Quantum Mechanics of Atoms

Since we cannot say exactly where an electron is, the Bohr picture
of the atom, with electrons in neat orbits, cannot be correct.

Quantum theory describes
electron probability distributions:
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Hydrogen Atom:
Schrodinger Equation and Quantum Numbers
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Hydrogen Atom:
Schrodinger Equation and Quantum Numbers

The time-independent Schrodinger equation in three
dimensions is then:

2m \ 9x’ dy* Y dire, 1
where
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Note, this 13.6 ev is the Rydberg constant, that is also found via QM
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ROO = e2 Rydberg constant = 13.6 eV
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Intermezzo

Where does the quantisation in QM come from ?
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The atomic problem is spherical so rewrite the equation in (r,0,¢)
X =rsin cos¢ y =rsin gsin ¢ Z=rcosd
Rewrite all derivatives in (r,0,9), gives Schrodinger equation,;
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This is a partial differential equation, with 3 coordinates (derivatives);
Use again the method of separation of variables:

¥(r,0,4)=R(r)¥(6.4)
Bring r-dependence to left and angular dependence to right (divide by ¥):
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Intermezzo

Where does the quantisation in QM come from ?
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Angular equation  — - =1
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Once more separation of variables: Y (6,¢)=06(0)(p)
10°d 1 0 19,C) : :

ve: . sin @——sin O~— + Asin 2 6O again arbitrary constant
Derive: D 042 ®( 20 Y j (ag y )

Simplest of the three: the azimuthal angle;
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Intermezzo

Where does the quantisation in QM come from ?

A differential equation with a boundary condition

azad;gcé) n m2®(¢) ~0 and CI)(¢ + 27z) =D(g)

Solutions:
(g)=e"?
Boundary condition:  ®(¢+27)=eM*?7) = p(g)=em?

— M IS a positive or negative integer

this is a quantisation condition

General: differential equation plus a boundary condition gives a quantisation



Intermezzo

Where does the quantisation in QM come from ?

with integer m

First coordinate ®(¢)=eim¢ (positive and negative)
5 angular
1 0 . 00 m
i ——_Zsinf—+| A— ©=0 part
Second coordinate snoao- "5, ( sinZH]
angular
Results in Ay =0(0+1) with ?=012,... momentum
and M=—(—(+1...,0-17/
. . 1/d »dR 2mr2
Third coordinate -+ E-V(r))R|=¢(¢+1
e A
Differential _ . :
equation Results in quantisation of energy radial
part
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with integer n (n>0)



Intermezzo

Angular wave functions
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There is a class of functions that are simultaneous eigenfunctions

LY, (0,8) = £(¢ +1D)1%Y, (6, 0) L,Yim (0,4) = miY,,(6,9)
with ?(=012,... and m=—¢—¢+1,....0 =17/
Spherical harmonics (Bolfuncties) Y,y (6,6) Vector space of solutions
1 /3 | 240 =
Yoo =+ — —_ |2 gingel? [Yim(6,8) d2 =1
00 A Yll 87 sin & 5 m
3 J‘YImYI'm'CIQ = O)1"Omm
Y10 =— . cosd Q
i Parity
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Intermezzo

The radial part: finding the ground state

Rldr dr 72
Find a solution for ¢=0,m=0
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Physical intuition; no density for r—oo

trial:  R(r)=Ae™"'®
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must hold for all values of r !!
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Prefactor for 1/r: _
ma 4rg,
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Solution for the
length scale paramater

2
a = dréph Bohr radius

Ze?m

Solutions for the energy
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E=— n’ —=_72 e’ Me
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Ground state in the
Bohr model (n=1)

|sotope effect



Hydrogen Atom:
Schrodinger Equation and Quantum Numbers
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This partial differential equation can be separated into three equations;
General solution:
¥(r,0,4)=R(r)e(0)0(p)

1) Radial equation:

2 H : .
l[irzd_RJerzr( )V(r))R}:E(£+1) Eigenfunctions: R(r) :
Ridr dr & N and En:_—zR

Eigenvalues:

2) Equation for &
) Ed Eigenfunctions:  ©(6)

1 o0 . 00 m®
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3)E tion f :
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0 Eigenvalues: m

NB: connections between n, | and m derive from solutions of Schrodinger Equation



Hydrogen Atom:
Schrodinger Equation and Quantum Numbers

There are three different quantum numbers needed to
specify the state of an electron in an atom (plus one).

