Second harmonic generation

Use a single input field:

 $E_1(z) = E_2(z)$

Then:

$$\frac{d}{dz}E_3(z) = -\frac{\sigma}{2}\sqrt{\frac{\mu}{\varepsilon_3}}E_3(z) - \frac{i\omega_3}{2}\sqrt{\frac{\mu}{\varepsilon_3}}dE_1^2(z)e^{-i(2k_1-k_3)z}$$

Assume now:

- There is a nonlinearity *d* (only for certain symmetry)
- No absorption in the medium, so σ =0
- Only little production of wave ω_3 , so no back-conversion
- Wave vector mismatch is

$$\Delta k = k^{(2\omega)} - 2k^{(\omega)}$$

The coupled wave equation can be integrated:

$$E^{(2\omega)}(z) = -i\omega \sqrt{\frac{\mu}{\varepsilon^{(2\omega)}}} dE^2(\omega) \int e^{i\Delta kz} dz$$

Conditions

Laser Centre

- 1) Integration for 0 to L (length of medium)
- 2) And boundary

$$E^{(2\omega)}(0) = 0$$

Result of integration:

$$E^{(2\omega)}(L) = -\omega \sqrt{\frac{\mu}{\varepsilon^{(2\omega)}}} dE^2(\omega) \frac{e^{i\Delta kL} - 1}{\Delta k}$$

Output of second harmonic is:

$$E^{(2\omega)}(L)E^{(2\omega)}(L)^* = \frac{\omega^2 \mu}{n^2 \varepsilon_0} d^2 |E(\omega)|^4 L^2 \frac{\sin^2\left(\frac{\Delta kL}{2}\right)}{\left(\frac{\Delta kL}{2}\right)^2}$$

Power at second harmonic:

$$P^{(2\omega)} \propto \omega^2 d^2 L^2 \frac{\sin^2\left(\frac{\Delta kL}{2}\right)}{\left(\frac{\Delta kL}{2}\right)^2} \frac{P^{(\omega)^2}}{A}$$

Second harmonic power; conditions

Conversion efficiency:

$$\eta_{SHG} = \frac{P^{(2\omega)}}{P^{(\omega)}} \propto \omega^2 d^2 L^2 \frac{\sin^2\left(\frac{\Delta kL}{2}\right)}{\left(\frac{\Delta kL}{2}\right)^2} \frac{P^{(\omega)}}{A}$$

1) Second harmonic produced is proportional to

$$P^{(2\omega)} \propto P^{(\omega)^2}$$

nonlinear power production

2) Efficiency is proportional to d^2 or

 $\left|\chi^{(2)}\right|^2$

3) Efficiency is proportional to L^2 and a sinc function

Laser Centre

$$\eta_{SHG} \propto L^2 \sin c \left(\frac{\Delta kL}{2}\right)$$

4) Efficiency is optimal if

 $\Delta k = 0$

This is the "phase-matching condition" cannot be met, because:

$$k^{(2\omega)} \neq 2k^{(\omega)}$$
Use: $k = \frac{n\omega}{c}$

$$k^{(2\omega)} = \frac{2n^{(2\omega)}\omega}{c} \qquad 2k^{(\omega)} = \frac{2n^{(\omega)}\omega}{c}$$

And dispersion in the medium:

$$n^{(2\omega)} > n^{(\omega)}$$

So always $\Delta k \neq 0$

Physics: two waves with

$$E_{\omega}(z,t) = E_{\omega} \exp\left[i\omega t - ik^{(\omega)}z\right]$$
$$E_{2\omega}(z,t) = E_{2\omega} \exp\left[2i\omega t - ik^{(2\omega)}z\right]$$

will run out of phase

Lecture Notes Non Linear Optics; W. Ubachs

Coherence length and Maker fringes

After a distance the waves will run out of phase

 $\Delta kl = \pi$

Then the amplitude is at maximum. The wave will die out in:

$$L_c = 2l$$

The coherence length:

$$L_{c} = \frac{2\pi}{\Delta k} = \frac{2\pi}{k^{(2\omega)} - 2k^{(\omega)}} = \frac{\pi c}{2\omega (n^{(2\omega)} - n^{(\omega)})} = \frac{\lambda}{4(n^{(2\omega)} - n^{(\omega)})}$$

