥ 3. Although this cou-
pling scheme does not work perfectly for n = 2 (which in any case is
far-detuned from the magic wavelengths), it provides an estimate of the
transition strengths that is sufficiently accurate for our purposes.
For increasing n, the strong nuclear spin interaction with the 1s elec-
tron becomes comparable with the exchange interaction between the 1s
and np electrons [304]. This leads to mixing of the singlet and triplet
states as the total electron spin S is no longer a good quantum number.
The solution requires exact diagonalization of the Rydberg states, which
provides the singlet-triplet mixing and the energy shifts of the states.
The mixing parameter is then used to correct the Einstein A coefficients
and the energies of the states. Although this is implemented in the cal-
culations, these corrections lead to shifts in the magic wavelengths that
are below the absolute accuracy of the calculations.
Due to the two hyperfine states of 3He+ in the 1s ground state, there are
two Rydberg series in the 3He atom. For even higher n than discussed
before, this leads to mixing of Rydberg states with different n [304]. The
resulting shifts in the polarizabilities are well below the accuracy of the
calculations and are therefore neglected.
Using the aforementioned adaptations, the polarizability of the 2 3S
(F = 3/2,mF = +3/2) and 2 1S (F = 1/2,mF = +1/2) states can
be calculated using Eq. 5.1, but with substituted quantum numbers
(J,mJ → F,mF ), Einstein A coefficients and transition frequencies.
The numerical calculation of the polarizabilities and discussion of the
numerical accuracies is similar to the 4He case. An additional uncer-
tainty of 1.0 a30 is added in the calculation of the polarizabilities of the
3He states based on a conservative estimate of the shifts caused by the
hyperfine interaction. It should be noted that the states of interest,
2 1S and 2 3S, both have angular momentum L = 0 and both are in the
fully spin-stretched state. Therefore neither 3He nor 4He has a tensor
polarizability for the states discussed in this paper.
A comparison between the 4He and 3He magic wavelengths is presented
in Table 5.3. Magic wavelengths up to 330 nm are all shifted by the
isotope shift with small corrections due the abovementioned effects. The
frequency difference between the two isotopes (third column of Table
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Table 5.3 – Comparison of magic wavelengths λm calculated for the 4He
2 3S1 (mJ = +1) → 2 1S0 and 3He 2 3S1 (F = 3/2,mF = +3/2) →
2 1S0 (F = 1/2,mF = +1/2) transitions and the corresponding fre-
quency shift. The uncertainty in the shift is due to the additional 1.0 a30
absolute uncertainty in the polarizabilities of 3He.

λm [nm] Shift [GHz]
4He 3He

318.611 318.626 −45.03(4)
319.815 319.830 −43.1(7)
321.409 321.423 −38(5)
323.587 323.602 −4(2) × 101

5.3) grows with increasing wavelengths because dα/dλ decreases and the
results become more sensitive to the absolute accuracy (1.0 a30) of the
calculations, as can be seen from the growing uncertainties associated
with the shifts. The isotope shifts for magic wavelengths with λ >
324 nm have been omitted in Table 5.3 as they are not useful due to the
large relative uncertainty.

The difference of the magic wavelengths between the two isotopes is
well within the tuning range of our designed laser system near 320 nm.
Furthermore there is no significant change in the absolute polarizability
or the slope dα/dλ at the magic wavelengths. This means that an ODT
at these wavelengths has a comparable performance for either isotope.

Summary and outlook

We have calculated the dc and ac polarizabilities of the 2 1S and 2 3S
states for both 4He and 3He in the wavelength range of 318 nm to 2.5 µm
and determined the magic wavelengths at which these polarizabilities are
equal for either isotope. The accuracy of our simple method is limited
by the extrapolation of the polarizability contributions of the continuum
states. This is less than achievable through more sophisticated methods
which calculate the transition matrix elements explicitly. However, the
purpose of this work is to show that using a simple extrapolation method
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it is possible to achieve an accuracy on the order of 10 GHz for the magic
wavelengths that are of experimental interest, which is required to design
an appropriate laser system for the required wavelengths.
Most experimentally feasible magic wavelength candidates are in the
range of 319-324 nm, as the absolute polarizability of the 2 3S1 state in
this range is positive and large enough to create reasonable (∼ µK) trap
depths in a crossed-beam ODT with a few Watts of laser power. The
estimated scattering rates at these wavelengths and intensities are low
enough to perform spectroscopy on the doubly-forbidden 2 3S → 2 1S
transition.
The calculations are extended to also calculate magic wavelengths in
3He. Although the hyperfine structure, which is absent in 4He, leads to
complications in the calculation of the polarizabilities, these effects are
very limited for the 2 1S and 2 3S states. The magic wavelengths of in-
terest, around 320 nm, are shifted relative to the 4He magic wavelengths
by predominantly the isotope shift.

Recent developments

Briefly after publication [133], the tune-out wavelength around 414 nm
was measured with 5 × 10−6 relative accuracy [136] and found to be
in agreement with our result. The experimental result is also in full
agreement with the extensive calculation by Mitroy and Tang [135],
confirming our observation of a small systematic offset in the absolute
polarizability which is within the total uncertainty of our calculation.
Since November 2014 the UV laser setup was constructed and produced
up to 2 W of UV light, which was more than sufficient to optically trap
4He∗ atoms [198]. From these measurements the heating and scattering
rates of the gas are determined to be low enough to trap atoms long
enough to be interrogated for high-precision spectroscopy. Currently
atoms have been loaded in a full crossed-beam UV optical dipole trap
and initial measurements for spectroscopy are ongoing.
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Appendix: Trap depth and lifetime calculations

An overview of optical dipole traps and the equations used in this Ap-
pendix can be found in Section 2.1. The depth U of a crossed-beam
ODT, as currently used in our experiment [31, 35], is

U = 2
α

2ǫ0c

2P

πw2
0

, (5.10)

where α is the polarizability of the 2 3S1(mJ = +1) state, P the power
of the incident trapping laser beam and w0 the beam waist. In our
experiment, the first ODT beam is reused by refocusing it through the
original focus (w0 ≈ 85 µm) at an angle of 19◦ with respect to the
original beam. At the currently used ODT wavelength of 1557.3 nm
the polarizability is α = 603.8 a30 (see Table 5.2) which gives a trap
depth of approximately 5 µK at an ODT beam power of P = 210 mW.
In Table 5.2 we use Eq. 5.10 to calculate the trapping power at the
different magic wavelengths corresponding to a trap depth of 5 µK to
indicate the required beam power that should be produced at that magic
wavelength.
As a good approximation of the lifetime of the atoms in the ODT due to
scattering, one can take the nearest transition into account to calculate
the corresponding scattering rate. The scattering rate Γsc is

Γsc =
6πc2ω3

~

(

Γ

ω2
0(ω2

0 − ω2)

)2

I0, (5.11)

where I0 is the total intensity of the light, ω the angular frequency of
the trapping light and ω0 and Γ the transition frequency and linewidth
(all in rad s−1). The nearest transitions are given in Table 5.2, and the
lifetime 1/Γsc is given for each magic wavelength trap using the required
trapping beam power calculated to provide a 5 µK deep trap.
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5.3 Ramsey-type Zeeman spectroscopy in He∗

In the previous measurement of the doubly forbidden 2 3S → 2 1S
transition [31, 190], contributions to the systematic error budget came
from the ac Stark shift extrapolation, mean field shift, and the Zeeman
shift. As discussed in the previous section, the ac Stark shift will be
reduced by implementing a magic wavelength trap [133, 198] and the
mean field shift can be extracted from the exact line shape measurements
(Chapter 4). The Zeeman shift, which was limiting the error budget
total of 1.8 kHz by 0.5 kHz, needs to be measured with higher accuracy
than before.

The Zeeman shift was previously measured by rf spectroscopy of the
Zeeman splitting of the mJ states of 4He∗. Typically such measurements
reached kHz-accuracy, but the method depends on fitting a resonance
peak of which the resonance position is very sensitive to the background
noise. Additionally it turns out that mean field interactions between
the different magnetic substates play a non-negligible role. We thus
require a different method which, with preferably a similar or better
measurement time and signal-to-noise-ratio, can provide a more accurate
determination of the Zeeman shift.

Here a solution is proposed by measuring the Zeeman shift using a mea-
surement which has the feasiblity of measuring the Zeeman shift with
0.1 kHz accuracy, sufficient for the aimed accuracy in the determined iso-
tope shift. The measurement is based on applying two rf fields separated
in time, which was proposed by Ramsey in 1950 [206] and nowadays is
a common and very successful measurement technique. In order to per-
form a Ramsey-type measurement we first need to show that we can
create a coherent superposition of the different magnetic substates of
4He∗.

