

Varying constants and a view on an evolutionary universe

Wim Ubachs

TULIP Summer School IV 2009 Noordwijk, April 15-18

Constants of Nature and the Structure of Matter

Dimensionless numbers

 $E_n = -\frac{1}{2n^2}\alpha^2 m_e c^2$

 $\alpha = \frac{e^2}{4\pi\varepsilon_0\hbar c}$

 $v_n = Z\alpha c$

The proton-electron mass ratio

$$\mu = \frac{m_p}{m_e} = 1836.152\ 672\ 61(85)$$

$$\mu \sim \Lambda_{QCD}$$

Nuclear stability for:

 $Z \leq 100$

α and μ determine structure of common matter

Max Born

 α determines size of an atom

Compton wavelength of proton

$$\frac{R_{nuclear}}{R_{atom}} \sim \frac{\alpha}{\mu} \sim 10^{-6}$$

Subtle play of the constants of nature

Fusion reacties: ⁴He + ⁴He \rightarrow ⁸Be ⁸Be + ⁴He \rightarrow ¹²C

 $^{12}C + {}^{4}\text{He} \rightarrow {}^{16}\text{O}$

Fred Hoyle

Gravitation - Cosmological constant

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = -\frac{8\pi G}{c^4} T_{\mu\nu}$$

 Λ determines the size and flatness of the universe i.e the lifetime

 \rightarrow Very tight constraints on Λ to produce a universe like ours (1 in 10⁶⁰) (star formation, long lived stars, novae, supernovae for heavy elements) $\rightarrow \Lambda$ and G determine how long a universe lives

A theory for α ??

$$\alpha = \frac{1}{137.035\,999\,710\,(96)}$$

Pauli: the most profound question of atomic physics

A theory for μ ??

The Ratio of Proton and Electron Masses

FRIEDRICH LENZ Düsseldorf, Germany (Received April 5, 1951)

THE most exact value at present¹ for the ratio of proton to electron mass is 1836.12 ± 0.05 . It may be of interest to note that this number coincides with $6\pi^5 = 1836.12$.

¹ Sommer, Thomas, and Hipple, Phys. Rev. 80, 487 (1950).

$$\alpha = \frac{3^2}{5^3 \pi^2} \qquad \mu = \frac{\pi}{32\alpha^2}$$

Physical Review 20 (1922) 1

 α -numerology

 $\alpha = 2\pi(\pi - 1)\mu$

Naturwissenschaften 16 (1928) 1094

+ more stuff, in particular from A. Eddington

(Bethe: $T_0 = -(2/\alpha - 1)$ Naturwissenschaften 19 (1931) 39)

Physical Review 82 (1951) 554

Variation of constants

Some history

Dirac

Large Number Hypothesis

R_{universe}/R_{electron}

 N_p

 $N_1 = 10^{40}$

$$F_{EM}/F_g$$

$$N_2 = 10^{40}$$

Teller

$$N = 10^{80}$$

 $N_1 = N_2 = \sqrt{N} \propto t$

 $G \propto \frac{1}{t}$

Theories for varying constants while conserving energy

Kaluza-Klein (1924-1927); extra dimensions

Scalar Field models (Bekenstein - Barrow - Pospelov) Connect some phenomena in a single theory

- Long-range forces distinct from GR
- Dark energy
- Variations of masses and coupling constants
- Birefringence of the vacuum
- Photon-axion oscillations
- Non-GR couplings of spins to gravitation

Breakdown of Einsteins equivalence principle

Variation of constants

Interdependence

Coupling constants interdependent in GUT

 $\frac{\dot{\mu}}{\mu} = R \frac{\dot{\alpha}}{\alpha}$

Several theories with |R| large

- 1. μ more sensitive
- 2. constraint on $\alpha_{\rm EM}$
- 3. Test GU theory via R

Status on α -variation: 5σ effect for z > 0.5

Current status: no theories to explain α , μ , Λ

There exists a Theory to explain the Values of these constants, we just haven't found it There exists **no** Theory to explain the Values of these constants.

We live in Universe

If the constants α , μ , Λ defining a universe vary

More difficult to define a theory explaining the constants

We live in Universe

 $U(\alpha_0,\mu_0,\Lambda_0)$

We live in Universe

$U(\alpha_0,\mu_0,\Lambda_0)$

We live in the One and Only Special universe designed for Us with $U(\alpha_0, \mu_0, \Lambda_0)$

The Anthropic Principle = Religion ≠ Science There exists **no** Theory to explain the Values of these constants.

There is a multiple set of universes $U_i(\alpha_i, \mu_i, \Lambda_i)$ And we happen to be in $U(\alpha_0, \mu_0, \Lambda_0)$

There are Multiple Universes $U_i(\alpha_i, \mu_i, \Lambda_i)$

We just happen to be in the one with

$$U(\alpha_0,\mu_0,\Lambda_0)$$

The cosmic landscape is vast due to the constraints; It is a matter of improbability, not of impossibility Smolin: 1 in 10²²⁹ estimate There exists a mechanism based on evolution and a fitness criterion, which makes it more probable to arrive at

 $U(\alpha_0,\mu_0,\Lambda_0)$

Processes of evolution toward finding maxima

Mechanism of reproduction

 $\mathsf{U}(\alpha_0,\mu_0,\Lambda_0)$

a bouncing Black Hole Singularity (Wheeler & others)

 $U'(\alpha_0 + \Delta \alpha, \mu_0 + \Delta \mu, \Lambda_0 + \Delta \Lambda)$

Our Universe $U(\alpha_0, \mu_0, \Lambda_0)$ is very special

10¹⁷ Black Holes (N_{BH})

(10¹⁰ spiral galaxies, 1 Super Nova/ 50 years, 10% leave BH, 10¹⁰ years)

Suggestion: this is an extreme circumstance

fully open universes: no BH fastly closed universes; 1 single BH - the final crunch close to flat, longlived universe, required to produce > 1 BH the time scale and the conditions of massive star formation

Hypothesis: we are near a (local) maximum in population

any mutation will decrease N_{BH} mutations at a bounce (reproductive process) are small to not loose the maximum methodologies of population biology - such extrema are found and kept

Two issues

Can we deduct some falsifiable scenarios/consequences from this model based on BH-formation What is the physics behind BH-formation; What are the major constraints

> What does that mean for some constants ?

Constraints for black hole formation

- 1) There must be some stable nuclei (at least up to helium) to allow for a gravitational collaps of matter
- The CO molecule is a primary engine to form and cool interstellar clouds to the level that massive stars can be formed; so C and O should be formed
- "A mechanism of self-propagated star formation" depends on a time scale: star formation should be faster than burning stars; long-lived stars burn on hydrogen so Big-Bang nuclear synthesis should not proceed too far
- 4) On the supernova-scenario ...

5) The upper mass limit of neutron stars should be as low as possible

A theory of black hole production

On the falsifiable prediction

Criterion: is in the maximization of black hole offspring in bouncing singularities; Second scenario (kaon condensation) needed to produce sufficient black holes

Falsifiable model of cosmological natural selection: Refuted of a neutron star is found with Mass > 1.45 M_{solar}

> Physica A 340 (2004) 705 Nucl. Phys. B 742 (2006) 142

Lee Smolin

Note: everything breaks down if we produce a theory for α -1/137