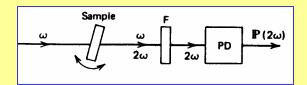
Typical values

Laser Centre

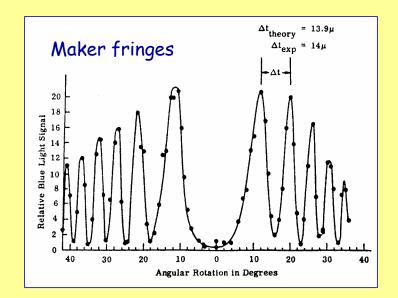
$$\lambda = 1 \mu m$$
$$n^{(2\omega)} - n^{(\omega)} \approx 10^{-2}$$

$$L_c = 25 \,\mu m$$

Experiment:



P.D. Maker, R.W. Terhune, M. Nisenoff, and C. M. Savage, Phys. Rev. Lett. **8**, 19 (1962).



Only effective length of L_c can be used (Note: non-sinusoidal behavior due to "non-critical phase matching")

Maxwell equations for anisotropic media

Induced polarization in a medium:

$$\vec{P} = \varepsilon_0 \chi \vec{E}$$

Susceptibility is tensor of rank 2, causing the P and E vectors to have different directions

 $P_{1} = \varepsilon_{0} (\chi_{11}E_{1} + \chi_{12}E_{2} + \chi_{13}E_{3})$ $P_{2} = \varepsilon_{0} (\chi_{21}E_{1} + \chi_{22}E_{2} + \chi_{23}E_{3})$ $P_{3} = \varepsilon_{0} (\chi_{31}E_{1} + \chi_{32}E_{2} + \chi_{33}E_{3})$

Elements of tensor depend on coordinate frame;

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P} = \varepsilon_0 (1 + \chi_{ij}) \vec{E} = \varepsilon_{ij} \vec{E}$$

With permitivity tensor $\vec{\vec{\varepsilon}}_{ij}$

Monochromatic plane wave with perpendicular:

$$\vec{E} \exp[i\omega t - i\vec{k} \cdot \vec{r}]$$
$$\vec{H} \exp[i\omega t - i\vec{k} \cdot \vec{r}]$$

Wavefront vector

$$\vec{k} = \frac{n\omega}{c}\vec{s}$$

Laser Centre

Maxwell's equations (non-magnetic media)

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 $\vec{\nabla} \times \vec{H} = \frac{\partial \vec{D}}{\partial t}$

Derivatives:

$$\vec{\nabla} \rightarrow -i\vec{k} = -i\frac{n\omega}{c}\vec{s}$$
 $\frac{\partial}{\partial t} \rightarrow i\omega$

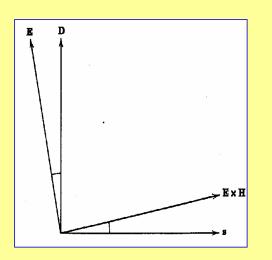
For the plane waves:

$$\vec{k} \times \vec{E} = \mu_0 \omega \vec{H}$$
 $\vec{k} \times \vec{H} = -\omega \vec{D}$

Two vectors orthogonal to k

$$\vec{k} \perp \vec{H}$$
 $\vec{k} \perp \vec{D}$

Group and Phase velocity



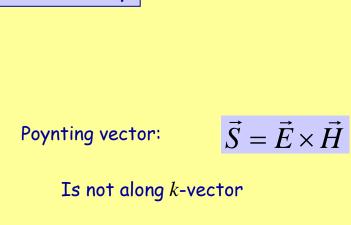
H and D perpendicular to wave vector Verify:

 $ec{E} \perp ec{H}$

Further

 $\vec{D} = \vec{\vec{\varepsilon}}\vec{E}$

If ϵ is a scalar then D and E parallel, but this is not the case in general



Group Velocity is not equal to Phase Velocity - in magnitude

- in direction

Fresnel equations

Verify:
$$-\vec{k} \times \vec{k} \times \vec{E} = \vec{\nabla} \times \vec{\nabla} \times \vec{E} = \omega^2 \mu \vec{D}$$

Use: $\vec{k} \times \vec{k} \times \vec{E} = \vec{k} (\vec{k} \cdot \vec{E}) - \vec{E} (\vec{k} \cdot \vec{k})$

$$\rightarrow \qquad \vec{D} = n^2 \varepsilon_0 \left[\vec{E} - \vec{s} \left(\vec{s} \cdot \vec{E} \right) \right]$$

