Physics of the Atom

Ernest Rutherford

The Nobel Prize in Chemistry 1908 "for his investigations into the disintegration of the elements, and the chemistry of radioactive substances"

Niels Bohr

The Nobel Prize in Physics 1922 "for his services in the investigation of the structure of atoms and of the radiation emanating from them"

Early Models of the Atom

atoms : electrically neutral they can become charged positive and negative charges are around and some can be removed.

popular atomic model "plum-pudding" model:

Rutherford scattering

Rutherford did an experiment that showed that the positively charged nucleus must be extremely small compared to the rest of the atom.

Result from Rutherford scattering

$$\frac{d\sigma}{d\Omega} = \left(\frac{1}{4\pi\varepsilon_0}\frac{Zze^2}{4K}\right)^2 \frac{1}{\sin^4(\theta/2)}$$

Applet for doing the experiment:

http://www.physics.upenn.edu/courses/gladney/phys351/classes/Scattering/Rutherford_Scattering.htm I

Rutherford scattering the smallness of the nucleus

the radius of the nucleus is 1/10,000 that of the atom.

the atom is mostly empty space

Rutherford's atomic model

Atomic Spectra: Key to the Structure of the Atom

A very thin gas heated in a discharge tube emits light only at characteristic frequencies.

Atomic Spectra: Key to the Structure of the Atom

Line spectra: absorption and emission

The Balmer series in atomic hydrogen

The wavelengths of electrons emitted from hydrogen have a regular pattern:

Johann Jakob Balmer

$$\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{n^2}\right), \qquad n = 3, 4, \cdots.$$

Lyman, Paschen and Rydberg series

the Lyman series:

$$\frac{1}{\lambda} = R\left(\frac{1}{1^2} - \frac{1}{n^2}\right), \qquad n = 2, 3, \cdots.$$

the Paschen series:

$$\frac{1}{\lambda} = R\left(\frac{1}{3^2} - \frac{1}{n^2}\right), \qquad n = 4, 5, \cdots.$$

Janne Rydberg

$$\frac{1}{\lambda} = R_H (\frac{1}{n_1^2} - \frac{1}{n_2^2})$$

The Spectrum of the hydrogen Atom

A portion of the complete spectrum of hydrogen is shown here. The lines cannot be explained by classical atomic theory.

The Bohr Model

Solution to radiative instability of the atom:

 atom exists in a discrete set of stationary states

no radiation when atom is in such state

 radiative transitions → quantum jumps between levels

$$h\nu = \frac{hc}{\lambda} = E_i - E_f$$

- angular momentum is quantized

$$L = mvr_n = n\frac{h}{2\pi},$$

$$n = 1, 2, 3, \cdots$$

These are ad hoc hypotheses by Bohr, against intuitions of classical physics

The Bohr Model: derivation

An electron is held in orbit by the Coulomb force: (equals centripetal force)

The size of the orbit is quantized, and we know the size of an atom !

The Bohr Model: energy

Quantisation of the radius

$$r_n = \frac{n^2 h^2 \epsilon_0}{\pi m Z e^2} = \frac{n^2}{Z} r_1$$

Quantisation of energy

$$E_{n} = \frac{1}{2}mv^{2} - \frac{Ze^{2}}{4\pi\varepsilon_{0}r_{n}} = -\frac{Z^{2}}{n^{2}}R_{\infty}$$

$$R_{\infty} = \left(\frac{e^2}{4\pi\varepsilon_0}\right)^2 \frac{m_e}{2\hbar^2}$$

Rydberg constant

Reduced mass in the old Bohr model \rightarrow the one particle problem

Relative coordinates:

$$\vec{r} = \vec{r_1} - \vec{r_2}$$

Centre of Mass

 $m\vec{r}_1 + M\vec{r}_2 = 0$

Position vectors:

$$\vec{r}_1 = \frac{M}{m+M}\vec{r}$$

$$\vec{r}_2 = -\frac{m}{m+M}\vec{r}$$

Velocity vectors: $\vec{v}_1 = \frac{M}{m+M}\vec{v}$

$$\vec{v}_2 = -\frac{m}{m+M}\vec{v}$$

Relative velocity $\vec{v} = \frac{d\vec{r}}{dt}$

Kinetic energy $K = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}\mu v^2$

Angular momentum

$$L = m_1 v_1 r_1 + m_2 v_2 r_2 = \mu v r$$

With reduced mass

$$\mu = \frac{mM}{m+M}$$

Centripetal force

$$F = \frac{m_1 v_1^2}{r_1} = \frac{m_2 v_2^2}{r_2} = \frac{\mu v^2}{r}$$

Quantisation of angular momentum:

$$L = \mu v r = n \frac{h}{2\pi} = n\hbar$$

Problem is similar, but

 $m \rightarrow \mu$

r relative coordinate

Reduced mass in the old Bohr model \rightarrow isotope shifts

Results

Quantisation of radius in orbit:

$$r_n = \frac{n^2}{Z} \frac{4\pi\varepsilon_0\hbar^2}{e^2\mu} = \frac{n^2}{Z} \frac{m_e}{\mu} a_0$$

Energy levels in the Bohr model:

$$E_n = -\frac{Z^2}{n^2} \left(\frac{\mu}{m_e}\right) R_\infty$$

Rydberg constant:

$$R_H = \left(\frac{\mu}{m_e}\right) R_{\infty}$$

Calculate the isotope shift on an atomic transition

e.g. In H-atom Lyman-alpha

(n=2) → (n=1)

Optical transitions in The Bohr Model

de Broglie's Hypothesis Applied to Atoms

de Broglie relation

$$\lambda = \frac{h}{p}$$

Electron of mass m has a wave nature

Electron in orbit: a standing wave

Substitution gives the quantum condition

$$2\pi r_n = n\lambda$$

$$L = m v r_n = \frac{nh}{2\pi}$$

de Broglie's Hypothesis Applied to Atoms

These are circular standing waves for n = 2, 3, and 5.

Standing waves do not radiate; Interpretation: electron does not move (no acceleration)