Atoms and Molecules in the Universe the need for studying spectroscopy

А	O_2	759.370
В	O ₂	686.719
С	Нα	656.281
a	O ₂	627.661
D ₁	Na	589.592
D ₂	Na	588.995
D_3 (or d)	Не	587.5618

Solar spectrum with Fraunhofer lines and atmospheric water absorption band indicated.

Joseph von Fraunhofer (1787-1827)

First elements formed after Big Bang

Primordial nucleosynthesis of elements: only 3 minutes ! (limited lifetime of neutrons)

H, D, ⁴He, ³He (24%, ~all neutrons) ⁷Li

Abundance ratio is proof of Big Bang model

Heavy elements produced in death of stars: Supernovae

-massive stars (10 M_{sun}) lives only 10⁷ years

-hydrogen at inside is exhausted and is burned into helium

-core contracts under gravity and starts fusion of He into Carbon and Oxygen

-repeated pattern of core collaps and subsequent fusion

-last stage: Si burns into Fe (takes one week)

-gravitational collaps in 1s 10 km diameter, only neutrons

-potential energy causes a shock emission of energy (99% neutrinos)

Structure of diatoms

Poly-atomic molecules

$$KE_{restational} = \frac{1}{2}I\omega^2 = \frac{J^2}{2I}$$
$$KE_{rest} = \frac{1}{2}I_e\omega_e^2 + \frac{1}{2}I_b\omega_b^2 + \frac{1}{2}I_e\omega_e^2$$

in general 3 axes of rotation: 3 inertial moments

3 rotational quantum numbers:

 J, K_{a}, K_{c}

Microwave spectroscopy gives I-moments directly

Observation of molecules mostly by Radio-Astronomy

Westerbork Telescope Array

Only in atmospheric "window

"The Unidentified Infrared (UIR) Bands and the PAH-hypothesis

Infrared spectroscopic features observed, mostly from hot regions (dust exposed to UV radiation)

Interstellar Masers

Orion nebula

Hydroxyl radical - OH

Also: H₂O, SiO, Methanol masers

Molecules observed in Interstellar Space											
Number of Atoms											
2	3	4	5	6	7	8	9	10	11	12+	
H ₂ AIF AICI C ₂ CH CH' CN CO CO' CP CSi HCI KCI NH NO NS NaCI OH PN	C_3 C_2H C_2O C_2S CH_2 HCN HCO' HCO' HCO' HCO' HCO' HOC' H_2O H_2S HNC HNO MgCN MgNC N_2H' N_2O NaCN	$c-C_3H$ $I-C_3H$ C_3N C_3O C_3S C_2H_2 $CH_2D^{+}?$ HCCN $HCNH^+$ HNCO HNCS $HOCO^+$ H_2CO H_2CN H_2CS H_3O^+ NH_3 SiC_3 CH_3	C_5 C_4H C_4Si $I-C_3H_2$ $e-C_3H_2$ CH_2CN CH_4 HC_3N HC_2NC HCOOH H_2CHN H_2CHN H_2C_2O H_2NCN HNC_3 SiH_4 H_2COH^2	C_3H H_2C_4 C_2H_4 CH_3CN CH_3OH CH_3OH CH_3SH HC_3NH' HC_2CHO NH_2CHO C_3N	C ₀ H CH ₂ CHCN CH ₃ C ₂ H HC ₅ N HCOCH ₃ NH ₂ CH ₃ c-C ₂ H ₄ O	CH ₃ C ₃ N HCOOCH ₃ CH ₃ COOH? C ₇ H H ₂ C ₆	CH ₃ C ₄ H CH ₃ CH ₂ CN (CH ₃) ₂ O CH ₃ CH ₂ OH HC ₇ N C _g H	CH ₃ C ₅ N? (CH ₃) ₂ CO NH ₂ CH ₂ COOH	HC ₉ N	$C_{\theta}H_{\delta}$ H $C_{11}N$ PAHs $C_{\theta0}$ '?	
SO SO [†] SIN	SO ₂ c-SiC ₂				Detect	ion of a	mino ac	etonitrile	in Sgi	r B2(N)	
SiO SiS CS HF	CO ₂ NH ₂ H ₃ ⁺ H ₂ D ⁺									2008	

Search for Time Variation of the Fine Structure Constant

John K. Webb,¹ Victor V. Flambaum,¹ Christopher W. Churchill,² Michael J. Drinkwater,¹ and John D. Barrow³ ¹School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia ²Department of Astronomy & Astrophysics, Pennsylvania State University, University Park, Pennsylvania 16802 ³Astronomy Centre, University of Sussex, Brighton, BNI 9QJ, United Kingdom (Received 13 February 1998; revised manuscript received 9 July 1998)

VOLUME 82, NUMBER 5 PHYSICAL REVIEW LETTERS 1 FEBRUARY 1999

Space-Time Variation of Physical Constants and Relativistic Corrections in Atoms

V. A. Dzuba,* V. V. Flambaum, and J. K. Webb School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia (Received 12 February 1998)

Quasars give us the opportunity to look back in time; The *looking* is done by means of spectroscopy.

Atoms and clocks

frequency / time standard 9,192,631,770 Herz

Nobelprijs 2005

Frequency combs: extreme precision

J. Hall

T.W. Hänsch

"for their contributions to the development of laser-based precision spectroscopy including the optical frequency comb technique"

Future atomic clocks: in the optical domain

Ion traps?

Hg⁺, Al⁺, Sr⁺, Yb⁺? NIST, NPL, PTB

Optical lattices ?