Choose coordinate frame (x,y,z) along principal dielectric axes

 $\begin{pmatrix} \mathbf{D}_{\mathbf{X}} \\ \mathbf{D}_{\mathbf{y}} \\ \mathbf{D}_{\mathbf{z}} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\varepsilon}_{\mathbf{X}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\varepsilon}_{\mathbf{y}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \boldsymbol{\varepsilon}_{\mathbf{z}} \end{pmatrix} \begin{pmatrix} \mathbf{E}_{\mathbf{X}} \\ \mathbf{E}_{\mathbf{y}} \\ \mathbf{E}_{\mathbf{z}} \end{pmatrix}$

Permittivities ε_i differ along axes

$$D_{i} = n^{2} \varepsilon_{0} \left[\frac{D_{i}}{\varepsilon_{i}} - \left(\vec{s} \cdot \vec{E} \right) \right]$$

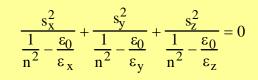
Hence:
$$D_{i} = \frac{\varepsilon_{0} \left(\vec{s} \cdot \vec{E} \right)}{\frac{1}{n^{2}} - \frac{\varepsilon_{0}}{\varepsilon_{i}}}$$

Form the scalar product \vec{s} ·

 $\vec{s} \cdot \vec{D} = 0$

Lecture Notes Non Linear Optics; W. Ubachs

Fresnel's equation



Equation is quadratic in n and will have two solutions n' and n''

Two waves D'(n') and D''(n'') obey the equation

$$\mathbf{D'} \cdot \mathbf{D''} = \varepsilon_0^{2} (\mathbf{s} \cdot \mathbf{E})^{2} \left\langle \sum_{x,y,z} \frac{s_{\alpha}^{2}}{\left(\frac{1}{n'^{2}} - \frac{\varepsilon_{0}}{\varepsilon_{\alpha}}\right) \left(\frac{1}{n''^{2}} - \frac{\varepsilon_{0}}{\varepsilon_{\alpha}}\right)} \right\rangle$$
$$= \varepsilon_0^{2} (\mathbf{s} \cdot \mathbf{E})^{2} \frac{(n'n'')^{2}}{(n'^{2} - n''^{2})} \left\langle \sum_{x,y,z} \left[\frac{s_{\alpha}^{2}}{\left(\frac{1}{n''^{2}} - \frac{\varepsilon_{0}}{\varepsilon_{\alpha}}\right)} + \frac{s_{\alpha}^{2}}{\left(\frac{1}{n''^{2}} - \frac{\varepsilon_{0}}{\varepsilon_{\alpha}}\right)} \right] \right\rangle$$

Summation α is over x,y,z

 \rightarrow $\vec{D}' \cdot \vec{D}'' = 0$

Anisotropic crystal can transmit two waves with perpendicular parallel polarizations (and any linear combination of these two)

Refraction at boundary of anisotropic crystal

Incident beam is always decomposed into two eigenmodes of the anisotropic crystal

$$\vec{D}'(n')$$
 $\vec{D}''(n'')$

These modes are orthogonal to each other. Each of the two modes undergoes refraction with its index n' or n''

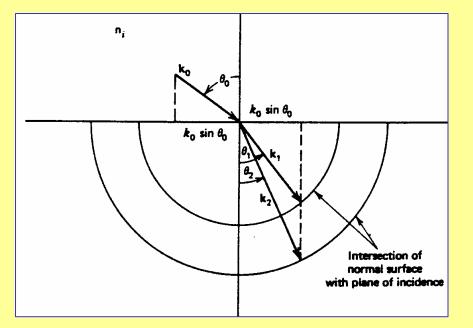
Hence:

$$k_0 \sin \theta_0 = k_1 \sin \theta_1 = k_2 \sin \theta_2$$

This is:

Double refraction

Birefringence



The index ellipsoid

Energy stored in an electric field in a medium:

 $U_e = \frac{1}{2} \left(\mathbf{E} \cdot \mathbf{D} \right)$

With: $D_i = \varepsilon_i E_i$

$$\frac{D_x^2}{\varepsilon_x} + \frac{D_y^2}{\varepsilon_y} + \frac{D_z^2}{\varepsilon_z} = 2U_z$$

