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On Pulsed and Continuous wave lasers

+

A laser consists mainly of a gain medium and an optical cavity:

Consider from time and frequency domain perspectives




Modelocking a laser

‘ Basic idea:

build a laser cavity that is low-loss for intense pulses,
but high-loss for low-intensity continuous beam
Solutions:

Intracavity saturable absorber, or Kerr-lensing:

Intensity

Kerr medium

Aperture

* Intensity-dependent refractive index: n=n, + ny_,, |

 Gaussian transverse intensity profile leads to a refractive index
gradient, resembling a lens!




A laser running on multiple modes: a pulsed laser

lasers with "mode-locking”
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Ultrafast lasers

Pulsing back and forth inside the cavity




Ultrafast lasers
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Fourier principle for short pulses
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Time Domain:

|‘ M Short pulse

Spectral Domain:
Wide spectrum

Frequency




Frequency comb principle

Time Domaln

Spectral domain:
‘Comb-like’ spectrum

Many narrow-band,
Well-defined frequencies

Frequency




Some math: Propagation of a single pulse (described as a wave packet)

E(t, Z) — J’E(a))eik(a))ze—ia)tda)
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Insert an inverse Fourier transform E(t) for E(w)

Et2)= [ = [ E()el” de @ ied, .
S0 270 E(t,z)= [E(z)G(t-7,2)dr
Propagator G(t—r):zi [ell@lt=k(@)z)g,, _
T _

Propagation of the field

dk

This can be used with k(@) =k, o (w—ay) +0(k?)

@)

E(t,2) = explie (Vi—i)z]E(t _Zy
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Difference between group and phase velocity When traveling through dispersive medium
causes an extra phase The carrier/envelop phase continuously changes



Some math: Propagation of a multiple pulses in a train

N-1
E()= 2 Esingle (t—nT)

n=0

T is time delay between pulses

- —inaT 1_ e—iNa)T
Etrain (@) = Esingle (a)) > e = Esingle(a))—_iaﬂ-
n=0 1l-e
sin®(NeT /2) o »
In the limit  lygin .0 (@) = lgingle (@) X 5(@T —27n)
n=0

tain (@) = Lsingie () sin?(wT /2)
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Frequency comb principle

2 RF frequencies
determine the entire
optical spectrum!

fceo=(A(Pceo/2n) frep

tested to <1019 |evel

Frequency




Stabilization of .,

‘ Both f,,, and f.,, are in the radio-frequency domain
=>» can be detected using RF electronics.

Measuring f.., is straightforward:

rep

RF Frequency standard

®

RF
generator

Nd'&rvoél Ti:Sapphire
modelocked laser



Detection of f__,

+

Measuring f_., is more difficult, requires production of a beat
signal between a high-f comb mode and the SHG of a low-f comb
mode.




Supercontinuum generation

This f-to-2f detection scheme requires an octave-wide spectrum
-> spectral broadening in nonlinear medium

Photonic crystal fiber: T - —

Broadened spectrum
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Detection of f__

Beat-note measurement
(frequency counter)

RfInt [dB]
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Stabilization of f__,

+

m The f-to-2f interferometer output is used in a feedback loop.
s  An AOM controls the pump power to stabilize f .,

RF Frequency standard

RF phase
generator detector

RF
generator interferometer

Ti:Sapphire
modelocked laser




Scanning of 1.,

+

m Linear cavity required for long-range scanning
m  Multiple reflections on single mirror to increase scan range

Scan range determined by:
- Cavity stability range
- Alignment sensitivity




A frequency comb as a calibration tool
for “spectroscopy laser”
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The frequency of a laser can directly be determined
by beating it with the nearest frequency comb mode:

100-m
optical fiber

avalanche
bk

Cf: Hansch and co-workers: atomic hydrogen




Direct frequency comb spectroscopy
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atomic superposition
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Full control over
pulse timing
required
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laser pulses
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Ramsey spectroscopy
T — Atomic fountain clocks
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QM analysis of pulse sequences

Wave function of two-level atom:

From Schrédinger equation, and some approximations (dipole, rotating wave) the upper state
density can be calculated for two-pulse sequence:

T is time between pulses
¢ is difference in f__, between pulses

N
For N puises: - [MIEEESNSIIEY) SPEEAS

n=~0

Excited state population

Intensity (a.u.)
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Time + 13,000,000 (fs)




Feasibility experiment in deep-UV (Kr atom)

With amplification in Titanium:Sapphire
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Problem with frequency comb calibration:
mode ambiguity

+

84Kr: 4pb - 4p° 5p [1/2],

oY

3.5 MHz accuracy with
THz bandwidth laser pulses
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Combs in the VUV and beyond

Harmonic conversion

harmonic uv

conversion

-

frequency

frequency comb = high power pulses = 'easy' harmonic generation

combination of high peak power and accuracy




Combs Iin the VUV and beyond

Comb is retained in harmonics due to pulse structure
‘ Phase control/measurement is the crucial issue
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Measurements at the 7th harmonic (of Ti:Sa)

Probing Xe (5p® - 5p°5d) at 125 nm (Vacuum ultraviolet frequency comb)
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Phase stability (between pulses) in the VUV

(effect on relative phase)

+

Phase shift (rad)

Phase shift (rad)
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Novel development:
Miniaturisation of frequency comb lasers

-V
Mode-locked diode lasers
InP quantum dot material

Result from hybrid modelocking
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Frequency (GHz)