Ramsey-spectroscopy has been used before (in 1958) to determine the gJ
factor of 4He∗, and this was in an atomic beam experiment [306], which is
a completely different regime than we are considering here. Furthermore
this technique has been used in a rubidium F = 2 BEC to measure the
Zeeman shift [307], and is also closely related to investigation of the
dynamics of spinor BECs with alkali atoms [308–310]. Although we
are interested in employing this technique to measure the Zeeman shift,
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5.3. Ramsey-type Zeeman spectroscopy in He∗

within this field 4He∗ would also be an interesting candidate due to its
extremely linear Zeeman shift and large loss channels compared to the
alkali atoms generally used.

Rabi oscillations between magnetic substates of 4He∗

The mJ = 0,±1 magnetic substates of 4He∗ have a linear Zeeman shift of
mJ×2µB ≈ mJ×2.8 MHz/G. For themJ = 0 state, the leading (second)
order Zeeman shift is quadratic and calculated to be 2.275 mHz/G2

[311, 312]. For the typical magnetic fields in our experiment (< 10 G)
this is a completely negligible effect.

The S states have no hyperfine structure in 4He, as this isotope has
no nuclear spin. In cases of fine and hyperfine structure (such as for
the L > 0 states in 4He or for 3He, which has nuclear spin I = 1/2),
the LS-coupling scheme breaks down at large Zeeman shifts that are
comparable to the fine or hyperfine splitting. This is called the Paschen-
Back regime [287] and adds a nonlinear energy shift to the magnetic
sublevels, as has been shown for the P states in 4He [313, 314] and 3He
[315, 316], and for the 3He∗ states although the effect is absent for the
3He∗ F = 3/2,mF = ±3/2 states that we generally work with [315, 317–
319]. For the 2S states in 4He the Paschen-Back effect could only occur
if the Zeeman splitting is comparable to the energy splitting to the next
S state (∼ 100 THz), occuring at fields of ≥ 107 G [320, 321]. The
2 1S0 state has a second order Zeeman shift of 3.193 mHz/G2 [311, 312],
and no relevant Paschen-Back effect as there is only one hyperfine state.
Relativistic and higher-order QED corrections to the g factor of all states
start playing a role at the 10−5 level (i.e. ∼ 10 Hz for our typical Zeeman
shifts of ∼ 1 MHz) and are currently negligible [322, 323].

For the magnetic fields that we operate at, the magnetic sublevels of
4He∗ are a highly symmetric three-level system. This means that the
levels form a cascaded level system where multiple levels couple sym-
metrically when applying a single rf frequency.

Denoting the mJ = 0,±1 states with state vectors |0〉, and |±〉, the total
time-dependent state vector |φ(t)〉 for a 4He∗ atom is

|φ(t)〉 =
∑

i=0,+,−
Ci(t)|i〉. (5.12)

179



5. Towards a new measurement of the 2 3S → 2 1S trans...

When applying an oscillating magnetic field ~Brf(t) the Hamiltonian H
of this three-level system is

H = gJµB ~S · ~B(t) = ~







ω0
Ω√
2
e−iωt 0

Ω√
2
eiωt 0 Ω√

2
e−iωt

0 Ω√
2
eiωt −ω0






, (5.13)

where ~B(t) = ~B0 + ~Brf(t) is the total magnetic field, ω the rf frequency,
ω0 = gJµBB0/~ the Larmor frequency (which can be similar to the
Zeeman shift), and Ω the effective Rabi frequency of the system defined
as Ω2 = Ω2

R + δ2 with ΩR = gJµB| ~Brf|/2~ the pure Rabi frequency and
δ = ω − ω0 the detuning from the transition.

The time-dependent Schrödinger equation H|φ(t)〉 = i~ ∂
∂t |φ(t)〉 gives

the three coupled differential equations that describe the populations of
the substates:

i
dC+

dt
= ω0C+(t) +

Ω√
2

exp(−iωt)C0(t),

i
dC0

dt
=

Ω√
2

exp(iωt)C+(t) +
Ω√
2

exp(−iωt)C−(t), (5.14)

i
dC−
dt

= −ω0C−(t) +
Ω√
2

exp(iωt)C0(t).

In the case of zero detuning (δ = 0, ω = ω0), Ω = ΩR and Eqs. 5.14 can
be solved analytically. Starting with a spin-polarized atom in mJ = +1
state (i.e. C+(0) = 1, C0(0) = C−(0) = 0), the populations evolve as

|C+(t)|2 = cos4

(

ΩRt

2

)

,

|C0(t)|2 =
1

2
sin2(ΩRt), (5.15)

|C−(t)|2 = sin4

(

ΩRt

2

)

.

This result is shown in Figure 5.4. It is thus possible to transfer 50% of
the atoms to mJ = 0, while 100% can be transferred to mJ = −1.
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Figure 5.4 – Normalized population evolution of the mJ = +1 (blue,
full), mJ = 0 (black, dotted), and mJ = −1 (red, dashed) states of 4He∗

according to Equations 5.14. We see that a π/2 pulse transfers 50%
of the atom to the mJ = 0 state and a π pulse transfer all atoms to
mJ = −1.

In the experiment we prepared 106 atoms, either slightly above the tran-
sition to BEC or primarily in the BEC, in the mJ = +1 state at an earth-
magnetic field strength of about 0.5 G. An rf pulse was then applied for
a varying time and the population of the three magnetic substates was
measured by absorption imaging after 8 ms expansion in a magnetic
field gradient. Figure 5.5 shows the experimental results for Rabi oscil-
lations in case of a BEC, which provides the best contrast in absorption
imaging. As it is difficult to normalize the different pictures we have
normalized to the total number of atoms at each individual measure-
ment time. Poisson noise in the atom number then introduces an up to
10% error in the normalized population of the different mJ states.

Figure 5.5 clearly shows that Eqs. 5.14, with a Rabi frequency
ΩR = 2π × 23.348(3) kHz, represent the measurements very well in
general. The signal to noise ratio stays the same, but a change in the
Rabi frequency is apparent for long Rabi pulse lengths. This is possibly
caused by transient behavior of the rf amplifier system, but currently not
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Figure 5.5 – Relative populations of the mJ = +1 (blue squares), mJ =
0 (black dots), and mJ = −1 (red diamonds) states of 4He∗ as function
of rf pulse length, for atoms starting in the spin-polarized mJ = +1 state
at t = 0. The error bars are largest near a population of 50% and zero
at 0% and 100% as a consequence of normalization.

limiting for creating π/2 and π pulses for which we use the shortest Rabi
pulse length available (∼ 10 µs and ∼ 20 µs, respectively). A π pulse
transfers all atoms to the mJ = −1 state while for a π/2 pulse we find
equal numbers of atoms in each of the spin-stretched mJ = ±1 states
as expected. However, there is a clear deficit of atoms in the mJ = 0
state; where 50% is expected only 25% is observed. This is illustrated in
Figure 5.6 (left), which shows an image of the three magnetic substates
after a π/2 pulse on a BEC and 8 ms expansion time. We attribute
this deficit of mJ = 0 atoms to Penning ionization within the expanding
mJ = 0 cloud. Being strongly dependent on density [132] we tested
this by preparing a thermal cloud with about a factor 10 lower density.
Indeed we see in Figure 5.6 (right) that after the same expansion time
now the number of mJ = 0 atoms remaining for imaging is much larger
relative to the number of atoms in the mJ = ±1 states, and of the order
of 50%.
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Figure 5.6 – False-color absorption images taken after a π/2 pulse in
case of a Bose-Einstein condensate (left) and a thermal cloud (right).
The pictures and integrated column density below it are taken 8 ms after
release from the dipole trap and expansion in a magnetic field gradient.
The thermal cloud expands much faster and thereby diminishes Penning
ionization losses. The expected relative populations of the three magnetic
substates are thus recovered.

Ramsey oscillations in 4He∗

The Rabi oscillations between the magnetic substates can be used to
apply π/2 and π pulses in a controlled way, and the next step is to
implement a two-pulse configuration which will allow observation of the
temporal evolution of the magnetic substates. After creating a super-
position of states using the Rabi pulse as described in the previous sec-
tion, the eigenstates |+〉, |0〉, and |−〉 freely evolve with a phase factor
exp(−iEt/~), where E is the total energy of the state. If the Zeeman
shift is the only relevant energy we can substitute E± = ±~ω0 for the
|±〉 states, and E0 = 0 for the |0〉 state. Thus the magnetic substates
can freely precess and acquire a phase for a certain time until a second
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Rabi pulse (identical to the first one) is applied. The resulting projec-
tion of states will then oscillate as function of the acquired phase, from
which we can extract the Larmor frequency ω0 and thus the Zeeman
shift.