This is a surface (ellipsoid) of constant energy

Define a normalized polarization vector:

 $\vec{r} = \vec{D}\sqrt{2U_e}$

Index ellipsoid:

Laser Centre

$$\frac{x^2}{n_x^2} + \frac{y^2}{n_y^2} + \frac{z^2}{n_z^2} = 1$$

Three-dimensional body to find two indices of refraction for the two waves ${\cal D}$

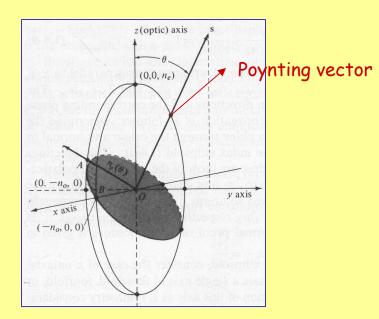
Uni-axial crystal:

$$n_0^2 = \frac{\varepsilon_x}{\varepsilon_0} = \frac{\varepsilon_y}{\varepsilon_0}$$

$$n_e^2 = \frac{\varepsilon_z}{\varepsilon_0}$$

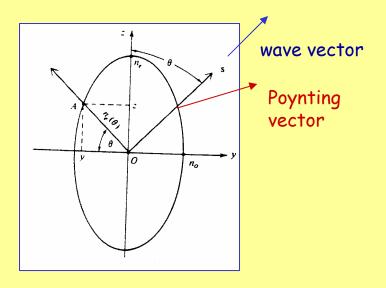
Index becomes:

$$\frac{x^2}{n_0^2} + \frac{y^2}{n_0^2} + \frac{z^2}{n_e^2} = 1$$



Lecture Notes Non Linear Optics; W. Ubachs

Birefringent media



Two allowed polarization directions -one polarized along the x-axis; polarization vector perpendicular to the optic axis *ordinary wave*; it transmits with index *no*. -one polarized in the x-y plane but perpendicular to s; polarization vector in the plane with the optic axis is called the *extraordinary wave*. For an arbitrary angle:

$$x = n_0$$
 $y = n_e(\theta)\cos\theta$ $z = n_e(\theta)\sin\theta$

Projection of the ellipsoid on x=0

$$\frac{y^2}{n_0^2} + \frac{z^2}{n_e^2} = 1$$

Insert:

$$\frac{1}{n_e^2(\theta)} = \frac{\cos^2\theta}{n_o^2} + \frac{\sin^2\theta}{n_e^2}$$

So index depends on propagation of wave vector (θ)

Birefringence	$n_e > n_0$	positive
	$n_e < n_0$	negative

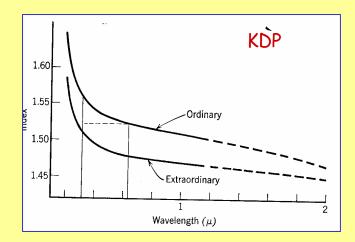
Phase matching in Birefringent media

There exists an ordinary wave with

 n_0 And an extra-ordinary wave with

$$n_e(\theta) = \frac{n_e n_o}{\sqrt{n_o^2 \sin^2 \theta + n_e^2 \cos^2 \theta}}$$

Both undergo dispersion



Phase-matching, or $\Delta k=0$ can be reached now; required is

$$n^{\omega} = n^{2\omega}$$

In case of (for KDP) $n_e < n_0$

 $n_e^{2\omega}(\theta_m) = n_o^{\omega}$

Equation to find the phase-matching angle:

$$n_e^{2\omega}(\theta_m) = \frac{n_e^{2\omega} n_o^{2\omega}}{\sqrt{\left(n_o^{2\omega}\right)^2 \sin^2 \theta_m + \left(n_e^{2\omega}\right)^2 \cos^2 \theta_m}}$$

Solve for $sin\theta$

$$\sin^{2} \theta_{m} = \frac{\left(n_{o}^{\omega}\right)^{-2} - \left(n_{o}^{2\omega}\right)^{-2}}{\left(n_{e}^{2\omega}\right)^{-2} - \left(n_{o}^{2\omega}\right)^{-2}}$$

