Complex Atoms

Several quantum numbers: n, *I*, m_{*I*}, s, m_s

Lifting the *I*-degeneracy

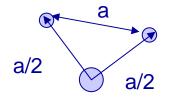
Magnetic effects

Pauli's exclusion priciple

Shell strcuture and the

Periodic Table of the elements

The Helium atom; semi-classical approximation



Without repulsion:

$$E = 2E_1 = -2Z^2 E_0 = -8 \cdot (13.6)eV = -108.8eV$$

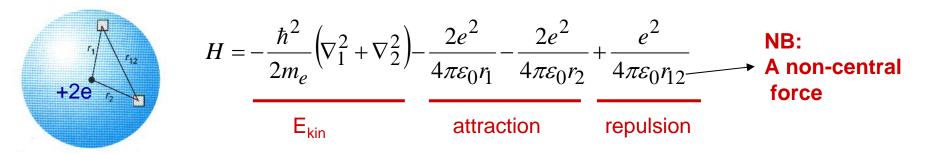
With repulsion; electrons at fixed distance $\sim a_0$, Repulsive energy:

$$\frac{e^2}{4\pi\varepsilon_0 a_0} = \alpha\hbar c \frac{\alpha m_e c}{\hbar} = 2E_0 = 27.2eV$$

Calculated: $E_{tot} = -81.6eV$

Experimental: $E_{tot} = -79eV$

Complex Atoms and the Schrödinger Equation



Two-particle Schrödinger equation:

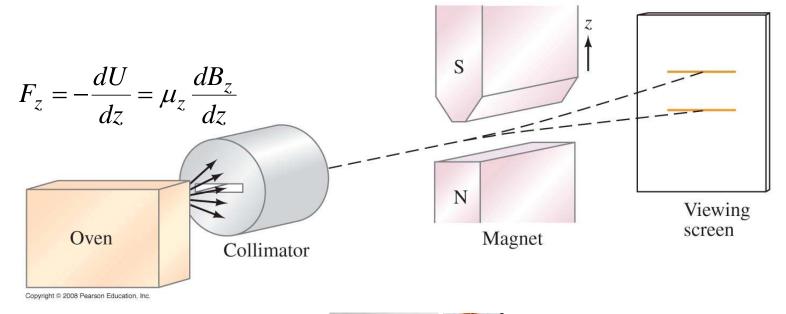
$$H\Psi(\vec{r}_1,\vec{r}_2) = E\Psi(\vec{r}_1,\vec{r}_2)$$

First approximation: unperturbed system (no repulsion) $H^{(0)} = H_1 + H_2$ Each: $H_i = -\frac{\hbar^2}{2m_e} \nabla_i^2 - \frac{2e^2}{4\pi\varepsilon_0 r_1}$ has solution $E_i = -R\frac{Z^2}{n_1^2} = -R\frac{4}{n_1^2}$ Wave function: $\Psi(\vec{r}_1, \vec{r}_2) = \psi_{nlm}(\vec{r}_1)\psi_{nlm}(\vec{r}_2) = \psi_1\psi_2$ $H^{(0)}\Psi(\vec{r}_1, \vec{r}_2) = (H_1 + H_2)\psi_1\psi_2 = (H_1\psi_1)\psi_2 + \psi_1(H_2\psi_2)$ $= E_1\psi_1\psi_2 + E_2\psi_1\psi_2 = E\psi_1\psi_2$ Hence: $E = -8R\left(\frac{1}{n_1^2} + \frac{1}{n_2^2}\right)$

General rule: complex atoms \rightarrow Product wave functions of hydrogen orbitals

Magnetic Dipole Moments; Total Angular Momentum

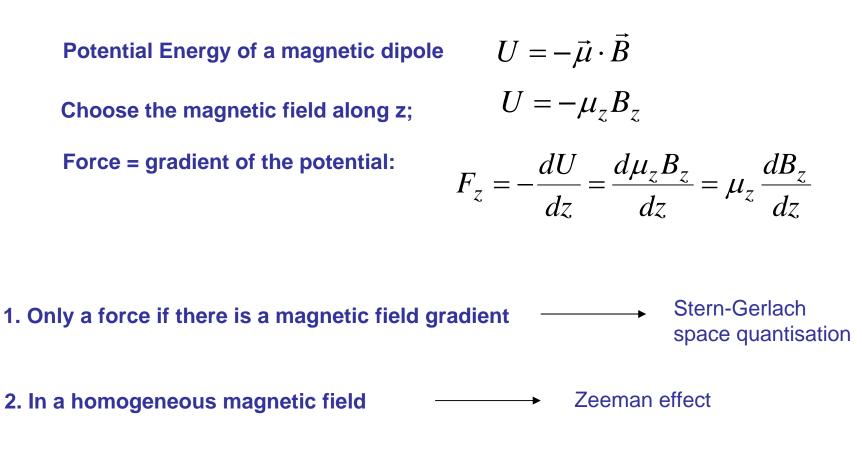
Stern-Gerlach experiment -nonuniform magnetic field -classically a continuum of deflection angles is expected Instead, the angles were quantized, corresponding to the quantized values of the magnetic moment.