1. The principal quantum number N gives the total energy.

2. The orbital quantum number ¢ gives the angular
momentum; ¢ can take on integer values from 0 to n - 1.

L = VIl + 1A

3. The magnetic quantum number, m , gives the 4
direction of the electron’s angular momentum, and can
take on integer values from Lo+,

LZ — mgﬁ

NB: connections between n, | and m derive from solutions of Schrodinger Equation



Hydrogen Atom Wave Functions

The wave function of the ground state of hydrogen has
the form:

1 _r

Yoo = —=—=e " (h=ay)
mry

The probability of finding the electron in a volume dV
around a given point is then |y|?> dV.

w’dv =4zl dr=Pdr win P, =4ar’ly|

oy

Probability to find electron at position r



Hydrogen Atom Wave Functions

The ground state is spherically symmetric; the
probability of finding the electron at a distance
between r and r + dr from the nucleus is:




Hydrogen Atom Wave Functions

This figure shows the three probability distributions for n=2 and ¢
=1 (the distributions for m =+1 and m =-1 are the same), as well

as the radial distribution for the n = 2 states.
most probable
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Atomic Hydrogen Radial part

Analysis of radial equation yields:
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Z
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Wave functions: n=3

\Pnlm(l_;’ t) =R, (r)YIm (91 ¢)

Traditional nomenclature for orbitals

{ =( : s-orbitals

Y =1 : p-orbitals

¢ = 2 ; d-orbitals

Y = 3 : f-orbitals




Intermezzo

Quantum analog of electromagnetic radiation

v

Classical electric dipole radiation Transition dipole moment

v

Classical oscillator Quantum jump
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The atom does not radiate when it is in a stationary state !
The atom has no dipole moment

tii = | wiFydz =0

2
Intensity of spectral lines linked 8. — ‘/‘fi‘
to Einstein coefficient for absorption: If 650722



Intermezzo

Selection rules

¥(-x)="¥(x) even
Wave functions ¥ have well defined parity <
¥(-x)=-¥(x) odd

Mathematical background: function of odd parity gives O when integrated over space
In one dimension: <\yf \x\‘l’i> - J'\P? XY dx = I f (x)dx with f(x)=W;x¥

ojo f (X)dx = T f (x)dx +of f (X)dx = T f(—x)d (— x)+ I f (X)dx = of f (—x)dx +OJ9 f (x)dx
—00 —00 0 o0 0 0 0

zzjf(x)dx;&o if f(—x) = f(x) » ¥, and ¥; opposite parity
0

< because:  f(=X) = W5 (-X)(—X)¥; (-x)

=0 if  f(x)=-1(x) ¥, and ¥; same parity

v

Electric dipole radiation connects states of opposite parity !



Intermezzo

Parity operator

Selection rules

depend on angular behavior of the wave functions

All guantum mechanical wave functions

r have a definite parity
//e . Y(-F)=+P(F)
T (W [F]W;) =0
Y If W¢ and YY; have opposite parity
Pr=-r Rule about the Yym functions
Ve 2) = () PYm (6.8) = (=) Yy (6. 4)

(r,0,4)—(r,7—0,p+7)



Hydrogen Atom:
Schrodinger Equation and Quantum Numbers

“Allowed” transitions between energy levels occur between states
whose value of fdiffer by one:

Al = =+1

Other, “forbidden,” transitions also may occur but with much
lower probability.

“selection rules, related to symmetry (parity)”

Transitions from ground state ¢ = O toexcitedstate £ =1

From s-orbitals to p-orbitals



Selection rules in Hydrogen atom

Intensity of spectral lines given by

144 IT:ﬁ\PI "< <qu ‘_eF‘LPi> B

1) Quantum number I
no restrictions
2) Parity rule for £
Al =odd

3) Laporte rule for /
Angular momentum rule:
_éf = _éi +1 SO Al <1
3.

From 2. and Al ==1

-1/16
-1/9
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Energy/hcRy
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[/Eéllmer series

2

Lyman series