Phase matching in Birefringent media

Graphical: index ellipsoid including dispersion



$$\sin^{2} \theta_{m} = \frac{\left(n_{o}^{\omega}\right)^{-2} - \left(n_{o}^{2\omega}\right)^{-2}}{\left(n_{e}^{2\omega}\right)^{-2} - \left(n_{o}^{2\omega}\right)^{-2}}$$

TYPE I phase matching $\begin{array}{c} \mathsf{E}_{o}^{\,\omega} + \mathsf{E}_{o}^{\,\omega} \to \mathsf{E}_{e}^{\,2\omega} \\ \mathsf{E}_{e}^{\,\omega} + \mathsf{E}_{e}^{\,\omega} \to \mathsf{E}_{o}^{\,2\omega} \end{array}$

negative birefringence positive birefringence

TYPE II phase matchingnegative birefringence $E_o^{0} + E_e^{0} \rightarrow E_e^{20}$ negative birefringence $E_o^{0} + E_e^{0} \rightarrow E_o^{20}$ positive birefringence

negative birefringence

Type I \rightarrow polarization of second harmonic is perpendicular to fundamental Type II \rightarrow can be understood as sumfrequency mixing

Phase matching and the "opening angle"

Consider Type I phase-matching and a negatively birefringent crystal. Phase matching

$$\Delta k = \frac{2\omega}{c} \left[n_e^{2\omega}(\theta) - n_o^{\omega} \right] = 0$$

This works for a certain angle θ_m . Near this angle a Taylor series

$$\frac{d\Delta k}{d\theta} = \frac{2\omega}{c} \frac{d}{d\theta} \left[n_e^{2\omega}(\theta) - n_o^{\omega} \right] =$$

$$\frac{2\omega}{c} \frac{d}{d\theta} \frac{n_e n_o}{\sqrt{n_o^2 \sin^2 \theta + n_e^2 \cos^2 \theta}} =$$

$$-\frac{\omega}{c} \frac{n_e n_o}{\left(n_o^2 \sin^2 \theta + n_e^2 \cos^2 \theta\right)^{3/2}} \left(n_o^2 - n_e^2\right) \sin 2\theta$$

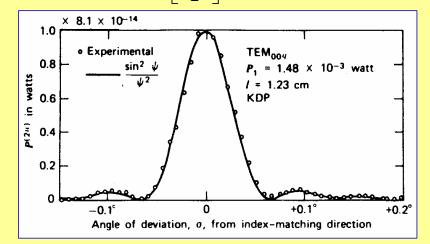
$$= -\frac{\omega}{c} \frac{\left(n_e^{2\omega}(\theta)\right)^3}{n_o^2 n_e^2} \left(n_o^2 - n_e^2\right) \sin 2\theta$$
with: $n_e^{2\omega}(\theta) = n_o^{\omega}$

$$\left| \frac{d\Delta k}{d\theta} \right|_{\theta_m} = -\frac{\omega}{c} n_0^3 \left(n_e^{-2} - n_o^{-2}\right) \sin 2\theta_m$$

Spread in k-values relates to spread in $\Delta \theta$

$$\Delta k = \frac{2\beta}{L} \Delta \theta \quad \text{with} \quad \beta \propto \sin 2\theta_m$$

$$P^{(2\omega)}(\theta) \propto \frac{\sin^2 \left[\frac{\Delta kL}{2}\right]}{\left[\frac{\Delta kL}{2}\right]^2} \propto \frac{\sin^2 \left[\beta \left(\theta - \theta_m\right)\right]}{\left[\beta \left(\theta - \theta_m\right)\right]^2}$$



Opening angle:

- 1) Interpret as angle 0.1° of collimated beam
- 2) As a divergence (convergence) of a laser beam
- 3) As a wavelength spread

$$\frac{\Delta k}{k} = -\frac{\Delta \lambda}{\lambda}$$

Lecture Notes Non Linear Optics; W. Ubachs

phase matching by angle tuning

For the example of $LiIO_3$

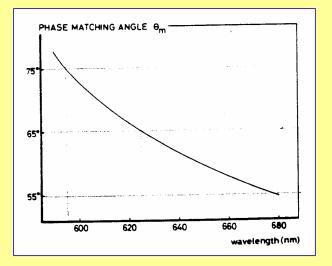
Dispersion:

A	no	ne
4000	1.948	1.780
4360	1.931	1.766
5000	1.908	1.754
5300	1.901	1.750
5780	1.888	1.742
69 00	1.875	1.731
8000	1.868	1.724
10600	1.860	1.719

Use dispersion and phase-matching relation:

$$\sin^{2} \theta_{m} = \frac{\left(n_{o}^{\omega}\right)^{-2} - \left(n_{o}^{2\omega}\right)^{-2}}{\left(n_{e}^{2\omega}\right)^{-2} - \left(n_{o}^{2\omega}\right)^{-2}}$$

Calculate phase matching angle



Practical issue of limitation:

LiIO₃ starts absorbing at 295 nm

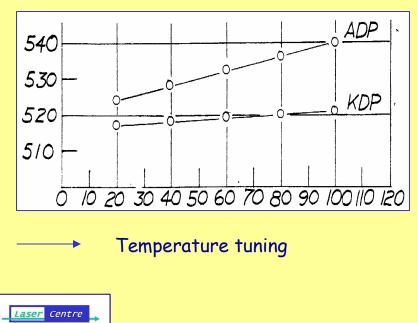
Non-critical phase matching and temperature tuning

Opening angle for wave vectors:

$$\Delta k = \frac{2\beta}{L} \Delta \theta \qquad \beta \propto \sin 2\theta_n$$

Best if $\theta_m = 90^\circ$

Calculation of Type I for temperatures



Advantages of 90° phase matching

- Poynting vector coincides with phase vector so no "walk-off"
- 2) The first order derivative in Taylor expansion $\frac{d\Delta k}{d\theta} = -\frac{\omega}{c} \frac{\left(n_e^{2\omega}(\theta)\right)^3}{n_o^2 n_e^2} \left(n_o^2 - n_e^2\right) \sin 2\theta_m$ $\longrightarrow 0$

Hence non-critical phase matching:

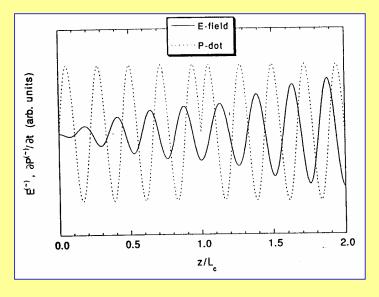
$$\Delta k \propto (\Delta \theta)^2$$

3) In many cases d is larger at $\theta_{\rm m}$ =90°

Quasi phase matching by periodic poling

Fundamental and harmonic run out of phase in conversion processes.

 \rightarrow Coherence length is limited



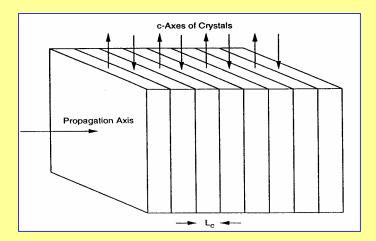
Stick segments of material together with opposite optical axes- crystal modulation. Change of sign of polarization in each L_c \rightarrow Coherence "runs back"

Laser Centre

riie Universiteit am

Periodic poling

Manufacturing of segments by external fields During/after growth



Quasi phase matching: analysis

Coupled wave equation, with
$$\Gamma = i\omega E_1^2 / n_2 c$$

 $\frac{d}{dz}E_2 = \Gamma d(z)\exp[-i\Delta k'z]$

Integrate for second harmonic

$$E_2(L) = \Gamma \int_0^L d(z) \exp[-i\Delta k' z] dz$$

d(z) consists of domains with alternating signs

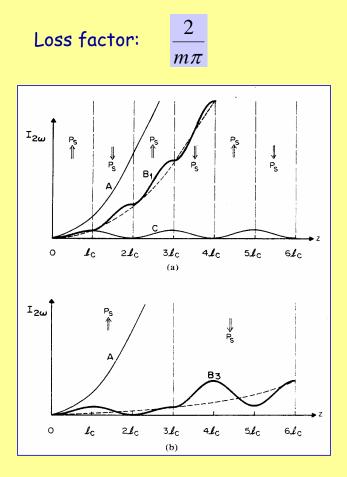
 $E_{2} = \frac{i\Gamma d_{eff}}{\Delta k'} \sum_{k=1}^{N} g_{k} \left[\exp(-i\Delta k' z_{k}) - \exp(-i\Delta k' z_{k-1}) \right]$ Sign changes (should) occur at: $e^{-i\Delta k_{0}'} z_{k,0} = (-1)^{k}$ $\Delta k_{0}'$ wave vector mismatch at design wavelength For mth order QPM: $z_{k,0} = mkl_{c}$