General for a magnetic dipole: -Force on a dipole in a gradient -Orientation of a dipole in a Homogeneous B-field

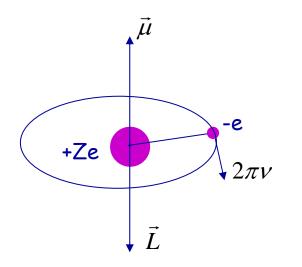
The Nobel Prize in Physics 1943 "for his contribution to the development of the molecular ray method and his discovery of the magnetic moment of the proton"

Magnetic Dipoles



Both effects related to quantisation of angular momentum

Angular momentum and the unit of the Bohr magneton



Angular velocity
$$\omega = 2\pi v$$

Magnetic moment

$$\mu = IA = \pi r^2 e v$$

Angular momentum

$$L = mvr = m\omega r^2 = 2\pi mvr^2$$

Hence $\vec{\mu} = -\frac{e}{2m_o}\vec{L}$

Define
$$\mu_B = \frac{e\hbar}{2m_e}$$

Bohr magneton

We find a relation between the angular momentum and the magnetic moment of a classical point charge \vec{r}

$$\vec{\mu} = -g_L \mu_B \frac{L}{\hbar}$$

For a classical particle $g_L = 1$

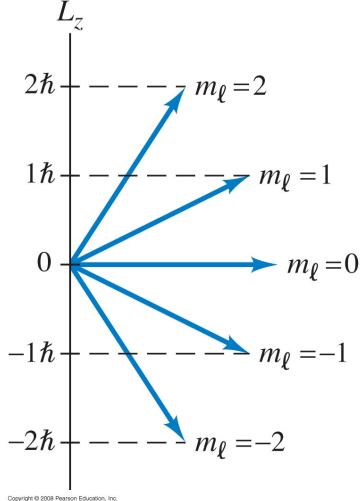
For a (relativistic) spin

$$\vec{\mu}_S = -g_S \mu_B \frac{\vec{S}}{\hbar} \qquad g_S = 1/2$$

This is peculiar !

Hydrogen Atom: Schrödinger Equation and Quantum Numbers

If no magnetic field: energy does not depend on m m, degeneracy



In a magnetic field

$$U = -\vec{\mu} \cdot \vec{B} = -\mu_z B_z$$
$$\mu_z = -g_L \mu_B \frac{L_z}{\hbar}$$

For atomic wave functions;

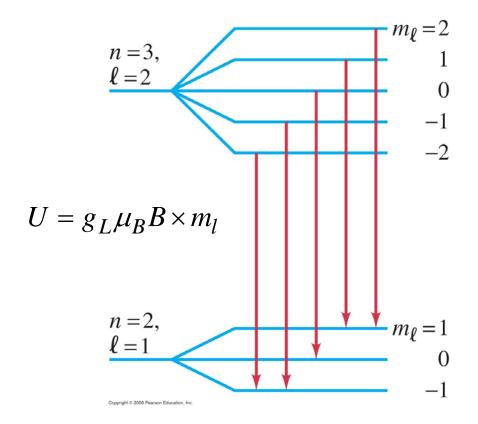
 $L_z \Psi = m\hbar \Psi$

Hence splitting

 $U = g_L \mu_B m_l B$

Hydrogen Atom: The Zeeman effect

In a magnetic field, the energy levels split depending on m_{ℓ} .