In a more mathematical description the Rabi pulses have a duration τ
and the states freely precess for a time ∆T , and this process is described
using the unitary operators URabi(τ) and Ufree(∆T ) to calculate the final
state vector as

|φ(t+ tseq)〉 = URabi(τ)Ufree(∆T )URabi(τ)|φ(t)〉, (5.16)

where tseq = 2τ+∆T . In this notation we assume that the initial phases
of the Rabi pulses are the same for all free precession times ∆T . If one
were to correct for this phase the final populations would oscillate with
the detuning δ of the rf frequency with respect to the Larmor frequency
instead of the pure Larmor frequency. To measure the population of
the different magnetic substates with good signal-to-noise we choose
τ = π/(2ΩR) to create a π/2 pulse. In this case the analytic form of the
time evolution operator is

URabi

( π

2ΩR

)

=







1
2 − i√

2
−1

2

− i√
2

0 − i√
2

−1
2 − i√

2
1
2






. (5.17)

From Eq. 5.16 and using the exact form for a π/2 pulse sequence, an
analytical expression for the magnetic sublevel populations after the
Ramsey measurement can be calculated:

|C+(∆T )|2 = sin4

(

ω∆T

2

)

,

|C0(∆T )|2 =
1

2
sin2(ω∆T ), (5.18)

|C−(∆T )|2 = cos4

(

ω∆T

2

)

,

which looks very similar to the result of a single Rabi pulse.
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5.3. Ramsey-type Zeeman spectroscopy in He∗

This time-dependent behavior is also measured in the laboratory. The
π/2 pulse is generated using a Agilent 33220A arbitrary waveform gen-
erator which produces a burst of N cycles of rf with well-defined ampli-
tude, phase, and frequency, and the timing between the pulses was ini-
tially triggered by the TTL pulses from the overall experimental control
system, but has been upgraded to a two-pulse sequence from a second
Agilent arbitrary waveform generator to reduce timing jitter. Using the
same method to observe the populations of the magnetic substates as
described in the previous section whilst scanning ∆T , we observe oscil-
lations with a frequency given by the Larmor frequency of ∼ 1.5 MHz
(1/f ≈ 0.7 µs) as is shown in Figure 5.7.
Due to Penning ionization losses in the mJ = 0 state, we cannot recon-
struct the full state vector |φ(t+ tseq)〉 as the populations are no longer
conserved. Therefore we can calculate a normalized mJ = +1 popula-
tion |C+(t + tseq)|2norm which is purely based on the populations of the
mJ = ±1 states as

|C+(t+ tseq)|2norm =
|C+(t+ tseq)|2

|C+(t+ tseq)|2 + |C−(t+ tseq)|2 . (5.19)

The advantage of this system is that, due to the symmetry between the
mJ = ±1 states, this provides a signal that is simple to interpret, but it
can no longer provide information on the decoherence of the signal as we
cannot reconstruct the norm of the total state vector |φ(t+ tseq)〉. From
Figure 5.7 it is clear that at larger ∆T the signal-to-noise becomes less
and a form of dephasing starts to appear. The signal-to-noise cannot
decrease due to Penning ionization as the 50 µs timescale is too short for
significant losses at these densities (which are 1012-1013 cm−3), and at
this timescale Penning ionization does not lead to decoherence. A possi-
ble source may be the experimental rf amplifier noise at the timescale of
∆T . On the other hand, as the acquisition of a single measurement shot
takes about 15 s we suspect the observed decoherence may also be due
to slow drifts and shot-to-shot variations in the magnetic field strength.

Mean-field effects on the Zeeman shift

For the explanation of the Ramsey spectroscopy experiment, set up to
measure the Zeeman shift, we have not yet considered the fact that
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Figure 5.7 – Relative population of the mJ = +1 state of 4He∗ as
function of π/2-pulse delay ∆T , for atoms starting in the mJ = +1
state at t = 0. Below an expanded part for short and long time delay
showing that the oscillations remain visible up to 45 µs. The red line is
a fit to the signal using Eq. 5.19.
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5.3. Ramsey-type Zeeman spectroscopy in He∗

mean-field interactions between the different magnetic substates have
an effect on the phase evolution of the individual substates. The mean-
field effects are straightforward to implement in this description, as the
free evolution of the magnetic substates is given by the phase factor
exp(−iEt/~), where we now substitute the mean-field energy to the
eigenenergy of the states E± = µ± and E0 = µ0. As the mean-field en-
ergy is only relevant for high densities, we associate µ with the chemical
potential of a BEC.

We use the Gross-Pitaevskii (GP) description [202] of the three BECs
that are present once we apply a π/2 pulse. For a state i out of the three
states i, j, k, the wavefunction ψi of the condensate is described by the
GP equation

(

− ~
2∇2

2m
+ Vint +Nigi,i|ψi|2 +Njgi,j |ψj |2 +Nkgi,k|ψk|2

)

ψi = µiψi,

(5.20)

where Vint is the internal energy of the state and Ni the atom number
in state i. The interaction parameter gi,j is defined as

gi,j =
4π~2ai,j

m
, (5.21)

where ai,j is the s-wave scattering length for atoms in states i and j.
From Ref. [143] we extract the real and imaginary scattering lengths
(where the latter are related to loss channels) as shown in Table 5.4.
The imaginary scattering length, related to the loss channels, is divided
into an exothermic channel and a degenerate channel, where the exother-
mic channel is associated with Penning ionization and the degenerate
channel to collisions which change the magnetic substates but conserves
energy (e.g. a mJ = +1,m′

J = −1) → (mJ = 0,m′
J = 0) collision).

Further details are discussed in Appendix 5.A, but note that the scat-
tering lengths of the (mJ ,m

′
J) = (1, 1), (1, 0), (−1, 0), and (−1,−1) are

all the same, as all of these collisions only take place in the quintet po-
tential [143]. Of the scattering lengths mentioned in Table 5.4, the only
measured scattering length is a1,1 = 142.0(1) a0 [152].

In the Thomas-Fermi approximation the kinetic term in the GP equation
is neglected with respect to the other energies, and the problem simplifies
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Table 5.4 – Real and imaginary scattering lengths for collisions be-
tween the various magnetic substates of 4He∗, denoted as (mJ ,m

′
J),

where aim,ex and aim,deg refer to exothermic and degenerate loss chan-
nels, respectively (see Appendix 5.A). The total imaginary scattering
length is defined as aim = aim,ex + k × aim,deg where k =

√
2µE/~ with

E = 3
2kBT the average collision energy and µ = m/2 the reduced mass.

For T ≈ 0.2 µK we get k ≈ 1.6 × 106 m−1 = 8.3 × 10−5 a−1
0 . The

scattering lengths are taken from figures in Ref. [143].

Collision channel are [a0] aim,ex [a0] aim,deg [a20] aim [a0]

(±1,±1),(±1, 0) 140 4 × 10−4 0 4 × 10−4

(0,0) 120 13 3 × 104 15
(+1,-1) 60 26 3 × 104 28

to the scalar expression

Vint +Nigi,i|ψi|2 +Njgi,j |ψj |2 +Nkgi,k|ψk|2 = µi (5.22)

In this limit the direct relationship between the wavefunction of the
condensate and the density distribution ni(~r) is ψi =

√

ni(~r)/Ni, which
gives

µ+1 = V +1
int + g+1,+1(n+1 + n0) + n−1g+1,−1,

µ0 = V 0
int + g+1,+1(n+1 + n−1) + n0g0,0, (5.23)

µ−1 = V −1
int + g+1,+1(n−1 + n0) + n+1g+1,−1,

where the explicit spatial dependence is omitted for convenience and the
equations are simplified using the fact that the scattering lengths (and
therefore the interaction parameters) are equal except for the (0, 0) and
(+1,−1) collisions. The internal energies all contain the same ac Stark
shift from the optical dipole trap as this is a scalar shift. This can be
included but only results in a common phase evolution and will drop
out in the final calculations; it is therefore neglected here. The Zeeman
shift is included as a linear shift, defining the mJ = 0 state as reference
energy: V 0

int = 0 and V ±1
int = ±~ω0, where ω0 is the Larmor frequency.
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5.3. Ramsey-type Zeeman spectroscopy in He∗

Without interactions the energies Vint are the only relevant energies to
describe the free evolution operator Ufree as described in the previous
section, but the full chemical potential of each state needs to be used to
include the mean-field interactions. As long as the timescale of interest
is shorter than the Penning ionization timescale, the chemical potentials
fully describe the phase evolution of the three components of the BEC
after a Rabi pulse.
When applying a perfect π/2 pulse we get n+1 = n−1 = n/4 and n0 =
n/2, where n is the initial density of the BEC. In this case

µ+1 = ~ω0 +
n

4
(3g+1,+1 + g+1,−1),

µ0 =
n

2
(g+1,+1 + g0,0), (5.24)

µ−1 = −~ω0 +
n

4
(3g+1,+1 + g+1,−1).

