
The Special Theory of 
Relativity 

 
Chapter II 

 
1. Relativistic Kinematics 
2. Time dilation and space travel 
3. Length contraction 
4. Lorentz transformations 
5. Paradoxes ? 

 



If one observer sees the 
events as simultaneous,  
the other cannot, given 
that the speed of light is 
the same for each. 

Simultaneity/Relativity 

Conclusions: 
Simultaneity is not an absolute concept 
Time is not an absolute concept 
It is relative 



This shows that moving observers 
must disagree on the passage of 
time. 

Time Dilation 
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a) Observer in space ship: 

b) Observer on Earth: 
 speed c is the same 
 apparent distance longer 

Light along diagonal: 
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proper time 

Clocks moving relative to an observer run more slowly 
as compared  to clocks at rest relative to that observer 

ν 

How much time does it take for light to 
Travel up and down in the space ship? 



Calculating the difference between clock “ticks,” we 
find that the interval in the moving frame is related to 
the interval in the clock’s rest frame: 

Time Dilation 

∆t0 is the proper time (in the co-moving frame) 
It is the shortest time an observer can measure 

then with 
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Applications:  
Lifetimes of muons in the Earth atmosphere 
Time dilation on atomic clocks in GPS (v=4 km/s; timing “error” 10-10 s) 



On Space Travel 

100 light years ~ 1016 m 

If space ship travels at v=0.999 c 
then it takes ~100 years to travel. 
 
But in the rest frame of the carrier: 
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The higher the speed the faster you get there; 
But not from our frame perspective ! 



Twin Paradox 

Question:  
 
On her 21st birthday an astronaut takes off in a rocket ship at a  
speed of 12/13 c. After 5 years elapsed on her watch, she turns around and 
heads back to rejoin with her twin brother, who stayed at home. 
 
How old is each twin at the reunion ? 



Twin Paradox 

Solution:  
The traveling twin has traveled for 5+5=10 years so she will be 31. 
 
As viewed from earth the traveling clock has moved slower by a factor: 
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So the time elapsed on Earth is 26 years, and her brother will be celebrating 
his 47th birthday. 
 
Note that the traveling twin has really spent only 10 years of her life. 
She has not lived more, her clock ticked slower. Time really has evolved slower. 



Twin Paradox 

Where is the real paradox? 
  
Think about the problem from the perspective of sister who sees 
the Earth moving in her frame of reference, with the consequence that 
the time in her brothers frame should evolve more slowly. 
Why isn’t the brother “younger” ? 

The two twins are not equivalent !  
1) The sister is not in an inertial frame of 
reference ! Well she is, but two times in 
a different one (von Laue) 
2) The space ship turns around which 
requires acceleration (Langevin) 

Can be explained by a  
Minkowski diagram 



Length Contraction 

0 v
t 0=∆

0tv∆=

Distance between planets is:  Time for travel: Earth observer 

Time dilatation 
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Space craft observers 
measure the same 
speed but less time γ
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Proper time 
Contraction only along 
The direction of motion 



Length Contraction 

Only observed in the direction of the 
motion. 

No contraction, or dilation in 
perpendicular direction 



The Barn and Ladder Paradox 
Excercise 

There once was a farmer who had a ladder too long to store in his barn. He read some 
relativity and came up with the following idea. He instructed his daughter to run with the 
ladder fast, such that the ladder would Lorentz contract to fit in the barn. When through  
the farmer intended to slam the door and hold the ladder fixed inside. 
 
The daughter however pointed out that (in her frame of reference) the barn, and not the 
ladder would contract, and the fit would be even worse. 
 
Who is right ? 

See: the fantasy train in 36.6 & 36.7 



Lorentz Transformations 

( )vtxx −= γ'

( ) ( ) ( ) ''''' tvcvtctvtxctx +=+=+=≡ γγγ

( ) ( ) ( )tvcvtctvtxctx −=−=−=≡ γγγ''

In relativity, assume a linear transformation: 

γ as a constant to be determined (γ=1 classically). 
Inverse transformation with v  -v 

Consider light pulse at common origin of S and S’ at t=t’=0 
measure the distance in x=ct and x’=ct’ : 
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Lorentz Transformations 
Solve further: 

Time dilation and length contraction can be derived 
From these Lorentz transformations 

( ) ( )( )vtvtxvtxx −+=−= ''' γγγ

Leading to the transformations: 
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Test invariance of Maxwell equations under Lorentz 
Transformations 
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Evaluate similarly the temporal term and test invariance of Maxwell’s wave equation 



The addition of velocities in reference frames 
I. longitudinal 

Excercise 

Observer in frame S determines speed ux of object in S’ (x’, t’,ux’) 
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The addition of velocities in reference frames 
II. Transversal 

So also uy and uz 

transform; this has to do with 
the transformation  
(non-absoluteness) of time 
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Excercise 

Observer in frame S determines speed ux of object in S’ (x’, t’,ux’) 
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Lorentz Transformations 
Calculate the speed of rocket 2 with respect to Earth. 
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This equation also yields as 
result that c is the maximum 
obtainable speed (in any 
frame). 

Excercise 



Faster than the speed  of light ? Cherenkov radiation 

Particle travels at ctxp β=

t
n
cxe =Waves emitted as (spherical)  

Emittance  cone: 
β

θ
n
1cos =

Pavel Cherenkov 
Nobel Prize 1958 

A  blue light cone 

Application in the ANTARES detector 

Cf: shock wave 
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