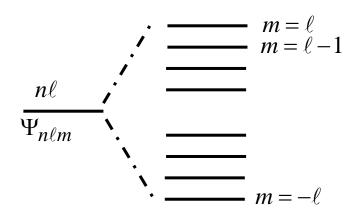
Pieter Zeeman

Hendrik Lorentz

"in recognition of the extraordinary service they rendered by their researches into the influence of magnetism upon radiation phenomena"

Normal Zeeman effect

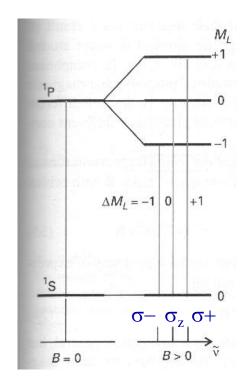
Energy splitting for an *nl* state



Energy splitting:

$$\delta E_m = g\mu_B M$$

For an ¹S \rightarrow ¹P-transition



Recall selection rules for *m* and polarization of light

Electron spin

No classical analogue for this phenomenon

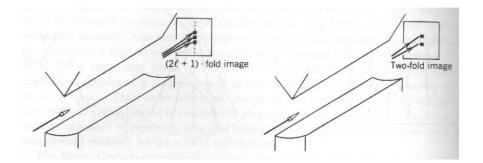
 $s = \frac{1}{2}\hbar$

There is an additional "two-valuedness" in the spectra of atoms, behaving like an angular momentum

This may be interpreted/represented as an angular momentum

Origin of the spin-concept

-Stern-Gerlach experiment; space quantization



-Theory: the periodic system requires an **additional** two-valuedness

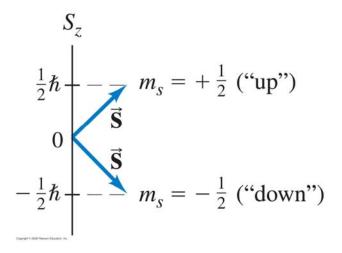
For a (relativistic) spin

$$\vec{\mu}_S = -g_S \mu_B \frac{\vec{S}}{\hbar} \qquad g_S = 1/2$$

This is peculiar !

Hydrogen Atom: Schrödinger Equation and Quantum Numbers

4. The spin quantum number, m_s , for an electron can take on the values $+\frac{1}{2}$ and $-\frac{1}{2}$. The need for this quantum number was found by experiment; spin is an intrinsically quantum mechanical quantity, although it mathematically behaves as a form of angular momentum.



Hydrogen Atom: Schrödinger Equation and Quantum Numbers

TABLE 39–1 Quantum Numbers for an Electron		
Name	Symbol	Possible Values
Principal	п	$1, 2, 3, \cdots, \infty$.
Orbital	l	For a given $n: \ell$ can be $0, 1, 2, \cdots, n - 1$.
Magnetic	m_ℓ	For given <i>n</i> and ℓ : m_{ℓ} can be $\ell, \ell - 1, \dots, 0, \dots, -\ell$.
Spin	m_s	For each set of n, ℓ , and $m_{\ell}: m_s$ can be $+\frac{1}{2}$ or $-\frac{1}{2}$.

Copyright © 2008 Pearson Education, Inc.

Complex Atoms; the Exclusion Principle

In order to understand the electron distributions in atoms, another principle is needed. This is the Pauli exclusion principle:

No two electrons in an atom can occupy the same quantum state.

The quantum state is specified by the four quantum numbers; no two electrons can have the same set.

The Nobel Prize in Physics 1945 "for the discovery of the Exclusion Principle, also called the Pauli Principle"

Intermezzo: the problem of "screening"

Question : why do *I*-values for the same *n* have differing energies

The potential energy in a multi-electron atom:

$$V = -\frac{Ze^{2}}{4\pi\varepsilon_{0}}\sum_{i=1}^{Z}\frac{1}{|\vec{r_{i}}|} + \frac{e^{2}}{4\pi\varepsilon_{0}}\sum_{i< j}\frac{1}{|\vec{r_{i}} - \vec{r_{j}}|}$$

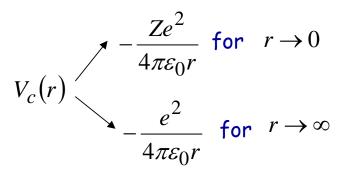
attraction to nucleus repulsion between electrons

V is a *non*-central potential

Central Field Approximation:

The overall effect of
$$V\left(\sum_{i} \vec{r_i}\right)$$

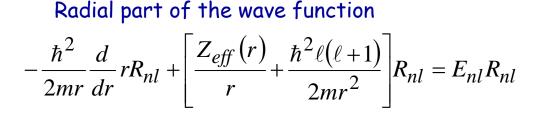
is centrally directed toward the nucleus



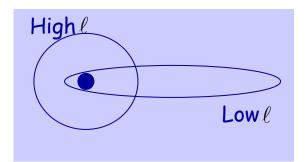
Then V can be written in terms of an "effective screened nuclear charge"

$$V_{cfa}(r) = -\frac{Z_{eff}(r)e^2}{4\pi\varepsilon_0 r}$$

Intermezzo: the problem of "screening"