$$E_{2,ideal} \approx i\Gamma d_{eff} \, \frac{2}{m\pi} L$$

 $E_2(L) = \Gamma d_{eff}L$ for perfect phase matching

Laser Centre

Lecture Notes Non Linear Optics; W. Ubachs



A: perfect phase matching C: phase mismatch for non-poling B₁: poling at L_c B3: poling after $3 L_c$

Pump depletion in SHG

In case of high conversion also revers processes play a role:

$$\omega_1 + \omega_2 \to \omega_3 \qquad \omega_3 - \omega_1 \to \omega_2$$
$$\omega_3 - \omega_2 \to \omega_1$$

Define amplitudes and assume no absorption

$$A_{i} = \frac{\sqrt{n_{i}}}{\omega_{i}} E_{i} \qquad \kappa = d \frac{1}{2} \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \sqrt{\frac{\omega_{1}\omega_{2}\omega_{3}}{n_{1}n_{2}n_{3}}}$$

Then coupled wave equations turn to Coupled amplitude equations

$$\frac{d}{dz}A_{1} = -i\kappa A_{3}A_{2}^{*}e^{-i\Delta kz}$$
$$\frac{d}{dz}A_{2} = +i\kappa A_{1}A_{3}^{*}e^{i\Delta kz}$$
$$\frac{d}{dz}A_{3} = -i\kappa A_{1}A_{2}e^{i\Delta kz}$$

Assume second harmonic generation $\Delta k=0$; no field with A_2 ; field A_1 is degenerate $A_1A_2 = \frac{1}{2}A_1^2$ Rewrite: $A_3'=-iA_3$ Then:

$$\frac{d}{dz}A_1 = -\kappa A_3'A_1 \qquad \frac{d}{dz}A_3' = \frac{1}{2}\kappa A_1^2$$

Calculate:

$$\frac{d}{dz} \Big[A_1^2 + 2(A_3'(z))^2 \Big] = 2A_1 \frac{d}{dz} A_1 + 4A_3' \frac{d}{dz} A_3' = 0$$

So in crystal: $A_1^2 + 2(A_3'(z))^2 = \text{constant} = A_1^2(0)$

Consider:

$$I_i = \frac{1}{2} \sqrt{\frac{\mu_0}{\varepsilon_0}} n_i |E_i|^2 = \frac{1}{2} \sqrt{\frac{\mu_0}{\varepsilon_0}} \omega_i |A_i|^2 \qquad I_i \propto N_i \hbar \omega_i$$

Hence: #photons(ω_1) + 2#photons(ω_3)=constant

Energy and photon numbers are conserved

Pump depletion in SHG - 2

Solve amplitude equation

For:

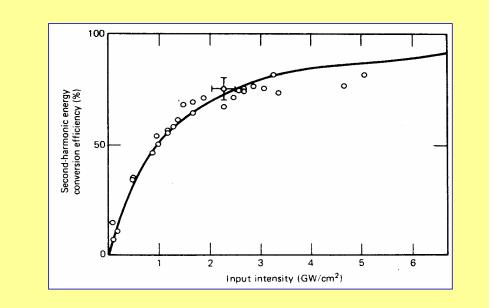
$$\frac{d}{dz}A_3' = -\frac{1}{2}\kappa \Big[A_1^2(0) - 2(A_3')^2\Big] = 0$$

Solution:

$$A_{3}'(z) = \frac{A_{1}(0)}{\sqrt{1/2}} \tanh\left[\frac{A_{1}(0)\kappa z}{\sqrt{1/2}}\right]$$

Conversion efficiency

$$\eta_{SHG} = \frac{P^{(2\omega)}}{P^{(\omega)}} = \frac{|A_3(z)|^2}{\frac{1}{2}|A_1(0)|^2} = \tanh^2 \left[\frac{A_1(0)\kappa z}{\sqrt{1/2}}\right]$$



 $A_{1}(0)\kappa z \to \infty$ $|A_{3}'(z)|^{2} \to \frac{1}{2}|A_{1}(0)|^{2}$