To get an order of magnitude estimate of the mean-field effects on the
total evolution, we calculate the mean-field energies EmJ

mf for the mJ

states at a typical BEC density of 1013 cm−3. We get

E±1
mf =

n

4
(3g+1,+1 + g+1,−1) ≈ h× 2.0 kHz, (5.25)

E0
mf =

n

2
(g+1,+1 + g0,0) ≈ h× 2.2 kHz, (5.26)

which are typically ∼ 0.1% of the Zeeman shift experienced by the states.
This is problematic when trying to measure the Zeeman shift beyond the
kHz level. However, as the phase of each state evolves as exp(−iµt/~),
we should consider the differences between the chemical potentials of
the states to see how the differential phase develops between the states:

µ+1 − µ−1 = 2~ω0, (5.27)

µ+1 − µ0 = ~ω0 +
n

4
(g+1,+1 + g+1,−1 − 2g0,0) ≈ ~ω0 +

n

14
g+1,−1.

(5.28)

We see that the mean field energy drops out as common mode when con-
sidering the phase evolution between the mJ = +1 and mJ = −1 states
if the densities of both components are equal. Furthermore, the phase
difference evolves with exactly twice the Larmor frequency by virtue of

189
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the extreme linearity of the Zeeman shift. In terms of sensitivity we can
calculate the resulting energy shift ∆Emf from a fractional density dif-
ference ∆n/n between the two states at the typical experimental density
of 1013 cm−3:

∆Emf =
∆n

n
× h× 1.3 kHz. (5.29)

Thus, if we can get the populations to be stable within a few percent the
shift is < 0.1 kHz. Also, from a practical point of view this method only
involves the mJ = ±1 states, which are much better imaged than the
mJ = 0 state (see Figure 5.6). By measuring the evolution of mJ = +1
versus the mJ = −1 state, as is shown in Figure 5.7, we indeed recover
an oscillation frequency which is twice the Larmor frequency that we
determined with the former rf resonance method.
To conclude, it might be surprising to learn that the mean-field interac-
tions have a significant effect on the Zeeman shift measurements. This
means that there is a systematic effect on a systematic effect for the
high-precision transition frequency measurement that should be con-
trolled sufficiently. By virtue of the linearity of the Zeeman shift and
the symmetry of the collision channels (and therefore s-wave scattering
lengths) between the different states, a Ramsey-type method of mea-
surement is proposed which has the possibility of fully eliminating the
mean-field effects from the Zeeman shift measurement. This method has
currently not been fully implemented to substitute the former rf reso-
nance method as used in [31, 35], but measurements as shown in Figure
5.6 have already shown that it is possible to reproduce equal popula-
tions in the mJ = +1 and mJ = −1 states with ∆n/n ≈ 10%, which
is already sufficient and can only be further improved by improving the
stability of the rf amplifier.

5.4 Spectroscopy in the 4He∗ mJ = 0 state

In Section 5.3 it is shown how 50% of the atoms of the spin-polarized
mJ = +1 BEC can be transferred to the mJ = 0 state using a π/2 pulse.
Applying a magnetic field gradient after the π/2 pulse whilst keeping
the dipole trap on pushes the mJ = ±1 state atoms out of the dipole
trap, leaving a pure mJ = 0 cloud of quantum degenerate 4He∗. An
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almost 100% transfer efficiency can be achieved using two Raman laser
pulses at the 2 3S1 → 2 3P0 transition [169] at the cost of an additional
laser system. Apart from the factor of two in the atom number, the rf
transfer method is easier to implement and maintain for our purposes.
With the availability of a pure mJ = 0 gas, we can explore a few new
applications of 4He∗. As the 4He∗ state has a second order Zeeman
shift of only 2.275 mHz/G2 [311, 312], it is much more insensitive to the
magnetic field than other atoms, which has interesting applications for
atom interferometry with 4He∗ [90]. Another interesting application is
for high-precision frequency metrology, as the differential second order
Zeeman shift on the 2 3S1 → 2 1S0 transition is only 0.918 mHz/G2

[311, 312]. Thus a direct measurement of the 2 3S1(mJ = 0) → 2 1S0
transition is essentially Zeeman shift free. The possibility for measuring
this transition in 4He would be very interesting as it directly eliminates
a systematic effect from the error budget.
There are a few problems with working with ultracold 4He∗ in the mJ =
0 state, as this state is not stable against Penning ionization in contrast
to the spin-stretched mJ = ±1 states. This is the main reason why
spectroscopy in a ultracold cloud of pure mJ = 0 atoms was never
thought to be feasible.

Lifetime of a mJ = 0 gas

As an mJ = 0 gas is not stable against Penning ionization, the lifetime
of the gas in the trap should be estimated to examine the feasibility of
performing spectroscopy. Measurements of the lifetime of the mJ = 0
BEC already show that it fully annihilates within a few ms, leaving only
a thermal gas of mJ = 0 atoms. Therefore I will focus here on the
feasibility of measurements in a thermal gas of mJ = 0 atoms.
The general rate equation (derived in Appendix 5.B) is:

∂N

∂t
= −ΓN − L2

N2

Veff
− L3

8√
27

N3

V 2
eff

, (5.30)

where Γ represents the loss rate due to background losses, L2 and L3 are
loss rate constants related to two- and three-body collisions (for previous
work concerning L3 in our group see Refs. [156, 324, 325]), and Veff is
an effective volume of the cloud. For this discussion the L3 term can be
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neglected as the density of the thermal gas is already sufficiently low.
We typically have 1/Γ ≈ 10 s which is much longer than the lifetime
due to Penning ionization and can therefore also be neglected for the
purpose of these calculations. Within these approximations the loss rate
equation is

∂N

∂t
= −L00

2

N2(t)

Veff
, (5.31)

for our pure mJ = 0 gas, where N is the number of mJ = 0 atoms
and L00

2 the loss rate related to (0,0) collisions. From theory [143],
L00
2 = K inel

00 and the scattering lengths as given in Table 5.4 can be
used to calculate the thermally averaged loss rate 〈K inel

00 〉 as discussed
in Appendix 5.A. This calculation can be compared to experimental
data from the Palaiseau group [155], as they have measured the spin-
dependent loss rates of an ultracold metastable helium mixture in an
optical dipole trap. Their result, for a thermal gas at a temperature of
2.0 µK, is L00

2 = 6.6(4)stat(1.7)syst × 10−10 cm3 s−1 and shown together
with the calculations in Figure 5.8. Note that this specific case, a spin-
polarized cloud of mJ = 0 atoms, has not been calculated before but
the data and theory seem to be in good agreement with each other.
For an unpolarized thermal cloud the loss rate coefficient Kunpol was
measured before [149] and is related to K inel

00 as Kunpol = 1
6K

inel
00 , which

is in agreement with the result by Partridge and coworkers (see Figure
10 in Ref. [132]).
Figure 5.8 shows that for temperatures below 1 µK the loss rate con-
verges to a constant rate, and the calculated loss rate and the experimen-
tal result [155] can be assumed to be good estimates for the expected loss
rates. The inelastic loss rate is 〈K inel

00 〉 ≈ 2.5×10−10 cm3 s−1, and agrees
with the observation that the BEC (with a peak density of 1013 cm−3)
is lost within a few ms. For the thermal fraction with a peak density
which is ten times lower, the lifetime would be 10’s of ms. This may be
too short for performing spectroscopy.
Surprisingly, a measurement of the lifetime of the thermal mJ = 0 cloud
in our experiment reveals a two-body loss rate that is almost an order
of magnitude lower than expected. This means that still a significant
number of atoms is present after even 0.5 s. Although calibration of the
MCP detector could play a role here, a more probable possibility is that
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Figure 5.8 – The (thermally averaged) loss rate coefficient 〈Kinel
00 〉 cal-

culated for a wide range of temperatures. The shaded area indicates a
40% uncertainty in the theoretical calculations [143]. The datapoint is
the experimental determination by Partridge et al. [155].

these atoms reside in the ‘arms’ of the optical dipole trap as the density
is low enough in the arms to have low collision rates. Absorption images
of the mJ = 0 clouds (see Figure 5.6) show a small signal-to-noise ratio
due to the low densities, but they seem to confirm this. Nonetheless,
from the time-of-flight measurements on the MCP detector a good fit of
a Maxwell-Boltzmann distribution is still obtained, indicating that the
atoms are thermalized.

The low atom number is not a limiting factor as the gain of the MCP
detector can be increased. For an absolute atom number determination
the MCP should then be recalibrated, but as we measure the transition
as a relative loss signal, the absolute signal is not relevant.

To conclude, Penning ionization losses are severe and definitely limiting
the allowable interaction time to do spectroscopy in our experiment.
However, at very low densities the gas has sufficient lifetime to do the
experiment whilst atoms can still be detected by increasing the gain of
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the MCP detector.

