BIG ISSUES IN PHYSICS

Variation of the Fundamental Constants of Nature

Which constants are fundamental ?
Do we understand the constants and their values ?
Dimensionless and Dimensional constants

Various Phenomena in various epochs as a test ground

be
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Constants Fundamental ?

V Fundamental constant: "parameter that cannot be calculated for known physics”
N>
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Dimensionless Constants
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The Ratio of Proton and Electron Masses

Friepricy Lenz
Diisseldorf, Germany
{Received April 5, 1951)

HE most exact value at present! for the ratio of proton to
electron mass is 1836.12:£:0,05, Tt may be of interest to note
that this number coincides with 6x5=1836.12.

1 Sommer, Thomas, and Hipple, Phys. Rev. 80, 487 {1950},

Physical Review 82 (1951) 554

Wolfgang Pauli

Note: a is a running coupling constant
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The Large Number Hypothesis

ct
N, = Fme =10%  size of universe/size of electron
2
N,=— °  —10% . tati
2T GmM . force ratio between e and p (EM/gravitation)
e p
e . .
N = oM =10 number of protons in the universe
p

Large number hypothesis: N,=N,=+/Not via G oc%

Dirac's paper (1937)
Paleonthology Teller's paper (1948)
Gamov's paper (1967)

Outcome of Dirac's paper:
N 4 Constancy of fundamental constants
Teller must be experimentally verified
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Testing variation of constants in various epochs

CMB obs
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Constants in the early Universe
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Helium 4 (“He)
: Big Bang Nuclear Synthesis

Deuterium (2H)

Driving Mechanism:

Helium (3He)

-Where do the neutrons go ?
-How long do the neutrons live ?

Element Abundance
(Relative to Hydrogen)
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Density of Ordinary Matter
MAPE90403 (Relative to Photons)
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The OKLO phenomenon at z = 0.16

23°5/238U = 0.717 % (usually 0.720 %)
so 0.003 % missing 23°U ?
Fission products found

Resonant capture of 149Sm -> 150Sm
Level in 14°Sm has changed < 20 meV
a constant at 10-8 level

Neodymium from OKLO Deposit
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Paper Shlyakter (1976)
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Atomic Spectra from Quasars

Redshift
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Fractional look—back time
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Constraints from Radioactive Decays

U —Th+,He Decay rates of 23%U, 238U, and 235Th
and constraint by the lifetime of the Earth

Isotopic abundances Aala <107
(Dyson 1972)

General Ao would have resulted in a different nuclear chart,
with other elements stable .
some stable elements subject to radiative decay (Dicke 1959)

Analysis of some radio-active isotope, and/or isotope abundances in meteorites
Discuss :

look-back times
% systematics
N>
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Spectroscopy of atoms and molecules

1. On a Cosmological time scale

Quasar spectra, absorbing galaxies at high redshift
Availability of existing species
Sensitivity of Atoms and Molecules

2. On aLaboratory time scale

Ultraprecision metrology with stable lasers
Frequency comb lasers

Atomic clocks

Any choice of species

be
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CO, laser

PLL

PRL 100, 150801 (2008)

Ultra-precision metrology with lasers

PHYSICAL REVIEW LETTERS

week ending
18 APRIL 2008

Stability of the Proton-to-Electron Mass Ratio

A. Shelkovnikov,” R.J. Butcher,* C. Chardonnet, and A. Amy-Klein*
Laboratoire de Physique des Lasers, UMR CNRS 7538, Institut Galilée, Université Paris 13, 99, ave J.-B. Clément,

93430 Villetaneuse, France

(Received 7 December 2007; published 18 April 2008)

