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The Schrödinger Equation in One

Dimension—Time-Independent Form
The Schrödinger equation cannot be derived (??), just as Newton’s laws 

cannot. However, we know that it must describe a traveling wave, and 

that energy must be conserved.

Therefore, the wave function will take the form:

where

Since energy is conserved, we know:

This suggests a form for the Schrödinger equation, which 

experiment shows to be correct:
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Later: QM



The Schrödinger Equation

normalisation

Since the solution to the Schrödinger equation is supposed 

to represent a single particle, the total probability of finding 

that particle anywhere in space should equal 1:

When this is true, the wave function is normalized.



Time-Dependent Schrödinger Equation

A more general form of the Schrödinger equation includes time 

dependence (still in one space dimension):

Derivation requires more rigorous methods of QM.

Y(x,t) is the wave function dependent on space-time coordinates.

The time-independent Schrödinger equation can be derived from it,

using the method of “separation of variables”.

Note that this is a non-relativistic wave equation: 

A Lorentz-covariant formalism gives the Dirac equation



“Separation of variables” - method
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Assume the potential to be time-independent U(x) , and the trial solution

then

Move space coordinates to left and time to right; divide by Y

Left and right side must be independent,

equal to a constant, say 

Solution:   /tietf 

Oscillating function of time, with frequency



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Associated with energy:   E   /iEtetf Hence:



Stationairy states in QM

For a QM problem with a time-independent potential U(x)
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The solutions are stationairy states:
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The probalistic aspects do not vary with time !

Stationairy states may have a time-dependent phase



Free Particles; 

Plane Waves and Wave Packets
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Free particle: no force, so U = 0. The Schrödinger equation 

becomes the equation for a simple harmonic oscillator:

Independent solutions kxx cos)( 

Also: ikxex )(
ikxex )(

Superposition principle of quantum mechanics:

Any linear combination of solutions is also a solution



Free Particles; 

Plane Waves and Wave Packets

Hence solutions:

Since U = 0, Energy  is only kinetic

where



Free Particles; 

Plane Waves and Wave Packets

The solution for a free particle is a plane 

wave, as shown in part (a) of the figure; 

more realistic is a wave packet, as 

shown in part (b). The wave packet has 

both a range of momenta and a finite 

uncertainty in width. 

(normalization problem)

How to describe a wave packet ?



(Famous) Particle in an Infinitely Deep Square

Well Potential (a Rigid Box)
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Solution for the region between the walls

Require that ψ = 0 at x = 0 and x =l

Hence:

  00    0land

0000cos0sin  BBA

  0sin  klAl

nkl  with ,3,2,1n



(Famous) Particle in an Infinitely Deep Square

Well Potential (a Rigid Box)
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Solution:

Result: Eigen functions and Eigenvalues

Calculate A from normalisation:

1sin2

0

2 







 dxx

l

n
A

l


l
A

2




Particle in an Infinitely Deep Square

Well Potential (a Rigid Box)

plots of solutions with quantum number n

(calculate normalisation constant)

Zero-point energy = nonclassical
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Particle in an Infinitely Deep Square

Well Potential (a Rigid Box)
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Probability of e- in ¼ of box.

Determine the probability of finding an 

electron in the left quarter of a rigid box—i.e., 

between one wall at x = 0 and position x =   /4. 

Assume the electron is in the ground state.



Particle in an Infinitely Deep Square

Well Potential (a Rigid Box)
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Most likely and average positions.

Two quantities that we often want to know are the most 

likely position of the particle and the average position 

of the particle. Consider the electron in the box of width    

= 1.00 x 10-10 m in the first excited state n = 2. 

(a) What is its most likely position? 

(b) What is its average position?
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Finite Potential Well
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A finite potential well has a potential of zero between x = 0 and x = , 

but outside that range the potential is a constant U0.

The potential outside the well is no 

longer zero; it falls off exponentially. 

Solve in regions I, II, and III

and use for boundary conditions

Continuity:
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Bound states: E < E0

Continuum states: E > E0



Finite Potential Well
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If E < U0

with

in the “forbidden regions”

General solution:

Region I 0x hence 0D and similarly for C

Gx
I Ce should match kxBkxAII cossin 

Finite value at 0x exponentially decaying into the finite walls 

(why? unphysical)



Finite Potential Well

These graphs show the wave functions and probability 

distributions for the first three energy states.

Nonclassical effects

Partile can exist in the forbidden region



Finite Potential Well
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If E > U0

In regions I and III

free particle condition

In region II

In both cases oscillating free partcile

wave function:

I,III: 

II: 
mE

h

p

h

2


0

2

0
2

22

1
U

m

p
UmvE 



Tunneling Through a Barrier
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Tunneling Through a Barrier

The probability that a particle tunnels through a barrier 

can be expressed as a transmission coefficient, T, and 

a reflection coefficient, R (where T + R = 1). If T is small,

The smaller E is with respect to U0, the smaller the 

probability that the particle will tunnel through the 

barrier.



Tunneling Through a Barrier

Alpha decay is a tunneling process; this is why alpha decay 

lifetimes are so variable.

Note:

Exponential dependence

Region of binding by the “strong force”

Region of repulsion between 

positive charges



Tunneling Through a Barrier

Scanning tunneling microscopes image the 

surface of a material by moving so as to keep 

the tunneling current constant. In doing so, 

they map an image of the surface.

Gerd Binnig

"for their design of the scanning tunneling microscope" 

HeinrichRohrer

Nobel 1986


