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Hamiltonian for a molecule

| refers to electrons, A to nuclei;
Potential energy terms:

ZAZBe 62

5 o) ZA62
ok B B i

Assume that the wave function of the system is
separable and can be written as:

‘Pm0|(ﬁ, ﬁA): Wel(ri; Fi)ﬂ(nUC(ﬁ)

Assumed that the electronic wave function l//el(ri; ﬁ)
can be calculated for a particular R

Then: V?Wel(ﬁiﬁ)}(nuc() Znuc(R)VN//el(rl’ )

Born-Oppenheimer: the derivative
of electronic wave function w.r.t
nuclear coordinates is small:

V aWel =0

Nuclei can be considered stationary.
Then:

2 2
VaWel Xnue = Vel YV AZnuc

Separation of variables is possible.

Insert results in the Schrédinger
equation:

Hmol%el Xnuc = Emol%el Xnuc

2 2 2
VaWelXnuc =VelY AZnuc + Z(V AVl )(V Aﬂ(nuc)Jr VaWel
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Separation of variables in the molecular Hamiltonian

e’ ZAe2

hZ
H%¥mol = Znuc —%ZV? + Z

i 1> ]

D S Y S
el - A (Anuc — Etotal ¥ mol
A>B 472'80‘RA—RB‘ A 2MA

Wl +
472'6‘0 rij Al 472'80 Mpj e

The wave function for the electronic part can be
written separately and “solved”; consider this as
a problem of molecular binding.

h2 2 2

— Vi ° Za8 wellfiiR)= Equgllfi; R
Zi:I i§j4”‘90rij %AﬂgorAi el(l ) el el(l )

Solve the electronic problem for each R and insert

result E, in wave function.
This yields a wave equation for the nuclear motion:

hz 2 ZAZBe2
—Y —— V4 +
=~ 2M iZh Ameg|Rp — Rg|

+ Eg| (ﬁ)}lnuc = Etotal Znuc

Lecture Notes Structure of Matter: Atoms and Molecules; W. Ubachs




Schrodinger equation for the nuclear motion

The previous analysis yields:

+ Eg| (ﬁ)}lnuc = Etotal Znuc

This is a Schrodinger equation with a
potential energy:

~ ZAZBeZ ) Typlclal pcl>Ten’r|a| energy curves
V(R): + EeI(R) In molecules

B 472'80‘RA— RB‘

nuclear repulsion ¥

Now try to find solutions to the
Hamiltonian for the nuclear motion

_Z—VAZnuc( )+V(R)){nuc( ) Elnuc(R)
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Quantized motion in a diatomic molecule

Quantummechanical two-particle problem
Transfer to centre-of-mass system

M AM
p=—"aMs
MA-l-MB

Single-particle Schraodinger equation

2
_%Aﬁlnuc(ﬁ)JrV (ﬁ)lnuc(ﬁ): EZnuc(ﬁ)

Consider the similarity and differences
between this equation and that of the
H-atom:

- interpretation of the wave function

- shape of the potential
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Laplacian:

Ag :ii(RZ i)
R2 OR oR

1 of(. .0 1 8
+— sin@ +— 5
R<sing 00 00) R<siné o¢

Angular part is the well-know equation
with solutions:

Angular momentum operators

Spherical harmonic wave functions !




Angular momentum in a molecule

Solution: :
And angular wave function

N2IN,M)=%2N(N +1)|N,M
‘ ) ‘ ) IN,M)=Yym (6,4)

Nz|N,M)=7aM|[N,M)
with Hence the wave function of the molecule:

N =0123..

M=-N—N+1.. N Znuc(R19'¢):E(R)YNM (‘91¢)

Reduction of molecular Schradinger equation

e 0 (_o 0 1 5
B 2 D R - 9 N“+V(R) | xnuc(R) = Evib,rotlnuc(R)
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Eigenenergies of a "Rigid Rotor”

Rigid rotor, so it is assumed that R = R, = constant
Choose: V(R)=V(R;)=0

All derivates & yield zero

OR

Insert in:

n’ 0 o 1
{ (Rz 8Rj+ N 2 +V (R)}(nuc(R) = Evib,rothuc(R)

2,uR2 OR 2,uR2
L7
5 N® Znuc(R) = Evib,rotlnuc(R) = !y
2 1Rg

So quantized motion of rotation: Erot = G N(N+1) = BN(N +1) i 5
24R¢ s
With B the rotational constant \ : :
isotope effect ' —] a

—  Deduce R, from spectroscopy
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Vibrational motion

OR

h’ 0 0 -
{ (Rz jJF N2+V(R)}(nuc(R):Evib,rotlnuc(R)

2,uR2 OR 2,uR2

Non-rotation: N=0 #2 (2
Q(R) ]

Z(R)= 22

R)=-2

Insert :

V(R)

_ZW +V (R)}Q(R) = EyipQ(R)

