

Lectures on Spectroscopy and Metrology

- 1. How to do XUV precision spectroscopy
 - XUV-light and how to make it: Harmonic generation
 - Frequency chirping in lasers and harmonics
- 2. Frequency metrology with frequency comb lasers
 - Concepts of frequency combs
 - Use in calibration
 - Direct frequency comb excitation
- 3. Precision spectroscopy of hydrogen
 - Laboratory spectroscopy
 - Spectroscopic observations of quasars
 - Detecting a variation of the proton-electron mass ratio
- 4. Varying constants and a view on an evolutionary universe

TULIP Summer School IV 2009 Noordwijk, April 15-18

Wim Ubachs

XUV light

Lasers at very short wavelengths ? competiton with spontaneous emission: A/B ~ ω^3 no media for tunability

Transparancy of the atmosphere vacuum ultraviolet : λ < 200 nm

No window materials

LiF cutoff : $\lambda \sim 105$ nm; MgF at 118 nm; CaF at ~130 nm No optics for beam manilupation - focusing No nonlinear crystals

Harmonic conversion only in gases

Gases have inversion symmetry; so third order Re-absorption still important in some cases – differentail pumping Optical breakdown and plasma formation Typical conversion effeiciens < 10⁻⁶

Other sources

Gas discharges (Hopfield continua) Synchrotron radiation

Nonlinear Optics and the Production of XUV light

The first non-linear optical laser experiment

P.A. Franken, A.E. Hill, C.W. Peters and G. Weinreich, Phys. Rev. Lett. 7 (1961) 118

Nicolaas Bloembergen Nobel prize 1981 Further: Stimulated Raman, Stimulated Brillouin, CARS, Photon echoes, Four-wave mixing Surface sum-frequency-mixing

Graphical: Nonlinear response of a medium

Linear response: induced polarization follows the applied field on the medium

Non-linear response: induced polarization cannot follow the applied field on the medium

The medium becomes nonlinearly polarized

Polarization can be decomposed in Fourier components $P = \sum_{n=1}^{\infty} q_n d^n$

$$\mathbf{P} = \sum a_n \sin(n\,\omega t + \phi_n)$$

Nonlinear Optics and Maxwell's equations

Nonlinear polarization induced in a medium: $\vec{\mathbf{P}}_{i} = \chi_{ij}^{(1)} \vec{\mathbf{E}}_{j} + \chi_{ijk}^{(2)} \vec{\mathbf{E}}_{j} \vec{\mathbf{E}}_{k} + \chi_{ijkl}^{(3)} \vec{\mathbf{E}}_{j} \vec{\mathbf{E}}_{k} \vec{\mathbf{E}}_{l} + O(E^{4})$ In centrosymmetric media, such as gases, $\chi^{(2)} = 0$: $\vec{\mathbf{P}}_{i}^{(3)} = \chi_{ijkl}^{(3)} \vec{\mathbf{E}}_{j} \vec{\mathbf{E}}_{k} \vec{\mathbf{E}}_{l}$ A source term for Maxwell's equation: $\nabla^{2} \vec{E} - \mu \sigma \frac{\partial \vec{E}}{\partial t} - \mu \varepsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}} = \mu \frac{\partial^{2}}{\partial t^{2}} \vec{P}^{NL}$ Input fields: $E_{1}(z,t) = E_{1}(z) \exp(i\omega_{1}t - ik_{1}z)$ $E_{2}(z,t) = E_{2}(z) \exp(i\omega_{2}t - ik_{2}z)$ $E_{3}(z,t) = E_{3}(z) \exp(i\omega_{3}t - ik_{3}z)$

A new field $E_4(z, t)$ is created at frequencies: $\omega_4 = \pm \omega_1 \pm \omega_2 \pm \omega_3$

At polarization:
$$P_{NL}(z,t) = dE_1(z)E_2(z)E_3(z)\exp[i(\omega_1 + \omega_2 + \omega_3)t - i(k_1 + k_2 + k_3)z]$$

Coupled wave equations

Maxwell's equation with nonlinear source term:

$$\nabla^{2}\vec{E}_{4} - \mu\sigma\frac{\partial\vec{E}_{4}}{\partial t} - \mu\varepsilon\frac{\partial^{2}\vec{E}_{4}}{\partial t^{2}} = \mu\frac{\partial^{2}}{\partial t^{2}}\vec{P}^{NL}$$

