Problem Solving Class: Van Quark tot Biomaterie

Problem Set 12: Nuclear reactions
Hand-in on paper Monday 2 December (before 12:00 h)
in Mailbox Madhu Talluri (Mailboxes W&N building)
Hand-in digitally, email to: m.t.talluri@vu.nl;
All documents in a single file [file: YourName-WC-P4]
All answers in English

1) Proton fusion in the Sun

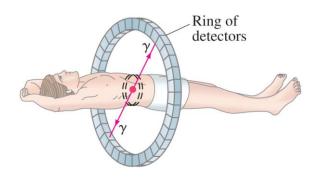
Consider the proton-fusion reaction:

$$4p^+ \rightarrow \alpha + 2e^+ + 2v + 2\gamma$$

- a) Given the mass of the Sun $(2 \times 10^{30} \text{ kg})$ and assuming that the Sun consists entirely of hydrogen (protons), and that the Sun radiates an amount of energy of 4×10^{26} Watt, how long can the Sun go on burning on proton fusion.
- b) Given the Earth-Sun distance 150×10^6 km, how many neutrinos will penetrate through a human thumb (~ 5 cm²) on Earth.

2) Fission

One possible fission reaction of ²³⁵U is:


$$n + {}^{235}_{92}U \rightarrow {}^{88}_{38}Sr + {}^{136}_{54}Xe + 12n$$

Assume that the incoming neutron has a negligibly small momentum/energy.

How much energy is then released in this reaction?

3) Positron Emission Tomography (PET)

PET usually employs 18 F isotopes. These isotopes are commonly produced (at cyclotron facilities, such as at VU) by accelerating protons and let them react with a certain isotope of oxygen: 18 O. The atomic weights are M(18 O)=17.999161 u and M(18 F)=18.000938 u. 1 u (atomic mass unit) = 1.6605 x 10 kg = 931.5 MeV/ 2 .

- Write the nuclear reaction equation for the production process. a)
- The protons must be accelerated to make this reaction go. To what energy? You may make some b) assumptions, but explain.
- Write the PET-reaction. c)
- d)
- Describe how photons play a role in the "PET-process" and where do they come from ? Explain why two photons are produced, and why they move in opposite directions with equal e) velocity.