Singlet and triplet states in helium The Pauli principle and the "exchange force" Para- and ortho Helium

Pauli exclusion principle:

No two electrons in an atom can occupy the same quantum state.

The quantum state is specified by the four quantum numbers; no two electrons can have the same set.

Wolfgang Pauli

The Nobel Prize in Physics 1945 "for the discovery of the Exclusion Principle, also called the Pauli Principle"

Phrasing of the Pauli principle

1) He must have an anti-symmetric wave function (under interchange of the 2 electrons)

$$\Psi(2,1) = \frac{1}{\sqrt{2}} \left[\psi_{\alpha}(2) \psi_{\beta}(1) - \psi_{\beta}(2) \psi_{\alpha}(1) \right] = -\Psi(1,2)$$

If $\alpha = \beta$ then $\Psi = 0$

2) The 2 electrons must have different quantum numbers: α and β : Pauli exclusion principle

Two possibilities for having an anti-symmetric wave function:

$$\Psi^{A}(1,2) = \psi^{S}(r_{1},r_{2})\chi^{A}(1,2)$$

spatial ψ and spin χ

$$\Psi^{A}(1,2) = \psi^{A}(r_{1},r_{2})\chi^{S}(1,2)$$

Addition of spins in a 2-electron system

$$\vec{S} = \vec{s}_1 + \vec{s}_2$$
 $M_S = m_{s_1} + m_{s_2}$; S= 0, 1 M_S =

$$\begin{split} |S = 1, M_S = 1 \rangle &= \left|\uparrow, \uparrow\right\rangle \\ |S = 1, M_S = 0 \rangle &= \frac{1}{\sqrt{2}} \left(\left|\uparrow, \downarrow\right\rangle + \left|\downarrow, \uparrow\right\rangle\right) \\ |S = 1, M_S = -1 \rangle &= \left|\downarrow, \downarrow\right\rangle \\ |S = 0, M_S = 0 \rangle &= \frac{1}{\sqrt{2}} \left(\left|\uparrow, \downarrow\right\rangle - \left|\downarrow, \uparrow\right\rangle\right) \end{split}$$

A triplet of symmetric spin wave functions

A singlet of an anti-symmetric spin wave function

Two distinct families of quantum states in Helium:

Ortho-helium: triplet states

Para-helium: singlet states

$$\psi \chi$$

 $\psi^S \chi^A$

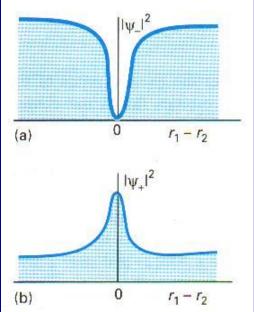
 $M^{A} S$

Ordering of singlet and triplet states

Symmetric and Anti-symmetric spatial wave functions

$$\Psi_{\pm}(\vec{r}_{1},\vec{r}_{2}) = \frac{1}{\sqrt{2}} \left[\psi_{n_{1}l_{1}m_{1}}(\vec{r}_{1})\psi_{n_{2}l_{2}m_{2}}(\vec{r}_{2}) - \psi_{n_{2}l_{2}m_{2}}(\vec{r}_{1})\psi_{n_{1}l_{1}m_{1}}(\vec{r}_{2}) \right]$$
If: $\vec{r}_{1} \approx \vec{r}_{2}$ density becomes small for $|\Psi_{-}(\vec{r}_{1},\vec{r}_{2})|^{2}$
Fermi-hole
While density of $|\Psi_{+}(\vec{r}_{1},\vec{r}_{2})|^{2}$ increases
(a)

Effect of "exchange"; a "force" related to the Pauli principle → quantum interference



Ordering of singlet and triplet states

Fermi-hole in case of an anti-symmetric spatial wave function

$$\left|\Psi_{-}\left(\vec{r}_{1},\vec{r}_{2}\right)\right|^{2}$$

In this state the electrons tend to be distanced from each other

 \rightarrow less repulsion

 \rightarrow more binding

For the triplet states (or symmetric spin states)

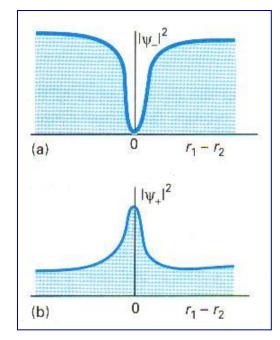
Conversely, in case of symmetric spatial function

 $\left|\Psi_{+}\left(\vec{r}_{1},\vec{r}_{2}\right)\right|^{2}$

Electrons tend to be close to each other

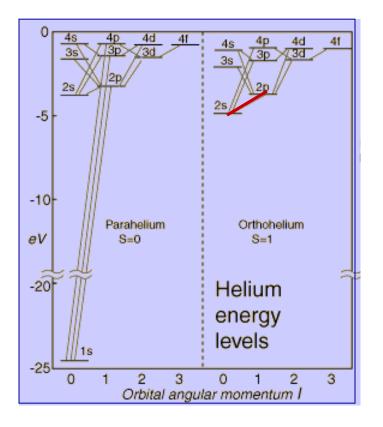
- \rightarrow more repulsion
- ightarrow less binding energy

→Triplet states are lower in energy than corresponding singlets



Energy levels and Spectral lines in Helium

"Singly-excited" states in Helium, with one electron in (1s)



Selection rules: similar as in H

$$\Delta n = free$$
$$\Delta \ell = \pm 1$$
$$\Delta m = -1, 0, +1$$
$$\Delta S = 0$$

(1s)(2s) levels are metastable

Ortho and Para Helium