
Since we cannot say exactly where an electron is, the Bohr picture 

of the atom, with electrons in neat orbits, cannot be correct. 

Quantum theory describes 

electron probability distributions:

Quantum Mechanics of Atoms



Hydrogen Atom: 

Schrödinger Equation and Quantum Numbers

Potential energy for the hydrogen atom:



Hydrogen Atom: 

Schrödinger Equation and Quantum Numbers

The time-independent Schrödinger equation in three 

dimensions is then:

Equation 39-1 goes here.

where

Note, this 13.6 ev is the Rydberg constant, that is also found via QM
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Rydberg constant = 13.6 eV



Intermezzo

Where does the quantisation in QM come from ?

The atomic problem is spherical so rewrite the equation in (r,q,)

q cossinrx  q sinsinry  qcosrz 

Rewrite all derivatives in (r,q,), gives Schrödinger equation;
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This is a partial differential equation, with 3 coordinates (derivatives);

Use again the method of separation of variables:

     qq ,,, YrRr 

Bring r-dependence to left and angular dependence to right (divide by ):
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Intermezzo

Where does the quantisation in QM come from ?
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Radial equation

Angular equation
 

 

 

 


q

q
qq

q
qq

q

qq































,

,
sin

1
sin

sin

1

,

, 2

2

2

Y

Y

Y

YO
QM

Y
YY

q
q

q
q

q


2

2

2

sinsinsin 














Once more separation of variables:      qq ,Y

Derive:
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(again arbitrary constant)

Simplest of the three: the azimuthal angle;
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Intermezzo

Where does the quantisation in QM come from ?

A differential equation with a boundary condition
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Solutions:

   ime

Boundary condition;         imim ee  22

12 ime 

m is a positive or negative integer

this is a quantisation condition

General: differential equation plus a boundary condition gives a quantisation



Intermezzo

Where does the quantisation in QM come from ?

   imeFirst coordinate
with integer m 

(positive and negative)
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Results in  1  with  ,2,1,0

and  ,1,,1, m
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Differential

equation Results in quantisation of energy
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with integer n (n>0)

radial

part



Intermezzo

Angular wave functions
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with  ,2,1,0 and  ,1,,1, m

Operators:






i
Lz



There is a class of functions that are simultaneous eigenfunctions
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Angular momentum

     qq ,1, 22
lmlm YYL      qq ,, lmlmz YmYL 

Spherical harmonics (Bolfuncties)  q ,lmY
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Parity



Intermezzo

The radial part: finding the ground state

Find a solution for 0,0  m
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Physical intuition; no density for r
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must hold for all values of r !!

0
4 0

22




Ze

ma

Prefactor for 1/r:

mZe
a

2

2
0

0

4 


Solution for the
length scale paramater

Bohr radius

Solutions for the energy
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Ground state in the 
Bohr model (n=1)
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Isotope effect
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Hydrogen Atom: 

Schrödinger Equation and Quantum Numbers
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This partial differential equation can be separated into three equations;

General solution:
       qq  rRr ,,

1) Radial equation:
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Eigenfunctions:  rR

Eigenvalues: n
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2) Equation for q:
Eigenfunctions:  q

Eigenvalues: 

3) Equation for :
Eigenfunctions:  

Eigenvalues: m
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NB: connections between n, l and m derive from solutions of Schrödinger Equation



There are three different quantum numbers needed to 

specify the state of an electron in an atom (plus one).

1. The principal quantum number n gives the total energy.

2. The orbital quantum number gives the angular 

momentum; can take on integer values from 0 to n - 1.

Hydrogen Atom: 

Schrödinger Equation and Quantum Numbers

3. The magnetic quantum number, m , gives the 

direction of the electron’s angular momentum, and can 

take on integer values from – to + .

NB: connections between n, l and m derive from solutions of Schrödinger Equation



Hydrogen Atom Wave Functions

The wave function of the  ground state of hydrogen has 

the form:

The probability of finding the electron in a volume dV

around a given point is then |ψ|2 dV.
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Probability to find electron at position r



Hydrogen Atom Wave Functions

The ground state is spherically symmetric; the 

probability of finding the electron at a distance 

between r and r + dr from the nucleus is:



This figure shows the three probability distributions for n = 2 and 

= 1 (the distributions for m = +1 and m = -1 are the same), as well 

as the radial distribution for the n = 2 states.

Hydrogen Atom Wave Functions

most probable



Atomic Hydrogen Radial part

Analysis of radial equation yields:
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Traditional nomenclature for orbitals

0 ; s-orbitals

1 ; p-orbitals

2 ; d-orbitals

3 ; f-orbitals



Quantum analog of electromagnetic radiation

Classical electric dipole radiation Transition dipole moment

Classical oscillator Quantum jump
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The atom does not radiate when it is in a stationary state !

The atom has no dipole moment
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Intensity of spectral lines linked

to Einstein coefficient for absorption:

Intermezzo



Selection rules

Mathematical background: function of odd parity gives 0 when integrated over space

In one dimension: dxxfdxxx ifif 
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i and f opposite parity

i and f same parity

Electric dipole radiation connects states of opposite parity !

Wave functions  have well defined parity
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Intermezzo



Selection rules

depend on angular behavior of the wave functions
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Parity operator
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All quantum mechanical wave functions

have a definite parity
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Rule about the mY functions
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Intermezzo



“Allowed” transitions between energy levels occur between states 

whose value of differ by one:

Other, “forbidden,” transitions also may occur but with much 

lower probability.

Hydrogen Atom: 

Schrödinger Equation and Quantum Numbers

“selection rules, related to symmetry (parity)”

Transitions from ground state                   to excited state0 1

From s-orbitals to p-orbitals



Selection rules in Hydrogen atom

Intensity of spectral lines given by
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1) Quantum number   n
no restrictions

2) Parity rule for 

odd

3) Laporte rule for 
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Angular momentum rule:

so 1

From 2. and 3. 1

Lyman series

Balmer series