→ Energy E_{nl} depends on ℓ Energy E_{nl} does *not* depend on *m*



For low ℓ values (and same n) electron comes closer to the nucleus

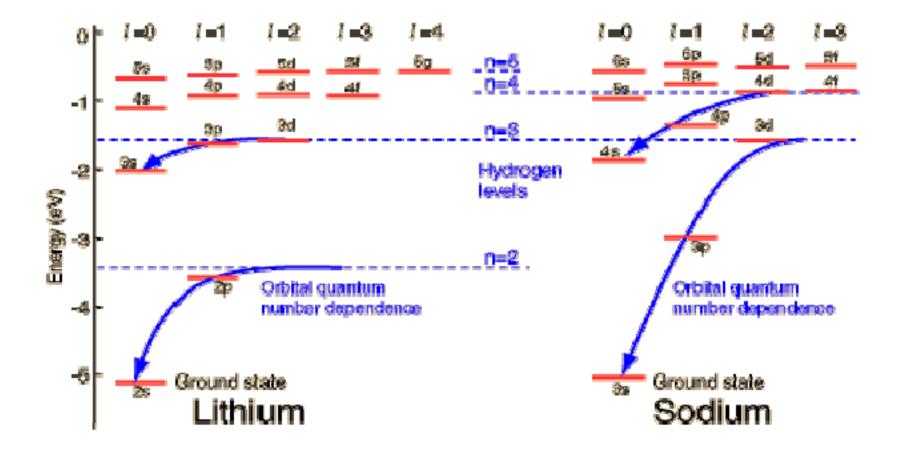
More Coulomb attraction

More binding energy

Lower ℓ states \rightarrow lower energy

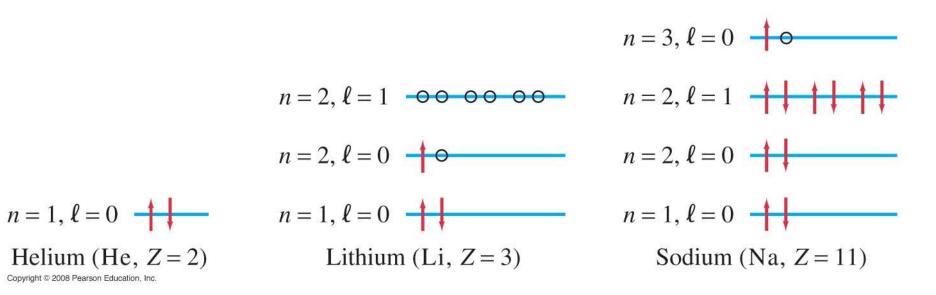
Intermezzo: the problem of "screening"

Lowering of low ℓ quantum states as an effect of screening



Complex Atoms; the Aufbau Principle

This chart shows the occupied – and some unoccupied – states in He, Li, and Na.



The Periodic Table of the Elements

	TABLE 39–2 Ground-State Quantum Numbers				
	Helium, $Z = 2$				
n	l	m _l	m _s		
1	0	0	$\frac{1}{2}$		
1	0	0	$-\frac{1}{2}$		
Lithium, $Z = 3$					
n	l	m _l	m _s		
1	0	0	$\frac{1}{2}$		
1	0	0	$-\frac{1}{2}$		
2	0	0	$\frac{1}{2}$		
Sodium, $Z = 11$					
n	l	m _l	m _s		
1	0	0	$\frac{1}{2}$		
1	0	0	$-\frac{1}{2}$		
2	0	0	$\frac{1}{2}$		
2	0	0	$-\frac{1}{2}$		
2	1	1	$\frac{1}{2}$		
2	1	1	$-\frac{1}{2}$		
2	1	0	$\frac{1}{2}$		
2	1	0	$-\frac{1}{2}$		
2	1	-1	$\frac{1}{2}$		
2	1	-1	$-\frac{1}{2}$		
3	0	0	$\frac{1}{2}$		

Each value of ℓ is given its own letter symbol.

Electron configurations are written by giving the value for n, the letter code for ℓ , and the number of electrons in the subshell as a superscript.

For example, here is the groundstate configuration of sodium:

 $1s^2 2s^2 2p^6 3s^1$

Copyright © 2008 Pearson Education, Inc.

The Periodic Table of the Elements

TABLE 39−3 Value of ℓ				
Value of <i>l</i>	Letter Symbol	Maximum Number of Electrons in Subshell		
0	S	2		
1	р	6		
2	d	10		
3	f	14		
4	g	18		
5	h	22		
•	:	:		

subshells

Copyright © 2008 Pearson Education, Inc.