Substitute left side:

use:
$$E_4(z,t) = E_4(z) \exp(i\omega_4 t - ik_4 z)$$

$$\frac{d^{2}}{dz^{2}}E_{4}(z,t) - \mu\sigma\frac{d}{dt}E_{4}(z,t) - \mu\varepsilon\frac{d^{2}}{dt^{2}}E_{4}(z,t) = \frac{d^{2}}{dt^{2}}E_{4}(z,t) + 2ik_{4}\frac{d}{dz}E_{4}(z,t) - k_{4}^{2}E_{4}(z,t) + i\omega_{4}\mu\sigma E_{4}(z,t) + \mu\varepsilon\omega_{4}^{2}E_{4}(z,t)$$

Slowly varying amplitude approximation

$$\left. \frac{d^2}{dz^2} E_4(z,t) \right| \ll \left| 2ik_4 \frac{d}{dz} E_4(z,t) \right|$$

Variation of the amplitude of the distance of a wavelength is small

$$\frac{d^{2}}{dz^{2}}E_{4}(z,t)+2ik_{4}\frac{d}{dz}E_{4}(z,t)-k_{4}^{2}E_{2}(z,t)$$
$$+i\omega_{4}\mu\sigma E_{4}(z,t)+\mu\varepsilon\omega_{4}^{2}E_{4}(z,t)$$

For plane waves in a medium;

$$\mu\varepsilon\omega_4^2 - k_4^2 = \frac{\omega_4^2}{c^2} - k_4^2 = 0$$

So left side of wave equation;

$$2ik_4\frac{d}{dz}E_4(z,t)+i\omega_4\mu\sigma E_4(z,t)$$

Coupled wave equations

$$\nabla^2 \vec{E}_4 - \mu \sigma \frac{\partial \vec{E}_4}{\partial t} - \mu \varepsilon \frac{\partial^2 \vec{E}_4}{\partial t^2} = \mu \frac{\partial^2}{\partial t^2} \vec{P}^{NL}$$

right side of wave equation;

left side of wave equation;

$$2ik_4 \frac{d}{dz} E_4(z,t) + i\omega_4 \mu \sigma E_4(z,t)$$

reabsorption

$$\mu \frac{\partial^2}{\partial t^2} \vec{P}^{NL} = \mu \frac{d^2}{dt^2} \chi E_1(z) E_2(z) E_3(z) \exp[i(\omega_1 + \omega_2 + \omega_3)t - i(k_1 + k_2 + k_3)z] = -\mu(\omega_1 + \omega_2 + \omega_2)^2 \chi E_1(z) E_2(z) E_3(z) \exp[i(\omega_1 + \omega_2 + \omega_3)t - i(k_1 + k_2 + k_3)z]$$

Conservation of energy; $\omega_4 = \omega_1 + \omega_2 + \omega_3$

This does not hold for the wave vectors, because;

$$\omega_{i} = \frac{k_{i}}{\sqrt{\mu\epsilon(\omega_{i})}} = \frac{ck_{i}}{n(\omega_{i})}$$

Hence;

$$\Delta \vec{k} = \vec{k}_4 - \vec{k}_1 - \vec{k}_2 - \vec{k}_3$$

vation;
$$rac{d}{dz}E_4(z) \propto \chi^{(3)}E_1(z)$$

$$\frac{d}{dz}E_4(z) \propto \chi^{(3)}E_1(z)E_2(z)E_3(z)\exp[-i\Delta kz]$$

Coupled equ

Result
$$I(\omega_4) = |\chi^{(3)}|^2 I(\omega_1) I(\omega_2) I(\omega_3) \Phi_{pm}(\overrightarrow{\mathbf{k}}_1, \overrightarrow{\mathbf{k}}_2, \overrightarrow{\mathbf{k}}_3, \overrightarrow{\mathbf{k}}_4)$$

Perturbative analysis of THG

Susceptibility, quantum level structure, reabsorption and resonance enhancement

Non-linear susceptibility:

$$\chi^{(3)} \propto \sum_{gijk \ terms} \frac{\langle g | \mathbf{r} | i \rangle \langle i | \mathbf{r} | j \rangle \langle j | \mathbf{r} | k \rangle \langle k | \mathbf{r} | g \rangle}{(\omega_{gi} \pm \omega) (\omega_{gj} \pm 2\omega) (\omega_{gk} \pm 3\omega)}$$

Resonances possible at the

- One photon
- Two-photon
- Three photon levels (reabsorption)

Advantage at two-photon-level

$$\chi^{(3)} \propto \sum_{ik} \sum_{terms} \frac{\langle g | \mathbf{r} | i \rangle \langle i | \mathbf{r} | J' \rangle \langle J' | \mathbf{r} | k \rangle \langle k | \mathbf{r} | g \rangle}{(\omega_{gi} \pm \omega) (\omega_{gj} - 2\omega - i\Gamma) (\omega_{gk} \pm 3\omega)}$$