Transition rates

As the lifetime of the mJ = 0 cloud is short, the excitation rate of the
transition should be calculated to estimate if there is sufficient signal.
The 2 3S1 → 2 1S0 transition rate can be different when starting from
the mJ = +1 state or starting from the mJ = 0 state as the former
requires a σ− transition and the latter a π transition. The Clebsch-
Gordan coefficients for both transitions are exactly the same, so the
transition can in principle be made using the same spectroscopy laser
power. But the actual experiment geometry should also be taken into
account.

The current setup of the spectroscopy beam is optimized to have a linear
polarization orthogonal to the quantization axis of the atoms, such that
the polarization vector can be decomposed in equal right-hand and left-
hand circular polarization components, of which one will induce the σ−

transition (as discussed in more detail in Section 4.B). Apart from small
misalignment of the spectroscopy laser beam with respect to the quan-
tization axis or impurity of the polarization state of the spectroscopy
laser, there is no projection of the polarization vector along the quanti-
zation axis, which is necessary to induce a π transition. By rotating the
polarization by 90◦, the linear polarization will project on the quantiza-
tion axis with a small angle of 9.5◦ (half the dipole trap beam crossing
angle of 19◦). As the excitation rate scales with the square of the elec-
tric field, the effective projection will be sin(9.5◦)2 ≈ 3% of the total
available power. Compared to the original configuration, which has a
50% efficiency, this is a reduction in excitation rate for the π transition
from the mJ = 0 state by a factor of 20. The excitation rate could
be improved by 5% to 200% of the current excitation rate by changing
the spectroscopy beam geometry (or the quantization axis of the atoms)
in the current experiment. This is beyond the current goal of simply
observing the transition.
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Figure 5.9 – First direct observation of the magnetic field insensitive
2 3S1 (mJ = 0) → 2 1S0 transition for a thermal cloud of atoms with
T ≈ 4 µK. A Voigt line shape fit (red line) with a Lorentzian FHWM
of 4.5 kHz reveals a Gaussian FHWM of 47(1) kHz, in agreement with
the Doppler width of 46 kHz at this temperature. The frequency axis is
offset with respect to the centroid frequency f0,fit determined from the fit.

Observing the 2 3
S1 (mJ = 0) → 2 1

S0 transition

Direct observation of the 2 3S1 (mJ = 0) → 2 1S0 transition in a thermal
cloud of 4He∗ at T ≈ 4 µK is shown in Figure 5.9. The on-resonance
loss of ∼ 40% of the atoms is achieved after allowing a spectroscopy
beam interaction time of 4 s, which is large compared to the lifetime of
the gas. To have a signal at all we increased the gain of the MCP by
approximately a factor 4. Even with the large losses, the signal has a
good signal-to-noise ratio and can be repeatedly observed.

Obviously the linewidth of the transition is much broader than for a
BEC, which can be measured from mJ = +1. Using a Voigt line shape
and fixing the Lorentzian contribution to the lineshape to the spec-
troscopy laser linewidth of 4.5 kHz as determined in the line shape work
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in Chapter 4, the determined Gaussian FWHM is 47(1) kHz. This is in
agreement with the calculated Doppler width of ∼ 46 kHz based on a
temperature of T ≈ 4 µK determined from the time-of-flight measure-
ments.

The clear and direct observation of the mJ = 0 transition is exciting
as it shows that it is feasible to perform a practically Zeeman shift-free
measurement of the 2 3S1 → 2 1S0 transition in 4He. However, there
are two (related) concerns that need to be fully understood before this
transition can be used for the high-precision measurements. The first
observation is that the ac Stark shift at which the transition is observed,
is approximately (not exactly) half the ac Stark shift of the mJ = +1
transition. This difference can be explained by the earlier observation
that the mJ = 0 atoms predominantly reside in the ‘arms’ of the optical
dipole trap where they experience only approximately half of the ac
Stark shift compared to the atoms in the center of the trap (as is the case
for spectroscopy in the BEC). Second, as was discussed in the previous
section and in the previous argument, the atoms are residing in the arms
of the ODT and the exact line shape model is not known. However, as
the atoms appear to be thermalized a Voigt line shape fit seems the most
appropriate, and the agreement with the determined Gaussian line width
is an indicator that the width of the observed line is understood for a
simple thermal gas model. For future frequency metrology the spatial
and momentum distribution of the mJ = 0 atoms in the optical dipole
trap should be better understood, because it is possible that the atoms
are not fully thermalized as the Penning ionization losses are so strong.

To conclude, using the coherent rf transfer of 50% of the mJ = +1
BEC atoms to the mJ = 0 state, we are able to create a pure cloud
of mJ = 0 atoms in the optical dipole trap. Due to Penning ioniza-
tion losses we are only able to maintain the thermal atoms, as the
mJ = 0 BEC is destroyed within a few ms, and we are able to ex-
cite 2 3S1 (mJ = 0) → 2 1S0 transition with sufficient signal-to-noise to
perform spectroscopy. Although there are still some remaining issues to
be solved, the prospect of using this transition for 4He∗ is very exciting
in the context of significantly reducing the error budget.
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5.5 Prospects for 3He∗

The majority of this chapter deals with improving transition frequency
measurements in 4He∗, but for the nuclear charge radius difference de-
termination also the 3He∗ measurements need to be improved. Several
aspects will be discussed here that should be paid attention to in the
future experiments.

Absence of collisions

Due to the absence of s-wave collisions in an ultracold degenerate Fermi
gas of 3He∗ atoms, the gas will not rethermalize during excitation. This
means that atoms are not redistributed in the trap states during the exci-
tation, and only atoms with excitation energies within the spectral width
of the laser will be excited. This is a big contrast with the 4He∗ measure-
ment where it is possible, for some detunings, to excite all atoms from
the trap as they rethermalize very efficiently. Essentially this means that
the signal (i.e. the depletion of atoms from the trap) is quickly saturated.
The exact circumstances for performing spectroscopy (laser linewidth,
transition linewidth) should therefore be carefully weighed against each
other in order to optimize the signal-to-noise in the measurement.

Line shape and statistics

As discussed in Chapter 4, the 3He∗ line shape is very broad due to the
Fermi-Dirac statistics governing the spatial and momentum distribution
in the trap. With the implementation of a magic wavelength trap, the
differential ac Stark shift will be reduced significantly, improving the
accuracy on the ac Stark shift extrapolation. Another advantage is the
reduction (ideally a removal) of the asymmetry in the 3He∗ line shape,
as it is solely caused by the differential ac Stark shift.

Unfortunately the linewidth of the transition in 3He∗ cannot be simply
reduced as it is essentially given by the Fermi energy of the gas. As
the Fermi energy scales as EF ∝ N1/3 (see Eq. 2.19), reduction of
the linewidth in a harmonic trap can only be achieved by reducing the
number of atoms. At first sight this seems to reduce the signal-to-noise
ratio, but we need to take the signal saturation effect as discussed in
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the previous section into account. When reducing the number of atoms
in the trap the transition linewidth will reduce, and the laser linewidth
will be able to excite a larger fraction of atoms from the trap, thereby
improving the signal-to-noise of the measurement. The relative shot-to-
shot fluctuations in the initial atom number will increase for decreasing
atom number as N−1/2. With a laser linewidth Γ and a transition
linewidth γ ∝ EF ∝ N1/3, we can estimate that the relative signal scales
as Γ/γ, and the signal-to-noise scales as SNR ∝

√
N(Γ/γ) ∝ N1/6Γ.

From this back-of-the-envelope estimate we already learn that we can-
not improve the signal-to-noise by reducing the number of atoms. How-
ever, from a spectroscopy point-of-view an additional payoff lies in the
improved spectral resolution of the line, which is linearly related to
the linewidth γ of the transition. As the spectral resolution scales as
γ ∝ N1/3, we see that we can win in spectral resolution faster than we
lose signal-to-noise in the atom numbers and this is a route worth explor-
ing. Ofcourse the spectral resolution cannot exceed the laser linewidth
of 4.5 kHz, but this coincides with less than 100 fermions in the trap
which would be a difficult feat to accomplish anyway.

Zeeman shift

The hyperfine metastable state in which we do spectroscopy in 3He∗ has
F = 3/2, and thus no mF = 0 state available. This means that the
Zeeman shift cannot be eliminated in the same way as for 4He∗ and it
simply has to be measured as accurately as possible.

