Molecules and binding

Linus Pauling Nobel 1954

Max Born Nobel 1954

Robert Oppenheimer

The Nature of the Chemical Bond

The Born-Oppenheimer Approximation

Molecules and binding

H₂⁺ classical and static model:

$$V_{\text{Coulomb}} = \frac{+e^2}{4\pi\varepsilon_0 R} - 2\frac{e^2}{4\pi\varepsilon_0 (R/2)} = -3\frac{e^2}{4\pi\varepsilon_0 R}$$

centered electron keeps
positively charged nuclei together

Born-Oppenheimer Approximation

Nuclei fixed in a frame: use
$$k = \frac{1}{4\pi\varepsilon_0}$$

Solutions, for the case of only one potential:

$$\phi_{ls}^A(r-R/2)$$

$$\phi_{ls}^B(r+R/2)$$

 ϕ_{ls} not exact approximations

Symmetric and anti-symmetric wave functions

Define:
$$\Psi_{+}(r) = \frac{1}{\sqrt{2}} \left(\phi_{ls}^{A} + \phi_{ls}^{B} \right)$$
 and $\Psi_{-}(r) = \frac{1}{\sqrt{2}} \left(\phi_{ls}^{A} - \phi_{ls}^{B} \right)$

Two hydrogenic wave functions for 1s orbital: $\phi \propto e^{-a\left(r\pm R/2\right)}$

Linear combinations of single 1s orbital solutions

$$\begin{array}{ll} \text{Insert in SE:} & \Psi_+(r)\!=\!\frac{1}{\sqrt{2}}\!\left(\!\phi_{\mathrm{I}s}^A+\phi_{\mathrm{I}s}^B\right) \quad \text{and} \quad \Psi_-(r)\!=\!\frac{1}{\sqrt{2}}\!\left(\!\phi_{\mathrm{I}s}^A-\phi_{\mathrm{I}s}^B\right) \\ & \langle\varepsilon\rangle\!=\varepsilon_\pm=\!\frac{1}{2}\int\!\left(\!\phi^A\pm\phi^B\right)\!\!\left[\!T+\!V_a+\!V_b+\!V_R\right]\!\!\int\!\left(\!\phi^A\pm\phi^B\right)\!\!dV = \\ \end{array}$$

$$\langle \varepsilon \rangle = \varepsilon_{\pm} = \frac{1}{2} \int (\phi^{A} \pm \phi^{B}) [T + V_{a} + V_{b} + V_{R}] \int (\phi^{A} \pm \phi^{B}) dV = \frac{1}{2} \int (\phi^{A} \pm \phi^{B}) [(T + V_{a})\phi_{A} \pm (T + V_{b})\phi_{B}] dV + \frac{1}{2} \int \phi_{A}^{2} (V_{b} + V_{R}) dV + \frac{1}{2} \int \phi_{B}^{2} (V_{a} + V_{R}) dV$$

$$\pm \frac{1}{2} \int \phi_{A} (V_{a} + V_{R}) \phi_{B} dV \pm \frac{1}{2} \int \phi_{B} (V_{b} + V_{R}) \phi_{A} dV$$

1.
$$(T+V_a)\phi_A = \varepsilon_{1s}\phi_A$$
 $(T+V_b)\phi_B = \varepsilon_{1s}\phi_B$

solutions with hydrogen wave functions

2. Define:
$$\int \phi_A^2 \left(V_b + V_R \right) dV = \int \phi_B^2 \left(V_a + V_R \right) dV = G \quad \text{direct Coulomb energy}$$

electron at A

Coulomb pot with B

Evaluation of energies in H_2^+ system

$$\langle \varepsilon \rangle = \frac{1}{2} \int \left(\phi^A \pm \phi^B \right) \left[(T + V_a) \phi_A \pm (T + V_b) \phi_B \right] dV \qquad \qquad = \frac{1}{2} \varepsilon_{1s} + \frac{1}{2} \varepsilon_{1s}$$

$$+ \frac{1}{2} \int \phi_A^2 \left(V_b + V_R \right) dV + \frac{1}{2} \int \phi_B^2 \left(V_a + V_R \right) dV \qquad \qquad = \frac{1}{2} G + \frac{1}{2} G$$

$$\pm \frac{1}{2} \int \phi_A \left(V_a + V_R \right) \phi_B dV \pm \frac{1}{2} \int \phi_B \left(V_b + V_R \right) \phi_A dV \qquad \qquad = \pm \frac{1}{2} S \pm \frac{1}{2} S$$

Define:
$$\int \phi_A (V_a + V_R) \phi_B dV = \int \phi_B (V_b + V_R) \phi_A dV = S$$

- is a <u>quantum interference</u>, or an <u>overlap</u> integral
- it contributes if electron has density at A and B
- integral contributes if electron is near z=0

Energies in H_2^+ : $\langle \varepsilon \rangle = \varepsilon_{1s} + G \pm S$

Bonding in a molecule as a result of S integral

Energies in
$$H_2^+$$
: $\langle \varepsilon \rangle = \varepsilon_{1s} + G \pm S$

Integral calculations show that: |S| > |G| interference integral is larger

One of the two gives binding +S or -S

(can be calculated that S is negative, but)

- $\Psi_{+}(r)$ must be the bonding state
- $\Psi_{-}(r)$ is then higher in energy by 2S

Bonding and anti-bonding in H₂⁺

$$\varepsilon_{+} = \varepsilon_{1s} + G - S$$
$$\varepsilon_{-} = \varepsilon_{1s} + G + S$$

The Nature of the Chemical bond:

Wave function overlap of identical orbitals give rise to chemical stability

Linus Pauling Nobel 1954

Molecular "Potential Energy Curves"

S integral is a function of R

Curves for electronic energies

Bound states in a potential well

From H₂⁺ to H₂, the hydrogen molecule

Problem is similar, but two electrons occupying the orbitals

$$\langle \varepsilon \rangle = 2\varepsilon_{1s} + G' \pm S'$$

Two electrons in a bonding orbital \rightarrow chemical bond is stronger

Bonding in molecules

$$H_2^+$$
 (σ_{1s})

$$H_2$$
 $(\sigma_{1s})^2$

$$He_{2}^{+}$$
 $(\sigma_{1s})^{2}(\sigma_{1s}^{*})$ one effective bond

He₂
$$(\sigma_{1s})^2(\sigma_{1s}^*)^2$$
 no effective bond

$$B_2$$
 $(\sigma_{1s})^2(\sigma_{1s}^*)^2(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p})^2$

$$C_2$$
 $(\sigma_{1s})^2(\sigma_{1s}^*)^2(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p})^4$

$$N_2$$
 $(\sigma_{1s})^2(\sigma_{1s}^*)^2(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p})^6$

$$O_2$$
 $(\sigma_{1s})^2(\sigma_{1s}^*)^2(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p})^6(\sigma_{2p}^*)^2$

$$F_2$$
 $(\sigma_{1s})^2(\sigma_{1s}^*)^2(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p})^6(\sigma_{2p}^*)^4$

Ne₂
$$(\sigma_{1s})^2(\sigma_{1s}^*)^2(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p}^*)^6(\sigma_{2p}^*)^6$$

6 effective bonds: The most strongly bound molecule