Again level structure of the noble gases is favorable:

Two-photon resonance	excitation energy (cm ⁻¹)	resonance wavelength (nm)	relative efficiency ^a
5p - 6p' [3/2];	89162.9	224.3	40
[1/2]	89860.5	222.6	187
7p [5/2];	88352.2	226.4	4
Xe [3/2]	88687.0	225.5	9
[1/2]	0 88842.8	225.1	26
8p [5/2] ₂	92221.9	216.9	9
[3/2] ₂	92371.4	216.5	5
[1/2]	92555.7	216.1	119
4p - 5p [5/2] ₂	92308.2	216.7	167
Kr [3/2] ₂	93124.1	214.8	56
[1/2]0	94093.7	212.6	1000

λ = 212.5 nm resonance in Kr "strongest two-photon resonance in nature"

Non-colinear Phase-matching for sum-frequency generation

Opt. Lett. 20 (2005) 1494

Problems and solutions in colinear phase-matching in THG

Beams must be focused: this has an effect on the wave front

Electromagnetic fields (for TEM₀₀):

$$w_0$$
 beam waist radius
n index of refraction
 θ far-field diffraction angle
 $\xi = \frac{2(z-f)}{b}$ normalized coordinate along z
Confocal parameter b
 $2\pi w_0^2 = 2\pi w_0^2 n = 2\lambda_0$

$$b = \frac{2\pi w_0}{\lambda} = \frac{2\pi w_0 n}{\lambda_0} = \frac{2\lambda_0}{n\theta^2} = kw_0^2$$

$$\mathbf{E}_{n}(\mathbf{r}) = \mathbf{E}_{n0}(\mathbf{r}) \frac{\exp(ik_{n}z)}{1+i\xi} \exp\left[\frac{-k_{n}\left(x^{2}+y^{2}\right)}{b\left(1+i\xi\right)}\right]$$

Lowest order Gaussian beam undergoes phase shift $\arctan \xi$ when propagating through the focus (Gouy phase), adding up to π for $(-\infty,\infty)$

Conditions for the phase-matching integral in THG

Solutions, process THG $E_{4}(\mathbf{r}) = i \frac{3N}{2k_{4}} \pi k_{0}^{2} b \chi^{(3)}(-\omega_{4};\omega_{1},\omega_{2},\omega_{3}) E_{10} E_{20} E_{30} \frac{\exp(ik'z)}{(1+i\xi)}$ $\times \exp\left[\frac{-k'(x^{2}+y^{2})}{b(1+i\xi)}\right]_{-\zeta}^{\xi} \frac{\exp[-(ib/2)\Delta k(\xi'-\xi)]}{(1+i\xi')^{2}} d\xi'$

Phases get into the integral: wave front + dispersion

Field $E_4(\mathbf{r})$ be calculated, integration $\int_{0}^{\infty} 2\pi R |E_4(R)|^2 dR$ $R = \sqrt{x^2 + y^2}$ over x and y, and z to z=L.

Then generated Power at P_4 is

$$\mathbf{P}_{4} = \eta \frac{k_{0}^{4} k_{1} k_{2} k_{3}}{k_{4}^{2} k'} N^{2} \chi^{2} \mathbf{P}_{1} \mathbf{P}_{2} \mathbf{P}_{3} F_{j} \left(b \Delta k, \frac{b}{L}, \frac{f}{L}, \frac{k''}{k'} \right)$$

With the phase-matching integral

$$F_{I}\left(b\Delta k, \frac{b}{L}, \frac{f}{L}, \frac{k''}{k'}\right) = \int_{-\zeta}^{\zeta} \frac{\exp\left[-\left(ib/2\right)\Delta k\xi'\right]}{\left(1+i\xi'\right)^{2}}d\xi$$

Influence of the geometry in THG

Process THG - evaluation of integral for b<<L:

$$F_{I}(b\Delta k, 0, 0.5, 1) = \frac{\pi^{2}(b\Delta k)^{2}e^{(b\Delta k/2)} - \Delta k < 0}{0} - \Delta k \ge 0$$

THG only possible, in the tight-focusing limit if $\Delta k < 0$

So: only if the medium has NEGATIVE DISPERSION !!