The Zeeman shift of the spin-stretched 3He∗ (F = 3/2,mF = ±3/2)
states is2 ±(gJ + gI/2)µBB, and for the 2 1S0 (F = 1/2,mF = ±1/2)
states it is ±(gI/2)µBB. None of these states show nonlinear behavior
due to the Paschen-Back effect or hyperfine interactions [315, 317–319],
which makes the system simple to describe. The differential Zeeman
shift on either 2 3S1 (F = 3/2,mF = ±3/2) → 2 1S0(F = 1/2,mF =
±1/2) σ+ or σ− transition is ±gJµBB and therefore identical to the Zee-
man shift measured using the proposed Ramsey spectroscopy method in
4He∗. This method certainly has the possibility to achieve sub-kHz ac-

2Here gJ = 2.00231930436182(52), gI = 2.317481916(28) × 10−3, and
µB = 927.4009994(57) J/T [82].

198



5.A. Appendix: Collisions between two 4He∗ mJ = 0 atoms

curacy and is therefore an appropriate candidate for the final metrology
experiment.

Another option is to acquire the aforementioned σ+ and σ− transitions
in a staggered way. By this we mean that while scanning over the transi-
tion, each measurement alternates between the two transitions which are
detuned by ∼ 3 MHz from each other. With the current spectroscopy
beam geometry and polarization this poses no problem as both transi-
tions can be excited, and with the tunable offset frequency in the transfer
lock of the spectroscopy laser (i.e. the direct digital synthesizer, DDS)
the laser frequency can be changed between two measurements with-
out any problems. Furthermore, the control software of the experiment
already allows such type of measurement as it is currently used to al-
ternate between measurements with and without spectroscopy light in
order to properly normalize the signal. The advantage of this method is
that the two transitions are acquired in the same period of time, min-
imizing any effects of magnetic field drift. Such drifts can be observed
using the Ramsey method, but still depend on interpolation between
separate measurements.

5.A Appendix: Collisions between two 4He∗

mJ = 0 atoms

The s-wave scattering length a of a collision between two atoms in spe-
cific states leads to an elastic scattering cross section σ = 4πa2 in the
ultracold collision regime. However, things get more complicated when
including loss processes such as Penning ionization, as this is an inelas-
tic scattering process. Furthermore, the total collision process typically
has to include multiple molecular potentials due the different possible
scattering processes.

Penning ionization (PI) and associative ionization (AI) in 4He∗ occur in
the triplet (~S = 1) or singlet (~S = 0) potentials. Any initial molecular
potential which has ~S = 0 or ~S = 1 character at short internuclear dis-
tance will lead to strong losses due to the resulting ionization processes.
In the well-known collision of two mJ = +1 state atoms - which we de-
note as a (1,1) state - the total spin of the system is ~S = 2, and orbital
angular momentum ~L = 0, leading to a pure 5Σ+

g (quintet) potential.
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As this potential is unable to couple to the singlet and triplet poten-
tials (except through weak spin-dipole processes [143]), it suppresses
the PI and AI losses that would prevent achieving an ultracold gas of
metastable helium atoms.
The story is different when two 4He∗ mJ = 0 atoms collide - denoted as
a (0,0) collision (and similar for (+1,-1) collisions). This constitutes a
system that does not consist of identical spin-stretched states and the
correct eigenstates need to be calculated in order to identify the relevant
molecular potentials. For s-wave scattering the system decomposes as

|(J1,m1)(J2,m2)〉 = |(1, 0)(1, 0)〉 =

√

2

3
|J = 2〉 +

√

1

3
|J = 0〉, (5.32)

indicating that we have both the singlet and quintet potential contribut-
ing in this collision process. Note that for a (1,1) collision the coefficient
of the |J = 2〉 component would simply be 1, which shows that this
collision purely occurs in a quintet potential. To incorporate the loss
process taking place when two atoms collide in the 1Σ+

g potential, the
theoretical framework is laid out to include a so-called ‘complex optical
potential’, which is a potential that includes a loss channel in the imag-
inary plane [143]. By varying the amplitude of the loss channel (also
called the autoionization width), one can play around with the effective
losses.
Using the complex optical potential, different loss processes can be in-
corporated and modeled. As the complex optical potential finds itself
on the imaginary plane, the potential also has a associated complex
scattering amplitude and therefore a complex scattering length. In Ref.
[143] Leo et al. connect the complex scattering length between atoms
of states α and β as aimα,β . The complex scattering length can be further
subdivided into two categories of scattering amplitudes: those related
to exothermal processes such as PI and to scattering to so-called degen-
erate states (which is the (0, 0) ↔ (+1,−1) scattering process). The
complex scattering length is defined as

aimα,β = aim,ex
α,β + k × aim,deg

α,β , (5.33)

where k =
√

2µE/~ is the collision wavevector, µ = m/2 the reduced
mass and E = 3

2kBT the collision energy in a thermal gas. This complex
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scattering length has a finite effect on the elastic scattering cross section,
as the loss rate still allows partial elastic processes. The total elastic
scattering cross-section σelα,β therefore reads

σelα,β
4π

= (areα,β)2 + (aimα,β)2, (5.34)

and the total inelastic rate is defined as K inel
α,β = Kex

α,β + Kdeg
α,β , where

[326]

Kex
α,β =

v

k
× 4πaim,ex

α,β =
4π~

µ
aim,ex
α,β , (5.35)

Kdeg
α,β = v × 4πaim,deg

α,β =

√

32π2E

M
aim,deg
α,β . (5.36)

Here the relative collision velocity v is defined as v =
√

2E/µ, with
E the collision energy (again, k =

√
2µE/~, E = 3

2kBT in a thermal
gas and µ = m/2). Both the elastic and inelastic collision rate go to a
constant value for E → 0. One can now simply extract the calculated
scattering lengths from Ref. [143] and use them to calculate loss rates.

To calculate the loss rates, we have to take the velocity distribution into
account when we want to discuss our experimental results. The proper
normalised energy distribution that is used (ignoring Bose-Einstein or
Fermi-Dirac statistics), is the Maxwell-Boltzmann distribution PMB(E),
which is defined as [114]

PMB(E)dE = 2

√

E

π

(

kBT
)− 3

2
exp

(

− E

kBT

)

dE. (5.37)

The thermal average of any parameter A(E) is now defined as

〈A〉 =

∫ ∞

0
A(E)PMB(E)dE. (5.38)

As an example, consider the thermal average of the inelastic collision
rate K inel

α,β . We get 〈K inel
α,β 〉 = 〈Kex

α,β〉 + 〈Kdeg
α,β 〉. As Kex

α,β is independent
of energy, the calculation is trivial. The degenerate inelastic collision
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rate, however, depends on
√
E (see Eq. 5.36). The thermal average is

calculated as

〈Kdeg
α,β 〉 =

√

32π2

µ
aim,deg
α,β

∫ ∞

0

√
EPMB(E)dE. (5.39)

The integral gives
√

4kBT/π, resulting in

〈Kdeg
α,β 〉 = 8

√

2πkBT

µ
aim,deg
α,β . (5.40)

For comparison, if one were to simply substitute E = 3
2kBT in Eq. 5.36,

the difference would be

〈Kdeg
α,β 〉

Kdeg
α,β (T )

=

√

8

3π
≈ 0.92, (5.41)

which is a small correction for rough estimates but can be important for
the final analysis.

5.B Appendix: Trap loss calculations

In general, trap loss is described using the number density n of a gas:

∂n

∂t
= −Γn− L2n

2 − L3n
3, (5.42)

where Γ = 1/τ , L2, and L3 represent the 1/e lifetime and two- and
three-body loss rates, respectively. Time-dependence of the densities
has been left out explicitly for convenience.

This description concerns particle densities that are relevant in under-
standing the actual physics. In our experiments, however, we generally
measure atom numbers, which means that we have to integrate over the
densities:

∂N

∂t
= −Γ

∫

n d3r− L2

∫

n2d3r− L3

∫

n3d3r. (5.43)
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As N =
∫

n d3r, 〈n〉 = (1/N)
∫

n2d3r and 〈n2〉 = (1/N)
∫

n3d3r, we
get

∂N

∂t
= −ΓN − L2N〈n〉 − L3N〈n2〉. (5.44)

The 3D harmonic oscillator potential approximation gives - for a thermal
gas - the well-known Gaussian density distribution

n(r) = n0 exp

(

− x2

2σ2x

)

exp

(

− y2

2σ2y

)

exp

(

− z2

2σ2z

)

, (5.45)

where σi = ω−1
i

√

kBT/m and ωi the trapping frequency. The nor-
malization condition N =

∫

n(r)d3r provides the peak density n0 =
N(2πkBT/(mω̄

2))−3/2, where ω̄ = (ωxωyωz)1/3 is the geometric average
oscillator frequency. The average density is given as

〈n〉 =
n0√

8
=

N

Veff
, (5.46)

where the effective volume is Veff = (4πkBT/(mω̄
2))3/2. For complete-

ness the second moment of the density distribution is

〈n2〉 =
n20√
27

=
8√
27

(

N

Veff

)2

, (5.47)

and the loss rate in terms of experimentally measurable quantities is

∂N

∂t
= −ΓN − L2

N2

Veff
− L3

8√
27

N3

V 2
eff

, (5.48)

as used in the main text.
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[255] M. Žitnik et al. Lifetimes of the n 1P states in helium. J. Phys.
B 36, 4175–4189 (2003).

