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Vacuum Ultraviolet Generation via Wave-Mixing

Nonlinear medium
- crystals
- metal vapors
- noble gases

General issues in 
four wave mixing or third harmonic generation:

Susceptibility of the medium : 
involves transition dipoles in atoms and resonances

Transparency : problems at short wavelengths

Phase-matching : 
including the effects of focused laser beams

Practical limitation: optical breakdown
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Again Maxwell�s framework:
coupled wave equations
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Fourier components of fields at
frequency q
Fields:

   ziktz qqq exp,�EE 

Nonlinear polarization has several terms:
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Phase-matching and focusing

Three processes of four-wave mixing:

I

II

III
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Electric fields:

Define optical beams as lowest order Gaussians
for each frequency 
Gaussian beam TM00
( higher order modes give differing results !)
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Nonlinear Polarization
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Newly generated field via processes I, II, III

 the polarizability (per atom) and
N density of medium
Note degeneracy factors (field amplitudes);
those may differ for degenerate fields.

Insert fields with their mode structure:
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Further steps; Maxwell�s equations

Derive amplitudes in a Fourier decomposition;
amplitude with wave vector K
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Insert in Maxwell�s equation:

medium vacuum

For: '4 kkk 

Solutions, process I (similar equations for II and III)
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Field           to be calculated, integration
over x and y, and z to z=L.
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Result, generally:
- Modes cylindrically symmetric
around z-axis
-Only for Process I the generated beam
has lowest order Gaussian

The phase-matching can be quantified:
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Phase-matching in (3) Processes

Define the phase-matching integrals:
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For all three processes, j=I,II,III

Dimensionless parameters, defining geometry 
and phases.

Then generated Power at P4 is
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Degeneracy factor

Phase-matching integral for Process I
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This integral can be evaluated 
for various conditions,
for example in the 
�tight-focusing limit�, b<<L
and integrating
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Tight-focus

Plane wave limit
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Phase-matching integrals Fj for processes and geometries

For �tight-focus�
�half-way� the cell 5.0Lf

Process I:
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Similarly for Process II and III
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General conclusion:

0k
THG (Process I) only possible, 
in the tight-focusing limit if

So: only if the medium has 
NEGATIVE DISPERSION !!

This also holds for sum-frequency mixing

Difference frequency mixing for any k
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Numerical approach evaluating Fj ; all near tight focus
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Phase-matching integral including
1) Dispersion
2) Phase evolution through focal region

FI versus bk for b/L < 0.1 and f/L=0.5

FII

FIII

Varying the tightness of focus b/L
and the mode function k�/k�
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Results in the �plane-wave� limit
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Note the similarity with analysis of
frequency-doubling in crystal;
This was done for plane parallel fields !

At b/L ~3 the peak has shifted to the
real plane-wave limit already, peaking at
k=0.

Note also the decrease in intensity 
for the plane-wave limit case.

Tight-focusing is more efficient !
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Shifting the focus; playing with the phase build-up

For near-tight-focusing of b/L=0.1
Focal positions f/L=0.5 toward f/L=1.5
In latter case focus shifts outside the cell
And effectively plane-wave limit is reached.

Near the true plane-wave limit at b/L=10
Only small changes to F-integral as long as
focus is inside the cell.
At f/L=20 the focus is twice the distance
of the confocal parameter b/L=10.
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Physical interpretation of phase-matching integrals

1) Non-linear polarization peaks at the region
of the beam WAIST
 intensity is highest in focus

2) Phase-matching relates to phase-overlap
of all beams involved
For a Gaussian beam:
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For tight-focusing:
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Boundaries of focus at windows.

Lowest order Gaussian beam undergoes phase shift
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when propagating through the focus (Gouy phase),
adding up to  for   ,

Driving polarization undergoes

Process I

Process II

Process III

Optimum conversion if generated field is in
phase with driving fields.
Generated beam undergoes phase slip:

In-phase for Process II, destructive for I and III

Phase-slips compensated by DISPERSION
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Optimizing density � dispersion and phase-matching
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Nonlinear generation:

jFN 2 can be optimized by varying
N, bk, b/L, f/L

if N varies � macroscopic effect on medium
- index of refraction changes
- k varies

Phase-mismatch is a dispersion effect and
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One can define a dimensionless quantity:

GI vs. bk for tight-focusing; always OK as
long as focus inside the cell.
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THG production and dispersion in the noble gases

Third harmonic produced:
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In plane-wave limit (b>>L):
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We have seen : tight focus is more efficient,
but then negative dispersion required
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In region of bound states; index of refraction
(with fi the oscillator strength of transitions)

In the continuum ( ionization cross section)
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Cross sections and oscillator strength relate
to atomic structure, with C the phase mismatch
per atom;

Calculation of regions of positive and
negative dispersion
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Negative and positive dispersion in the Kr and Xe

first resonance line

Shaded areas � �anomalous dispersion in the medium�

Regions of efficient THG
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THG in Xe; experiment

Experiment THG production

Calculation of 
Phase-matchingintegral

Conclusion: 1) theory of phase-matching works
2) THG effective at blue side of ns and nd resonances
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Experimental density effect on phase matching in Xe

Tight focusing at  = 118 nm in Xe
(negative dispersion);
b/L = 0.025
f/L =0.5 � centre of cell

Effect of G-integral and interplay
between N and k.
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Defeating the negative dispersion problem

All calculations performed for integral from �L to +L.
Cut-off the medium at f; stop the destructive interference.
Can be done in �forbidden region�.
Efficiency remains low; but not zero.
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Resonance enhanced VUV production
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Non-linear susceptibility:

Resonances possible at the
- One photon
- Two-photon
- Three photon levels
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Advantage at two-photon-level

Process I Process II

Again level structure of the noble gases
is favorable:

 = 212.5 nm resonance in Kr
�strongest two-photon resonance in nature�
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Non-colinear Phase-matching for sum-frequency generation
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Opt. Lett. 20 (2005) 1494 

Experimental realization

Volume considerations
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Polarization properties

Tensor nature of susceptibility 
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Dependent on matrix dipole moments

Note: a COHERENT sum should be taken
(as in multi-photon transitions)

Parametric and non-parametric processes;
relate to energy exchange
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Use atomic physics framework: evaluate
Transition dipole moments with Wigner-Eckhart
theorem:
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The coherent sum requires M=0 over four-photon cycle;
q=0, q=-1, q=1 projections of dipole moment on angular basis (polarizations)
Evaluate the four-product of Wigner-3j symbols

Results: 1) all polarizations linear is possible

2) THG with circular light is NOT possible:
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Polarization in sum-frequency mixing; quantum levels

Well defined quantum level; 

Real intermediate level

J2 = 0 or 2
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Pulsed jets and differential pumping � the road to the windowless regime

A.H. Kung, Opt. Lett. 8, 24 (1983). 
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Some considerations

1) Bandwidth effects

2) Lasers and synchrotrons

3) The perturbative regime and the non-perturbative -> recollision model

4) Spectroscopy in VUV and XUV feasible
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XUV-laser setup with PDA; 
bandwidth ~250 MHz

 90 � 110 nm
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1 1S - 2 1P at 58.4 nm
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584 nm

Measurement of 11S � 21P resonance line of Helium

* P88(15-1) o component in I2

at 513049427.1(1.7) MHz

Results on Lamb shift in He ground state

41224 (45) MHz experiment (1997)
41233 (35-100) MHz; Drake (1993)
41223 (42) MHz theory; Korobow/Yelkovsky (2001)
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2-electron QED effects
in He (1s2 1S0)

self-energy
vacuum polarisation

5 130 495 083 (45) MHz