Plane wave limit

Process THG - evaluation of integral for b>>L:

$$\lim_{b/L \to \infty} F_I\left(b\Delta k, \frac{b}{L}, 0.5, \frac{k''}{k'}\right) = \frac{4L^2}{b^2}\operatorname{sinc}^2\left(\frac{\Delta kL}{2}\right)$$

The known sinc-function Also found in frequency-doubling (for plane waves)

Less efficient than tight-focusing

Real example: Negative and positive dispersion in the Kr and Xe

Wave vector mismatch
Related to dispersion
$$\Delta k = CN = \frac{2\pi(n_1 - n_3)}{\lambda} \quad \text{with} \quad (n-1)_{lines} = \frac{Nr_e}{2\pi} \sum_i \frac{f_i}{\lambda_i^{-2} - \lambda}$$

THG in Xe; experiment

Experiment THG production

Calculation of Phase-matchingintegral

Conclusion: 1) theory of phase-matching works 2) THG effective at blue side of ns and nd resonances

Note : absolute intensities at the 10⁻⁶ - 10⁻⁷ scale

Density effect on THG in Xe

Wave vector mismatch Related to dispersion

 $\Delta k = CN = \frac{2\pi(n_1 - n_3)}{\lambda}$

Phase mismatch is macroscopic (like the refractive index): dependent on gas density

NB: use mixing of gases with opposite dispersion

Polarization (orientation of the E-vector)

Nonlinear susceptibility:

 $\chi^{(3)} \propto \sum_{gijk} \sum_{terms} \frac{\langle g | \mathbf{r} | i \rangle \langle i | \mathbf{r} | j \rangle \langle j | \mathbf{r} | k \rangle \langle k | \mathbf{r} | g \rangle}{(\omega_{gi} - \omega)(\omega_{gj} - 2\omega)(\omega_{gk} - 3\omega)}$

Note: parametric four-wave mixing: no energy/angular momentum exchange with the medium

Involves a sequence of four coherent photon interactions (no relaxation)

$$\left\langle g|\mathbf{r}|i\right\rangle = \left\langle J_g M_g \left|\mathbf{r}_q^{(1)}\right| J_i M_i\right\rangle = (-)^{J_i - M_i} \begin{pmatrix} J_i & 1 & J_g \\ -M_i & q & M_g \end{pmatrix} \left\langle J_g \left\|\mathbf{r}^{(1)}\right\| J_i\right\rangle$$
(Wigner-Eckhart)

Hence in four-wave mixing:

$$\chi^{(3)} \propto \begin{pmatrix} J_i & 1 & J_g \\ -M_i & q_1 & M_g \end{pmatrix} \begin{pmatrix} J_j & 1 & J_i \\ -M_j & q_2 & M_i \end{pmatrix} \begin{pmatrix} J_k & 1 & J_j \\ -M_k & q_3 & M_j \end{pmatrix} \begin{pmatrix} J_g & 1 & J_k \\ -M_g & q_4 & M_k \end{pmatrix}$$

The coherent sum requires △M=0 over four-photon cycle; q=0, q=-1, q=1 projections of dipole moment on angular basis (polarizations) Evaluate the four-product of Wigner-3j symbols

Results: 1) all polarizations linear is possible $q_1 = q_2 = q_3 = q_4 = 0$

2) THG with circular light is NOT possible: $q_1 = q_2 = q_3 = 1$

Production of Polarized XUV

Well defined quantum level; Real intermediate level J₂ = 0 or 2

Defeating the negative dispersion problem

All calculations performed for integral from -L to +L. Cut-off the medium at f; stop the destructive interference. Can be done in "forbidden region". Efficiency remains low; but not zero.

Pulsed jets and differential pumping - the road to the windowless regime

A.H. Kung, Opt. Lett. 8, 24 (1983).

Real life THG conversion at high laser powers

Features of the quantum mechnical level structure visible, via resonance enhancement

Practical: XUV production possible at all wavelengths

XUV-laser setup with Pulsed Dye Amplification; bandwidth ~250 MHz

Phenomena of frequency chirp and precision metrology

Bandwidths:

$$\sqrt{n} \times \Delta \omega_f$$

 $n \times \Delta \omega_f$

for Gaussian beam profile

for Lorentzian beam profile

For non-FT-limited pulses, with possible chirp:

$$f(t) = \frac{1}{2\pi} \, \frac{\partial \phi(z,t)}{\partial t}$$

 $\omega_n = n \times \omega_f$

Phase variations possibly due to index modulation

$$\phi(z,t) = -\frac{\partial n}{\partial t}$$

Example: 5th harmonics (atom as a ruler)

lonization in the focus modulates the index:

$$n_e(t) = 1 - \frac{e^2 N_e(t)}{8\pi^2 m_e \epsilon_0 \nu^2}$$

Frequency chirp in precision metrology of pulsed lasers

Spectroscopy performed with an injection seeded laser (+upconversion) Calibration of the CW seed laser Verification of chirp effect in pulsed systems

Chirp detection scheme

Chirp detection and chirp analysis