[256] G.W.F. Drake. Singlet-triplet mixing in the helium sequence.
Phys. Rev. 181, 23–24 (1969).

[257] K.J. McCann & M.R. Flannery. Photoionization of metastable
rare-gas atoms (He*, Ne*, Ar*, Kr*, Xe*). Appl. Phys. Lett. 31,
599–601 (1977).

[258] T.C. Killian. 1S − 2S spectrum of a hydrogen Bose-Einstein con-
densate. Phys. Rev. A 61, 033611 (2000).

[259] W. Ketterle & H.-J. Miesner. Coherence properties of Bose-
Einstein condensates and atom lasers. Phys. Rev. A 56, 3291–3293
(1997).

[260] S.J.J.M.F. Kokkelmans, B.J. Verhaar, K. Gibble & D.J. Heinzen.
Predictions for laser-cooled Rb clocks. Phys. Rev. A 56, R4389–
R4392 (1997).

227



Bibliography

[261] P.S. Julienne & F.H. Mies. Collisions of ultracold trapped atoms.
J. Opt. Soc. Am. B 6, 2257–2269 (1989).

[262] M.W. Zwierlein, Z. Hadzibabic, S. Gupta & W. Ketterle. Spec-
troscopic insensitivity to cold collisions in a two-state mixture of
fermions. Phys. Rev. Lett. 91, 250404 (2003).
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Summary

The helium atom provides an excellent testing ground for fundamental
theory. It is a system that is initially simple enough to understand,
yet the two electrons of a helium atom provide more complexity for
calculations compared to the hydrogen atom as it is a three-body sys-
tem compared to a two-body system. Moreover, there are additional
electron-electron interactions. The most accurate theoretical framework
to date, quantum electrodynamics, can predict the energies of the dif-
ferent lower electronic states of the helium atom with 9 to 10 digits of
precision (for hydrogen it is more like 11–12 digits). By comparing these
predictions to experimental determinations, the theory can be tested and
in some cases provide more information about atomic properties, such
as nuclear sizes, which are very difficult to measure using other methods.

From an experimental perspective the helium atom is very interesting.
In its ground state the stable electronic configuration makes it very
difficult to let it interact with anything; it is a noble gas. However, in
an excited state the atom becomes highly reactive. In the first excited
(2 3S1) state, the atom is metastable as it cannot easily decay to its
ground state due to symmetry restrictions. The large internal energy of
19.82 eV of this excited state is sufficient to ionize any atom it collides
with, except for a helium atom in the ground state. This process, called
Penning ionization, can be suppressed in a cloud of metastable helium
atoms if the atoms are all polarized in the same maximum spin state. In
this way clouds of ultracold metastable helium atoms can be prepared
that decay on the timescale of tens of seconds, which provides enough
time to do many types of experiments.

In our experiment we have the possibility to make ultracold metastable
3He and 4He atoms. These atoms only differ by a neutron in the nu-
cleus, but this has a huge influence on their behavior when preparing
an ultracold cloud with either atom. This has to do with their quantum
statistical behavior. The 3He atoms are fermions, and in an ensemble
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of identical fermions no two fermions are allowed to occupy the same
quantum state. As a result they are forced to occupy a large volume
and energy distribution. If the cloud is cold enough the resulting dis-
tribution is very different from the behavior of a ‘classical’ gas and it
is called a degenerate Fermi gas. The 4He atoms are bosons and they
behave exactly the opposite; they have no restrictions to having the
same quantum state. In the right conditions (sufficient atom density at
a low enough temperature) a trapped ultracold cloud of identical bosons
will start to macroscopically occupy the lowest state of the system and
form a so-called Bose-Einstein condensate. Both degenerate Fermi gases
and Bose-Einstein condensates are exotic states of matter and allow in-
vestigation of fundamental atomic properties and quantum statistical
behavior.
One of the experiments in this thesis, detailed in Chapter 3, focuses
on the measurement of the transition frequency of the metastable 4He
atom to the so-called 2 1P1 state near the wavelength of 887 nm. Al-
though extremely broad (∼ 290 MHz), this transition is very weak and
has never been directly observed before. Its measurement allows us
to determine the energy of the 2 1P1 state with a relative accuracy of
6.7 × 10−10. Comparing this value to calculations based on quantum
electrodynamics, with a relative accuracy of 4.8 × 10−10, shows a dis-
crepancy of approximately three times the combined accuracy. This
discrepancy is in agreement with two other measurements performed by
a different group, and we can therefore assume that this discrepancy is
not an experimental anomaly. There could be an issue with the theory,
but as these calculations are very advanced there is no simple explana-
tion to solve this issue. Apart from a determination of the energy of the
2 1P1 state, the measurement also provides a very accurate determina-
tion of the lifetime of the 2 1P1 state which is very short (∼ 0.5 ns). This
is a promising experimental feat as there have been many other mea-
surements using completely different techniques, but this is the most
accurate determination to date. As the theoretical prediction of life-
times is orders of magnitude more accurate, this measurement does not
provide a similar test of fundamental theory as it does for the energy of
the 21P1 state.
Chapter 4 focuses on the difference in quantum statistical behavior of a
degenerate Fermi gas and a Bose-Einstein condensate. This difference is
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observed by measuring the absorption line shape of a very weak transi-
tion from the metastable state to the (also metastable) 2 1S0 state near
the wavelength of 1557 nm. Due to the completely different behavior
of a degenerate Fermi gas and a Bose-Einstein condensate as explained
before, the line shapes look completely different. The main difference is
their spectral width, which differs by a factor five. This is a huge differ-
ence compared to a simple classical gas at an equivalent temperature,
for which the spectral widths would be almost equal. We show that
the line shapes (which also contain an asymmetry) can be fully under-
stood by comparing them to an existing model and a model which we
have extended ourselves. The measurements additionally provide a de-
termination of an inter-atomic interaction parameter for the 4He atoms
which was never measured before, and is in agreement with new calcu-
lations based on theoretical models of the interaction potential between
the atoms. This experiment is possible because of a new laser frequency
stabilization scheme which employs state-of-the-art stabilization tech-
niques involving a frequency comb and an ultrastable laser. As a result
the spectral resolution of the laser system is good enough to observe
these differences in line shapes, which was not possible before.
The transition from the metastable state to the 2 1S0 state is special
because it can be calculated and measured to such precision, that the
difference in nuclear size of the 3He and 4He atom (i.e. the size of the
helion and the α-particle) can be determined from a joint measurement
in both atoms. This is a very interesting line of investigation, as sim-
ilar measurements in muonic hydrogen and deuterium (neutral atoms
in which the electron is replaced by a much heavier muon) have been
done. The sizes of the proton and the deuteron determined in these
experiments show a large discrepancy with the generally accepted val-
ues. As a next step similar experiments in 3He and 4He are necessary
to see if there is a similar problem with slightly larger nuclei. A first
measurement was done in our group in 2011, and Chapter 5 discusses
several ways in which this measurement can be improved, so a better
experimental accuracy can be achieved in the future. One improvement
is gaining a better understanding of the line shapes of the atoms, as was
discussed in Chapter 4. Chapter 5 discusses a major improvement which
is called a ‘magic wavelength trap’ in which the measured transition fre-
quency is no longer influenced by the trapping potential experienced by
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the atoms, and we calculate the possible candidate wavelengths for such
a trap. Another improvement is a new method to accurately measure
the local magnetic field which the atoms experience, as this also changes
the measured transition frequency from the ‘true’ transition frequency.
To conclude, this thesis discusses a couple of interesting topics that
can be researched by measuring weak optical transitions in ultracold
metastable helium. The excellent control and understanding of the be-
havior of the ultracold gas allows high-precision frequency metrology for
testing fundamental physics such as quantum electrodynamics, quantum
statistics and inter-atomic interactions, which are difficult or nearly im-
possible to measure using other methods.

240



Samenvatting

Het helium atoom is een uitstekend testmodel voor fundamentele the-
orie. Het is een systeem dat in beginsel eenvoudig genoeg is om te be-
grijpen, maar de twee elektronen bieden meer complexiteit in de bereke-
ningen vergeleken met het waterstof atoom, omdat het een drie-deeltjes
systeem vormt in plaats van een twee-deeltjes systeem. Tevens zijn er
ook extra elektron-elektron interacties. De meest nauwkeurige theorie
tot op heden, kwantumelektrodynamica, kan de energieën van de ver-
schillende lage elektronische toestanden van het helium atoom met 9
tot 10 cijfers nauwkeurigheid voorspellen (voor waterstof haalt het 11–
12 cijfers). Door deze voorspellingen te vergelijken met experimentele
bepalingen, kan de theorie getest worden en in sommige gevallen infor-
matie opleveren over atomaire eigenschappen, zoals de kerngroottes, die
moeilijk op andere manieren te meten zijn.

