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Second harmonic generation
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Use a single input field:

Then:

Assume now:

- There is a nonlinearity d (only for certain symmetry)
- No absorption in the medium, so =0
- Only little production of wave 3, so no back-conversion
- Wave vector mismatch is

The coupled wave equation can be integrated:

Conditions
1) Integration for 0 to L (length of medium)
2) And boundary
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Result of integration:

Output of second harmonic is:
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Power at second harmonic:
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Second harmonic power; conditions
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Conversion efficiency:

1) Second harmonic produced is proportional to

   22  PP 

nonlinear power production

2) Efficiency is proportional to d2 or

  22

3) Efficiency is proportional to L2

and a sinc function
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4) Efficiency is optimal if 
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This is the �phase-matching condition�
cannot be met, because:
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And dispersion in the medium:

So always 0k

Physics: two waves with
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will run out of phase
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Coherence length and Maker fringes

After a distance the waves will run out of phase

Then the amplitude is at maximum. 
The wave will die out in: 
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The coherence length:

Typical values
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Experiment:

Maker fringes

P.D. Maker, R.W. Terhune, M. Nisenoff, and C. M. Savage, 
Phys. Rev. Lett. 8, 19 (1962). 

Only effective length of Lc can be used
(Note: non-sinusoidal behavior due to 
�non-critical phase matching�)
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Maxwell equations for anisotropic media

Induced polarization in a medium:
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Susceptibility is tensor of rank 2, causing the
P and E vectors to have different directions
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Elements of tensor depend on coordinate frame;
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With permitivity tensor ij



Monochromatic plane wave with perpendicular:
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Wavefront vector
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Maxwell�s equations (non-magnetic media)
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Derivatives:
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For the plane waves:
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Two vectors orthogonal to k
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Group and Phase velocity

H and D perpendicular to wave vector
Verify:

HE




ED




Further

If  is a scalar then D and E parallel,
but this is not the case in general

Poynting vector: HES




Is not along k-vector

Group Velocity is not equal to Phase Velocity
- in magnitude
- in direction
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Fresnel equations
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Choose coordinate frame (x,y,z) along
principal dielectric axes
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Permittivities i differ along axes
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Form the scalar product 0Ds
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Fresnel�s equation

Equation is quadratic in n and will have 
two solutions n� and n�

Two waves D�(n�) and D�(n�) obey the equation

  




















zyx

nn

s

,, 0
2

0
2

2
22

0

"

1

'

1
"'












 EsDD

 
 
  














































zyx

n

s

n

s

nn

nn

,, 0
2

2

0
2

2

22

2
22

0

"

1

'

1"'

"'
















 Es

Summation  is over x,y,z

0"' DD


Verify:

Anisotropic crystal can transmit two waves with
perpendicular parallel polarizations (and any
linear combination of these two)
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Refraction at boundary of anisotropic crystal

Incident beam is always decomposed into two
eigenmodes of the anisotropic crystal

 '' nD


 "" nD


These modes are orthogonal to each other.
Each of the two modes undergoes refraction
with its index n� or n�

Hence:
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This is:

Double refraction

Birefringence
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The index ellipsoid

Energy stored in an electric field in a medium:
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With: Di = iEi

This is a surface (ellipsoid) of constant energy

Define a normalized polarization vector:
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Index ellipsoid:

Three-dimensional body to find two indices
of refraction for the two waves D

Uni-axial crystal:

00

2
0







 yxn 

0

2



 z
en 

1
2

2

2
0

2

2
0

2



en

z

n

y

n

x
Index becomes:

Poynting vector
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Two allowed polarization directions 
-one polarized along the x-axis; 
polarization vector perpendicular to the optic axis 
ordinary wave; it transmits with index no. 
-one polarized in the x-y plane but perpendicular to s; 
polarization vector in the plane with 
the optic axis is called the extraordinary wave.

Birefringent media

For an arbitrary angle:

   coseny     sinenz 0nx 

Projection of the ellipsoid on x=0
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So index depends on propagation  
of wave vector ()

wave vector

Poynting
vector

Birefringence 0nne 

0nne 

positive

negative
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Phase matching in Birefringent media
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There exists an ordinary wave with

And an extra-ordinary wave with

Both undergo dispersion

0n

KDP

Phase-matching, or k=0 can be reached now;
required is
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In case of (for KDP) 0nne 

    ome nn 
2

 
    memo

oe
me

nn

nn
n









222222

22
2

cossin 



Equation to find the phase-matching angle:
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Solve for sin
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Phase matching in Birefringent media

Graphical: index ellipsoid including dispersion
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TYPE I phase matching
Eo

 + Eo
  Ee

 negative birefringence
Ee

 + Ee
  Eo

 positive birefringence

TYPE II phase matching
Eo

 + Ee
  Ee

 negative birefringence
Eo

 + Ee
  Eo

 positive birefringence

Type I  polarization of second harmonic
is perpendicular to fundamental

Type II  can be understood as sumfrequency mixing
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Phase matching and the �opening angle�
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Consider Type I phase-matching and 
a negatively birefringent crystal.
Phase matching 

This works for a certain angle m.
Near this angle a Taylor series
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Spread in k-values relates to spread in 
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Opening angle:
1) Interpret as angle � 0.1o � of collimated beam
2) As a divergence (convergence) of a laser beam
3) As a wavelength spread
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phase matching by angle tuning

For the example of LiIO3

Dispersion:

Calculate phase matching angle
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Use dispersion and phase-matching
relation:

Practical issue of limitation:

LiIO3 starts absorbing at 295 nm
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Non-critical phase matching and temperature tuning
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Opening angle for wave vectors:

Best if o
m 90

Calculation of Type I for temperatures

Temperature tuning

Advantages of 90o phase matching

1) Poynting vector coincides with phase vector
so no �walk-off�

2) The first order derivative in Taylor expansion
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Hence non-critical phase matching:

3)  In many cases d is larger at m=90o
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Quasi phase matching by periodic poling

Fundamental and harmonic run out of phase
in conversion processes.
 Coherence length is limited

Stick segments of material together with
opposite optical axes- crystal modulation.
Change of sign of polarization in each Lc
 Coherence �runs back�

Periodic poling

Manufacturing of segments by external fields
During/after growth
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Quasi phase matching: analysis

Coupled wave equation, with
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Sign changes (should) occur at:
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'0k wave vector mismatch at design wavelength

For mth order QPM:
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  LdLE eff2 for perfect phase matching

Loss factor:
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A: perfect phase matching
C: phase mismatch for non-poling
B1: poling at Lc
B3: poling after 3 Lc
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Pump depletion in SHG

Then coupled wave equations turn to
Coupled amplitude equations

In case of high conversion also revers
processes play a role:
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Assume second harmonic generation k=0; 
no field with A2; 
field A1 is degenerate
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Hence: #photons(1) + 2#photons(3)=constant

Energy and photon numbers are conserved
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Pump depletion in SHG - 2
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Solve amplitude equation
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Conversion efficiency
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