Bonds in molecules

Linus Pauling, Nobel 1954

"for his research into the nature of the chemical bond and its application to the elucidation of the structure of complex substances"

Molecules and binding: classical

 H_2^+ classical and static model:

Born-Oppenheimer Approximation

Max Born

Robert Oppenheimer

Nuclei fixed in a frame: use
$$k = \frac{1}{4\pi\varepsilon_0}$$

Schrödinger equation:
$$\begin{cases} -\frac{\hbar^2}{2m_e} \nabla_r^2 - \frac{ke^2}{|\vec{r} + R/2|} - \frac{ke^2}{|\vec{r} - R/2|} + \frac{ke^2}{R} \end{cases} \Psi_e(r) = \varepsilon_e \Psi_e(r)$$
$$T \qquad V_b \qquad V_a \qquad V_R \end{cases}$$

Solutions, for the case of only one potential:

$$\phi_{1s}^{A}(r-R/2)$$

$$\phi_{1s}^{B}(r+R/2)$$

Again; the known H wave functions

Symmetric and anti-symmetric wave functions

Note: even if there is only one electron in the system, it can take this form

Intermezzo

Symmetry and the Pauli exclusion principle

Different definitions, but equivalent

- 1) 2 electrons cannot be in the same quantum state 2 electron must have different quantum numbers: α and β : Pauli exclusion principle
- 2) Wave function must be anti-symmetric (under interchange of the 2 electrons)

$$\Psi(2,1) = \frac{1}{\sqrt{2}} \left[\psi_{\alpha}(2) \psi_{\beta}(1) - \psi_{\beta}(2) \psi_{\alpha}(1) \right] = -\Psi(1,2)$$

If $\alpha = \beta$ then $\Psi = 0$

Two possibilities for having an anti-symmetric wave function:

$$\Psi^{A}(1,2) = \psi^{S}(r_{1}, r_{2})\chi^{A}(1,2)$$

$$\Psi^{A}(1,2) = \psi^{A}(r_{1}, r_{2})\chi^{S}(1,2)$$
 spatial ψ and spin χ

Anti-symmetric spinImage: S=0 (singlet)Combine with spatial wave functionSymmetric spinImage: S=1 (triplet)Note, for chemical binding we need a

Symmetric spatial wave function

Bonding and anti-bonding in H_2^+

Symmetric spatial wave function lowers the energy

From H_2^+ to H_2 , the hydrogen molecule

Problem is similar, but two electrons occupying the orbitals

Two electrons in a bonding orbital \rightarrow chemical bond is stronger

COVALENT Binding in molecules

- $\begin{array}{ll} H_2^{+} & (\sigma_{1s}) \\ H_2 & (\sigma_{1s})^2 \end{array} \qquad \qquad H_2^{+} \text{ better bond than } H_2^{+} \end{array}$
- He_{2}^{+} $(\sigma_{1s})^{2}(\sigma_{1s}^{*})$ one effective bond
- He₂ $(\sigma_{1s})^2(\sigma_{1s}^*)^2$ no effective bond
- B₂ (σ_{1s})²(σ_{2s})²(σ_{2s})²(σ_{2p})²
- C_2 $(\sigma_{1s})^2(\sigma_{1s}^*)^2(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p})^4$
- $N_{2} \qquad (\sigma_{1s})^{2} (\sigma_{1s}^{*})^{2} (\sigma_{2s})^{2} (\sigma_{2s}^{*})^{2} (\sigma_{2p})^{6} \longrightarrow$
- $O_2 \qquad (\sigma_{1s})^2 (\sigma_{1s}^*)^2 (\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\sigma_{2p})^6 (\sigma_{2p}^*)^2$
- $F_{2} \qquad (\sigma_{1s})^{2}(\sigma_{1s}^{*})^{2}(\sigma_{2s})^{2}(\sigma_{2s}^{*})^{2}(\sigma_{2p})^{6}(\sigma_{2p}^{*})^{4}$
- Ne₂ $(\sigma_{1s})^2(\sigma_{2s})^2(\sigma_{2s})^2(\sigma_{2p})^6(\sigma_{2p})^6$

6 effective bonds: The most strongly bound molecule

Potential-Energy Diagrams for Molecules

For the hydrogen molecule, the force between the atoms is attractive at large distances. If the atoms are too close, the electrons are too squeezed; therefore, there is a minimum in the potential.

Also account for repulsion of nuclei

Overlap integral is a function of R

Ionic Bonds

Van der Waals Bonds

Attraction between molecules that have a dipole moment

The basis for the "hydrogen bonding" in nature \rightarrow weak bonds