Make a Taylor series expansion around p=R-R,

1d4V
Re 2 dR2

dv
V(R) =V(Re)+d—R

V(Re)=0 by choice

dVv

“Y) _po atthe bottom of the well
dR

Re

Hence: V(R)= k(R —Re )2 harmonic potential
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Vibrational motion

n’ d? 1
{—QEJFEKPZ}Q(P) = EyipQ(p)

So the wave function of a vibrating molecule
resembles the 1-dimensional harmonic
oscillator, solutions:

vi2 1/4

Qo) - o Jap? iy ap)
TT

k
with: o=#% and @e= |-
h 7

Energy eigenvalues:

EVib = ha)e(v-l-%j
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Finer details of the rovibrational motion

Centrifugal distortion:

Erot =

Anharmonic vibrational motion

Evib =@ (v+1j—a) X (v+£j2+
vib e 2 e’e 5

Dunham expansion:

Ew = Vi (v%}k N'(N 1)

K,

BN(N +1)— DN?(N +1)?
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Vibrational energies in the H,-molecule




Energy levels in a molecule: general structure

I v=2
Vg
v=1 . .
Rovibrational
J structure
_ v=0 superimposed on
electronic
structure
_ V=2
Y -
A v=1
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Radiative transitions in molecules

The dipole moment in a molecule:

J= g+ N =—) fi + ) eZRp
i A

In a molecule, there may be a:
- permanent or rotational

dipole moment
- vibrational dipole moment

o) oo Saal
An=fo+| oA Rep 2| 2" )P

In atoms only electronic transitions,
in molecules transitions within
electronic state

Lecture Notes Structure of Matter: Atoms and Molecules; W. Ubachs

LIJmol(ri ) IiA): ‘//el(ri; Ii)”vib(ﬁ)
Dipole transition between two states
Hif = f Yurdr
Two different types of transitions
tis = [wewrvio (te + N Wetwvinde =
— ([Wéwewédf)ﬂxllib%;ibdﬁJr

[vewedr [wyipunwyindR ——

— Electronic transitions

Rovibrational transitions <—




The Franck-Condon principle for electronic transitions in molecules

Intensity of electronic transitions

1sT term:
0 L ! a — 2 ' " S 2 1y 2
Hif :j(j‘//elﬂel//eldr)//vib‘ﬂvibdR | Oc‘ﬂif‘ OCU‘//vib@”vibdR o (V| V")
Only contributions if (parity selection rule) "

Wel # Vel
Franck-Condon approximation:

The electronic dipole moment independent
of internuclear separation:

Me(R) = j‘//élﬂe‘//gldr

Hence

Hif = Me(R)j‘//Vib‘//VibdR Intensity proportional to the square
of the wave function overlap
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Rotational transitions in molecules

2nd term in the transition dipole

it =(Pnme |4 Pam )

Projection of the dipole moment vector
on the quantization axis.
For rotation take the permanent dipole.

sin@cos¢

U= M| Sin@sing | < tyYim
cosé

tis o g | [Ynrm YamYnm dQ2
N1 N)Y N" 1 N
oC
0O 00) M m M

— > Selection rules
AN =+1

AM =0,%1
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Purely rotational spectra

Level energies:
F, = B,N(N +1)— D,N?(N +1)?

Transition frequencies:
V= FV(N')_ R, (N") =
B, [N'(N'+1) = N"(N"+1)]

- D, [N 2 (N'+1)% — N"? (N"+1)2]

Ground state with N’ and excited N’
Absorption in rotational ladder: N’=N""+1

Vaps = 2By (N"+1) — 4D, (N"+1)°

e

spacing between lines ~ 2B




Rotational spectrum in a diatomic molecule

Ground state with N’ and excited N’

Absorption in rotational ladder: N’=N"+1

Vaps = 2By, (N"+1) — 4D, (N"+1)°

spacing between lines ~ 2B

In an absorption spectrum: R-lines
In an emission spectrum: P-lines

Homonuclear molecule
#N =) eZpRp =eZp(Ra—Ra) =0

A
For permanent dipole
No rotational spectrum
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Vibrational transitions in molecules

2nd term in the transition dipole
tit = [weweldr [wyipsnyvindR
Within a certain electronic state:

Vel = Vel — fl//éu//;df =1

Line intensity:

v

pit = (V| syip

Permanent and induced dipole moments;

-] oo Saal
An=fo+| oA Rep 2| 2" )P
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Permanent dipole does not produce a
vibrational spectrum

V=0

Hit =(V'|uo|V") = uo(v

Wave functions for one electronic state
are orthogonal.

g d -
Hif =<V \(ﬁﬂjR P

e

)

V"> oc <V"p

Dipole moment should vary with
Displacement - vibrational spectrum




Vibrational transitions in molecules

Permanent and induced dipole moments;

#)=(v]ap+bp?v)

pit =(V

First order: the vibrating dipole
moment

V) o (V| | V)

pig = (V'

Homonuclear molecule

N =D eZpARA =€ZA(RA—Rp) =0
A

For all derivatives
No vibrational dipole spectrum
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In the harmonic oscillator approximation;

(n[pk) = [Qn(p)Qx(p)dp =

h n+1
{Ji&kn 1+t \/—§k n+1}
\/ uw| \ 2

Selection rules: Av=Vv-v=+1

Higher order transitions (overtones) from:

- anharmonicity in potential
- induced dipole moments




Rovibrational spectra in a diatomic molecule

Level energies:
T =G(v)+ Fy(N)
with:
F, = B,N(N +1)— D,N?(N +1)?