Vanuit een experimenteel perspectief is het helium atoom zeer interes-
sant. De stabiele elektronische configuratie van de grondtoestand maakt
het lastig om het atoom met iets te laten reageren; het is een edelgas.
Echter, in een aangeslagen toestand wordt het atoom zeer reactief. Als
het atoom in de eerste aangeslagen (2 3S1) toestand zit, dan is het
atoom metastabiel en kan het niet gemakkelijk vervallen naar de grond-
toestand vanwege beperkingen in de symmetrie. De grote interne ener-
gie van 19.82 eV van deze aangeslagen toestand is voldoende om ieder
atoom te ioniseren waar deze mee botst, behalve bij een ander helium
atoom in de grondtoestand. Dit process, dat Penning ionisatie heet, kan
onderdrukt worden in een wolk van metastabiele helium atomen als de
atomen allemaal gepolariseerd zijn in dezelfde maximale spin toestand.
Op deze manier kunnen wolken van ultrakoude metastabiele helium ato-
men geprepareerd worden die vervallen op een tijdschaal van tientallen
seconden, wat voldoende tijd biedt om veel soorten experimenten te
doen.
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Samenvatting

In ons experiment hebben we de mogelijkheid om ultrakoude metasta-
biele 3He en 4He atomen te maken. Deze atomen verschillen slechts
met één neutron in de kern, maar dit heeft een enorme invloed op hun
gedrag zodra een ultrakoude wolk met een van beide atomen geprepa-
reerd wordt. Dit heeft te maken met hun kwantumstatistisch gedrag.
De 3He atomen zijn fermionen, en in een ensemble van identieke fermio-
nen mogen geen twee fermionen een identieke kwantumtoestand hebben.
Hierdoor worden ze geforceerd om een groot volume en grote energie-
verdeling in te nemen. Als de wolk koud genoeg is, zal de uiteindelijke
verdeling heel anders zijn dan het gedrag van een ‘klassiek’ gas en heet
het een ontaard Fermi gas. De 4He atomen zijn bosonen en die gedra-
gen zich precies het tegenovergestelde; ze hebben geen beperkingen om
dezelfde kwantumtoestand te hebben. Onder de juiste omstandigheden
(voldoende dichtheid bij een voldoende lage temperatuur) zal een inge-
vangen wolk ultrakoude identieke bosonen de laagste toestand van het
systeem macroscopisch bezetten en een zogenaamd Bose-Einstein con-
densaat vormen. Zowel ontaarde Fermi gassen als Bose-Einstein conden-
saten zijn exotische toestanden van materie en kunnen gebruikt worden
om fundamentele atomaire eigenschappen en kwantumstatistisch gedrag
te onderzoeken.
Een van de experimenten in dit proefschrift, dat in Hoofdstuk 3 bespro-
ken wordt, concentreert zich op de meting van de overgangsfrequentie
van een metastabiel 4He atoom naar de zogenaamde 2 1P1 toestand bij
een golflengte van 887 nm. Alhoewel deze overgang extreem breed is
(∼ 290 MHz), is deze erg zwak en nooit eerder rechtstreeks waargeno-
men. Met deze meting kunnen we de energie van de 2 1P1 toestand
met een relatieve nauwkeurigheid van 6.7 × 10−10 bepalen. Als we dit
vergelijken met berekeningen gebaseerd op kwantumelektrodynamica,
met een relatieve nauwkeurigheid van 4.8 × 10−10, zien we een verschil
van ongeveer drie maal de gecombineerde onzekerheid. Dit verschil is in
overeenstemming met metingen die door een andere groep gedaan zijn,
en we kunnen daarom aannemen dat dit verschil geen experimentele
afwijking is. Er kan een probleem zijn met de theorie, maar deze bere-
keningen zijn zeer geavanceerd en er is geen simpele verklaring om dit
probleem op te lossen. Behalve de bepaling van de energie van de 2 1P1

toestand, heeft de meting ook een zeer nauwkeurige bepaling van de zeer
korte levensduur van de 2 1P1 toestand (∼ 0.5 ns) opgeleverd. Dit is
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een veelbelovend experimenteel resultaat omdat er veel andere metin-
gen zijn, gebruikmakend van verschillende technieken, maar dit de meest
nauwkeurige bepaling tot nu toe is. Omdat de theoretische voorspelling
van de levensduur ordegroottes nauwkeuriger is dan het experimentele
resultaat, kan deze meting niet gebruikt worden als test van de funda-
mentele theorie zoals dat voor de energie van de 2 1P1 toestand gedaan
is.
Hoofdstuk 4 concentreert zich op het verschil in kwantumstatistisch ge-
drag tussen een ontaard Fermi gas en een Bose-Einstein condensaat. Dit
verschil is geobserveerd door het absorptielijnprofiel te meten van een
zeer zwakke overgang van de metastabiele toestand naar de (ook meta-
stabiele) 2 1S0 toestand bij een golflengte van 1557 nm. Vanwege het
eerder genoemde totaal verschillende gedrag van een ontaard Fermi gas
en een Bose-Einstein condensaat, zijn de lijnprofielen zeer verschillend.
Het voornaamste verschil is de spectrale breedte die een factor vijf ver-
schilt. Dit is een enorm verschil vergeleken met een simpel klassiek gas
bij een vergelijkbare temperatuur, waarvoor de spectrale breedtes bijna
gelijk zouden zijn. We laten zien dat we de lijnprofielen (die ook een
asymmetrie bevatten) volledig begrijpen door ze te vergelijken met een
bestaand model en een model dat we zelf hebben uitgebreid. Bovendien
kunnen de metingen gebruikt worden om een interatomaire interactie
parameter te bepalen voor 4He atomen die nog nooit eerder gemeten is,
en in overeenstemming is met nieuwe berekeningen gebaseerd op the-
oretische modellen van de interactiepotentiaal tussen de atomen. Dit
experiment is mogelijk vanwege een nieuwe laser frequentiestabilisatie
methode met de allernieuwste stabilisatie technieken gebruikmakende
van een frequentiekam en een ultrastabiele laser. Dit resulteert in een
spectrale resolutie van het lasersysteem die goed genoeg is om deze ver-
schillen in lijnprofielen te zien, wat nog niet eerder mogelijk was.
De overgang van de metastabiele toestand naar de 2 1S0 toestand is bij-
zonder omdat deze zo nauwkeurig berekend en gemeten kan worden, dat
het verschil in de grootte tussen de atoomkernen van 3He en 4He (d.w.z.
de grootte van het helion en het α-deeltje) bepaald kan worden door
een gezamenlijke meting in beide atomen. Dit is een zeer interessante
lijn van onderzoek, omdat vergelijkbare metingen in muonisch water-
stof en deuterium (neutrale atomen waarbij het elektron vervangen is
door een veel zwaarder muon) gedaan zijn. De grootte van het proton
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en het deuteron die bepaald zijn in deze metingen, vertonen een groot
verschil met de algemeen geaccepteerde waardes. Als volgende stap zijn
metingen in 3He en 4He nodig om te zien of er zich een vergelijkbaar pro-
bleem voordoet bij grotere kernen. Een eerste meting is in 2011 gedaan,
en Hoofdstuk 5 bespreekt verschillende manieren waarop deze meting
verbeterd kan worden, zodat een betere experimentele nauwkeurigheid
gehaald kan worden in de toekomst. Één verbetering is het beter begrij-
pen van de lijnprofielen van de atomen, zoals besproken in Hoofdstuk 4.
Hoofdstuk 5 bespreekt een grote verbetering die ook wel een ‘magische
golflengte val’ heet, waarin de gemeten overgangsfrequentie niet meer
bëınvloed wordt door de valpotentiaal die de atomen voelen, en we re-
kenen de mogelijke kandidaat golflengtes uit voor zo’n val. Een andere
verbetering is een nieuwe methode om nauwkeurig het lokale magne-
tisch veld te meten dat de atomen voelen, omdat dit ook de gemeten
overgangsfrequentie verschuift.
Om samen te vatten: dit proefschrift behandelt een aantal interessante
onderwerpen die onderzocht kunnen worden door zwakke optische over-
gangen te meten in ultrakoud metastabiel helium. De uitzonderlijke
experimentele condities en het begrip van het gedrag van het ultra-
koude gas staan ons toe om hoge-precisie frequentiemetrologie te doen.
Hiermee kunnen we fundamentele natuurkunde zoals kwantumelektro-
dynamica en kwantumstatistiek toetsen, en ook inter-atomaire interac-
ties bestuderen die lastig of bijna onmogelijk te doen zijn met andere
methodes.
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