AUC Course: Electrons, Waves, and Relativity 2018 Wim Ubachs

Relativity Problem set I

1) Galileian Transformation

Proof that consecutive application of Galileian transformation and the reverse transformation yield a unity transformation (so no change).

(x)		(1	0	0	v	(x')	(x'))	(1	0	0	-v	$\begin{pmatrix} x \end{pmatrix}$
y	_	0	1	0	0	y'	y'		0	1	0	0	y
z	-	0	0	1	0	<i>z</i> '	<i>z</i> '	-	0	0	1	0	z
$\left(t\right)$		0	0	0	1)	t'	t')	0	0	0	1)	$\left(t\right)$

2) Velocity transformation in classical mechanics

In Frame S an object has velocity $\vec{u} = (u_x, u_y, u_z) = (dx/dt, dy/dt, dz/dt)$.

In Frame S' the object has velocity \vec{u} '. Frame S' moves with speed \vec{v} with respect to frame S. You may choose/define the coordinate system to have velocity \vec{v} move along the *x*-axis.

- a) Derive the velocity transformation, so the velocity \vec{u} expressed in terms of \vec{u} .
- b) Proof that acceleration is the same in both frames, $\vec{a} = \vec{a}$. What assumption is needed ?
- c) Proof that Newton's second law $\vec{F} = m\vec{a}$ is the same in both frames.

3) Vector fields

a) Proof that for any vector field: $\nabla \cdot (\nabla \times A) = 0$. b) Proof that $\nabla \times (\nabla \times A) - \nabla (\nabla \cdot A) = -\nabla^2 A$

4) Speed of light

If you were on a spaceship traveling at 0.5c away from a star, at what speed would the starlight pass you ?