We report a limit on the fractional temporal variation of the proton-to-electron mass ratio as
m % (mp/me) = (—3.8 £5.6) X 1071% yr 1, obt.?li.ned.by comparing the fr.equency of a rovibrat%onal
transition in ST, with the fundamental hyperfine transition in Cs. The SF; transition was accessed using a
CO; laser to interrogate spatial 2-photon Ramsey fringes. The atomic transition was accessed using a
primary standard controlled with a Cs fountain. This result is direct and model-free.
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FIG. 2. Tringes at 200 Hz, obtained using a 1 m interzone
separation. Experimental conditions: pure SFs beam, input pres-
sure 5 X 10° Pa, 12 mW inside U/ cavity FM modulation at
115 Hz index 043, 75 uW inside the detection cavity, time
constant for detection 0.1 s. Average of 5 up-down sweeps, 200
points, averaging 1 s per point. Signal-to-noise ratio 30.
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The least-squares best fit line has a slope of 1.88 X 107 1* yr= 1.
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The time/frequency standard; Clocks

HP-Standard Cs clock

A "cesium(-beam) atomic clock" (or "cesium-

beam frequency standard") is a device that

uses as a reference the exact frequency of

the microwave spectral line emitted by atoms

of the metallic element cesium, in particular

its isotope of atomic weight 133 ("Cs-133").

The integral of frequency is time, so this

frequency, 9,192,631,770 hertz (Hz =

cycles/second), provides the fundamental unit Note:

of time, which may thus be measured by Definition of the meter by:

cesium clocks.
C = 299792458 m/s
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Better representation of the Cs Clock
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Time-of-flight broadening

Ramsey spectroscopy



Frequency Comb Lasers
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Linking Optical frequencies
to an RF-clock



Frequency Comb Lasers
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"Self-referencing” and locking to clock
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Frequency Comb Calibration of a Laser

atomic
clock
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Toward optical clocks

(Single) Ion traps Optical lattice

Magic wavelength |
point Av =0 |

Y

Faster realization of a standard at higher frequencies
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PRL 104, 070802 (2010)

The most accurate clock - almost

PHYSICAL REVIEW LETTERS

week ending
15 FEBRUARY 2010

Frequency Comparison of Two High-Accuracy Al™ Optical Clocks

C.W. Chou,” D. B. Hume, I. C.J. Koelemeij ;' D.J. Wineland, and T. Rosenband

Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
(Received 23 November 2009; published 17 February 2010)

We have constructed an optical clock with a fractional frequency inaccuracy of 8.6 X 10 1%, based on
quantum logic spectroscopy of an Al™ ion. A simultaneously trapped Mg™ ion serves to sympathetically
laser cool the Al™ ion and detect its quantum state. The frequency of the 'S, « 3P, clock transition is
compared to that of a previously constructed Al™ optical clock with a statistical measurement uncertainty
of 7.0 X 10 ¥, The two clocks exhibit a relative stability of 2.8 X 10 57 /2, and a fractional frequency
difference of —1.8 X 10 17, consistent with the accuracy limit of the older clock.

TABLE 1. Systematic effects that shift the clock from its ideal
unpertwrbed frequency. Shifts and uncertainties given are in
fractional frequency units (Az/v). See text for discussion.

Effect Shift (10 ') Uncertainty (10 %)
Excess micromotion -9 6
Secular motion —16.3 5
Blackbody radiation shift -9 3
Cooling laser Stark shift —3.6 1.5
Quad. Zeeman shift —1079.9 0.7
Linear Doppler shift 0 0.3
Clock laser Stark shift 0 0.2
Background-gas collisions 0 0.5
AOM freq. error 0 0.2
Total —1117.8 8.6
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FI1G. 2 (color). Clock stability. Fractional frequency uncer-
tainty vs averaging period {7) for a comparison between the
two Al* clocks (10700 s duration). Overlapping Allan deviation
and AN-sample standard deviation are shown [24]. For each
comparison measurement the coefficient of the = /2 asymptote
is estimated and used to derive the measurement’s statistical
uncertainty. The 2.8 X 10 Y7 /2 asymptote is reached for
averaging periods that are longer than the servo time constant
of 10 s.

Not absolute !l
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An optical lattice clock with accuracy and stability at

the 1072 level

B. J. Bloom"?*, T. L. Nicholson"**, I. R. Williams'*#, S. L. Campbell"?, M. Bishof'?, X. Zhang', W. Zhang"?, S. L. Bromley'*
& 1. Yel?
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With control of black-body radiation

Dynamic BBR error
(fractional frequency units x 107'9)
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