Optical frequency combs and frequency comb spectroscopy

Frequency Combs: A revolution in measuring

J. Hall

Nobel 2005

T.W. Hänsch

"for their contributions to the development of laser-based precision spectroscopy including the optical frequency comb technique"

TULIP Summer School IV 2009 Noordwijk, April 15-18

Wim Ubachs

On Pulsed and Continuous wave lasers

A laser consists mainly of a gain medium and an optical cavity:

Consider from time and frequency domain perspectives

Modelocking a laser

Basic idea:

build a laser cavity that is low-loss for intense pulses, but high-loss for low-intensity continuous beam Solutions:

Intracavity saturable absorber, or Kerr-lensing:

- Intensity-dependent refractive index: n = n₀ + n_{Kerr} I
- Gaussian transverse intensity profile leads to a refractive index gradient, resembling a lens!

Ultrafast lasers

Pulsing back and forth inside the cavity

Fourier principle for short pulses

Spectral Domain: Wide spectrum

Frequency

Frequency comb principle

Time Domain: Pulse train

Spectral domain:

'Comb-like' spectrumMany narrow-band,Well-defined frequencies

Some math: Propagation of a single pulse (described as a wave packet)

Propagator

$$E(t,z) = \int_{-\infty}^{\infty} E(\omega) e^{ik(\omega)z} e^{-i\omega t} d\omega$$

Insert an inverse Fourier transform $E(\tau)$ for $E(\omega)$

$$E(t,z) = \int_{-\infty}^{\infty} \frac{1}{2\pi} \int_{-\infty}^{\infty} E(\tau)e^{i\omega\tau} d\tau e^{ik(\omega)z} e^{-i\omega\tau} d\omega$$
$$E(t,z) = \int_{-\infty}^{\infty} E(\tau)G(t-\tau,z)d\tau$$
$$G(t-\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i(\omega(t-\tau)-k(\omega)z)} d\omega$$

Propagation of the field

This can be used with $k(\omega) = k_0 + \frac{dk}{d\omega}\Big|_{\omega} (\omega - \omega_l) + O(k^2)$

$$E(t,z) = \exp[i\omega_l(\frac{1}{v_g} - \frac{1}{v_\phi})z]E(t - \frac{z}{v_g})$$

Difference between group and phase velocity causes an extra phase

When traveling through dispersive medium The carrier/envelop phase continuously changes

Some math: Propagation of a multiple pulses in a train

$$E(t) = \sum_{n=0}^{N-1} E_{\text{single}}(t - nT)$$

T is time delay between pulses

Frequency comb principle

 $f = n f_{rep} +$

tested to <10⁻¹⁹

2 RF frequencies determine the entire optical spectrum!

Т

fceo
level
$$f_{ceo}=(\Delta \phi_{ceo}/2\pi)f_{rep}$$
 $f_{rep}=1/2\pi$
Ievel $f_{rep}=1/2\pi$

Stabilization of f_{rep}

Both f_{rep} and f_{ceo} are in the radio-frequency domain \rightarrow can be detected using RF electronics.

Measuring f_{rep} is straightforward: Counting

Detection of f_{ceo}

Measuring f_{ceo} is more difficult, requires production of a beat signal between a high-f comb mode and the SHG of a low-f comb mode.

f:2f interferometer

Supercontinuum generation

This f-to-2f detection scheme requires an octave-wide spectrum → spectral broadening in nonlinear medium

Photonic crystal fiber:

Detection of f_{ceo}

Beat-note measurement (frequency counter)

Stabilization of f_{ceo}

- The f-to-2f interferometer output is used in a feedback loop.
- An AOM controls the pump power to stabilize f_{ceo}

Scanning of f_{rep}

- Linear cavity required for long-range scanning
- Multiple reflections on single mirror to increase scan range

Scan range determined by:

- Cavity stability range
- Alignment sensitivity

A frequency comb as a calibration tool for "spectroscopy laser"

The frequency of a laser can directly be determined by beating it with the nearest frequency comb mode:

Cf: Hänsch and co-workers: atomic hydrogen

Direct frequency comb spectroscopy

Time-domain Ramsey spectroscopcy

Full control over pulse timing required

Cf : Ramsey spectroscopy Atomic fountain clocks

QM analysis of pulse sequences

Wave function of two-level atom:

$$|\psi\rangle = \left(\begin{array}{c} c_e \\ c_g \end{array}\right)$$

From Schrödinger equation, and some approximations (dipole, rotating wave) the upper state density can be calculated for two-pulse sequence:

For N pulses

es:
$$|c_{eN}|^2 = N^2 |c_{e1}|^2 \left| \sum_{n=0}^{N} e^{in(\omega_0 T + \varphi)} \right|^2$$

Excited state population

"the comb superimposed onto the atom"

Feasibility experiment in deep-UV (Kr atom)

With amplification in Titanium:Sapphire (Amplification == Phase control)

Problem with frequency comb calibration: mode ambiguity

⁸⁴Kr: 4p⁶ - 4p⁵ 5p [1/2]₀

3.5 MHz accuracy with THz bandwidth laser pulses

Combs in the VUV and beyond

Comb is retained in harmonics due to pulse structure Phase control/measurement is the crucial issue

Measurements at the 7th harmonic (of Ti:Sa)

Probing Xe (5p⁶ \rightarrow 5p⁵5d) at 125 nm (Vacuum ultraviolet frequency comb)

Phase stability (between pulses) in the VUV (effect on relative phase)

O₂ pressure dependence: -0.12 (0.29) mrad/mbar= -1.5(3.4) kHz/mbar

UV dependence: -8.7(5.8) mrad/µJ = -104(70) kHz/µJ

Novel development: Miniaturisation of frequency comb lasers

Mode-locked diode lasers InP quantum dot material