2
G(v) = a)e(v+1j—a)exe(v+lj
2 2

Transitions from
vV’ (ground) to Vv’ (excited)

o(v—v")= g + Fy(N') — Fy(N")

with
o9 =G(v')-G(v")

the band origin; the rotationless
transition (not always visible)
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Transitions

R-branch (N’=N"’+1) - neglect D

oR =00+ 2B, + (3B, — By )N + (B, — B+ )N?

For By, =By
oR =0p +2B,(N +1)

P-branch (N’=N"’-1) - neglect D
op =00 —(By + By )N +(By — B+ N2

For Bv' = Bv"
oR =0p+2B,(N +1)




Rovibrational spectra

oR =0g + 2By + (3B, — By )N +(By: — By« )N More precisely spacing between lines:
op =00~ (By + By )N +(By — By )N? or(N+1)—oR(N)~ 3B, — By < 2By,

op(N+1)—op(N)~ B, + B> 2B,

3
. _A ) N’ If, as usual: B, < By~
v A ; " A ol
- A Rotational constant in excited state
R, | is smaller.
R-branch Ry | P, P3  P-branch
|
R P
° | ' Spacing in P branch is larger
\ 3 Band head formation in R-branch
V" ! gl N
o Spacing between R(0) and P(1) is 4B

“band gap”
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Example: rovibrational spectrum of HCI; fundamental vibration

-
\ =
i _
. F =1
||=$'--
A val}
Framsifiorys wads, j kv jai Transifiors w0, | #o vl js1

M
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"
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Example: rovibrational spectrum of HBr; fundamental vibration

vibralion-rotalion specirum of HEr

|
i
|
‘ 1T
M _
10

(0,300 03 0520 0.330
Enengy (gY)

(.340
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Rovibronic spectra

— Vibrations - governed by the
Franck-Condon principle

— v=2
Yy E— Rotations > governed by angular momentum
—— _ selection rules
v=1
3 Transition frequencies
T v=0 vt
T'=Tg+G'(V')+F,'(N")
T":TA +GII(VII)+ FVII(NII)
— R and P branches can be defined
in the same way
- V=2 OR =00 + 2By + (3B, — By )N + (B, — By )N
BN i =1 op =g —(By + By )N +(By: — By )N ’
J

T, v=0
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Band head structures and Fortrat diagram

oR =00+ 2By + (3B, — By« )N +(By: — By« )N 2

op =g —(By + By N +(By — By )N?

Define:
m=N+1  for the R-branch
m=-N for the P-branch

then for both branches:
o =0g + (B, + By )Jm+(By: — B~ )m?
if: By <By

0'=0'0+05m—,b’|'n2

A parabola represents both
branches

v (em*1)

(T TTTTT

g0 25900 20 40 p (e’

e mmm—— e ——————
1

+201

s

95446 60 80 25f00 99

n

¥ig., 24. Fortrat Parabola of the CN Band 3883 A (see Fig. 18). Th‘c schematic spectrum
below is drawn to the same scale as the Fortrat parabola above. The relation thwpen_ curve and
spectrum is indicated by broken lines for two poiuts (m = —11 andm = +18). No line is observed

at m = 0 {dotted line ).

- no line for m=0 ; band gap
- there is always a band head, in one branch
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Population distributions; vibrations

Probability of finding a molecule »
in a vibrational quantum state: s P(v)/P(0)
o—EW)/KT
P(v) =
V) Z —E(v) /KT
e
\Y
— g (V+1/ 2) e 2050 e T T T gy
1 KT
=—¢
Z TABLE 1.4.. RATIO OF THE NUMBER OF MOLECULES IN THE FIRST
TO THAT IN THE ZEROTH VIBRATIONAL LEVEL For 300° K. awp 1000° K.
o —AGygha (kT T
Gas AGys(em™) 3
E— For 300° K. For 1000° K.
' H, 41602 216 X 10~ | 251X 1073
1 l | HCL 2885.9 9.77 X 1077 1.57 X 1072
Boltzmann distribution . - i MR e o
co 2143.2 3.43 X 1078 4,58 X 1072
O 1556.4 5.74 X 1074 1.07 X 107!
8s 721.6 3.14 X 1072 3.54 X 107
Cly 556.9 '8.92 X 1072 449 % 1071
1y 213.2 3.60 X 107! 7.36 X 107

Note: not always thermodynamic equilibrium
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Population distributions; rotational states in a diatomic molecule

Probability of finding a molecule
in a rotational quantum state:

—Eot /KT
P(3) = (23 +1)
3 (23'+1)e Frot /KT
-

:L(ZJ +1)e—BJ(J+1)+DJ2(J+1)2
rot

Find optimum via
aPU) _g
dJ
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