Lecture Course

Advanced Experimental Methods

W. Ubachs; part B

Wavelength – Frequency Measurements

Frequency:

- unit to be measured most accurately in physics

- frequency counters + frequency combs (gear wheels)
- clocks for time-frequency

Wavelength:

- no longer fashionable (for precision measurements)
- unit [m] no longer directly defined
- always problem of the medium- index of refraction

Units: exercise convert

- Ångstrom -> nm
- eV, J, cm⁻¹, Hz, kcal/mole

(Wave)Length standard

Krypton (Kr): International Standard of Length

Now, since 1983

$$L = c \cdot t$$

 $c = 299792458 \frac{m}{s}$

The picture shows a device holding a tube of krypton gas. The isotope Kr-86 contained in the tube can be excited so that it emits light. The international standard of length is one meter, which is 1,650,763.73 wavelengths of radiation emitted by Kr-86.

A practical realisation of the metre is usually delineated (not defined) today in labs as 1,579,800.298728(39) wavelengths of helium-neon laser light in a vacuum.

Time standard (and realization)

10⁻¹³ accuracy

the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom

Cs fountain clock

Classical Spectrometers

Spectral resolution

limited by the diffraction determined by total aperture (size of prism or grating) → study this

Prisms:

how does the dispersion (resolution) depend on geometry/material of prism

Grating:

study the avantages of the "Echelle grating"

Spectroscopy and Calibration

Absolute measurements (wavelength or frequency)

Relative measurements (line separations)

Spectral referencing (use of atlases) I_2 , Te₂, Hollow-cathode lamps, Th-Ar

Scanning vs Multiplex spectroscopy

Spectral referencing in laser spectroscopy

Referencing against tellurium 130Te2

Precision Doppler Free Spectroscopy

- 1. Saturation spectroscopy Lamb dips
- 2. Polarization spectroscopy
- 3. Two-photon spectroscopy
- 4. Molecular beam spectroscopy

Lamb Dips

Willis E Lamb Nobel Prize in Physics 1955

Lamb Dips

Saturation in Homogeneous broadening

Saturation in Heterogeneous broadening Standing wave field Saturation in Heterogeneous case Weak field probing

Intermezzo

Lamb dip spectroscopy unraveling overlapping lines

Saturated absorption for referencing

Doppler-free two-photon absorption (excitation)

All molecules, independent of their velocities, absorb at the sum frequency

$$\omega_1 + \omega_2 = 2\omega$$

Sub-Doppler spectroscopy in a beam

$$\omega' = \omega_0 - \vec{k} \cdot \vec{v} = \omega_0 - kv_x$$

Reduction of the Doppler width:

$$\Delta \omega_D' = \Delta \omega_D \sin \varepsilon$$
 $\Delta \omega_D = 2\omega_0 \frac{v_p}{c} \sqrt{\ln 2}$

Molecular beam spectroscopy; Two-fold advantage: resolution + cooling

W. Ubachs: Masters Course: Experimental Methods 2013 B

Laser-based calibration techniques

"Harmonics" + "saturation"

W. Ubachs: Masters Course: Experimental Methods 2013 B

Calibration of H₂ spectral lines (in XUV)

W. Ubachs: Masters Course: Experimental Methods 2013 B

Frequency measurements in the optical domain with a frequency comb laser

- Pulses in time generated by mode-locked laser
- Frequency spectrum of discrete, regularly spaced sharp lines

Is it a pulsed or a CW laser ?

Broadening the spectrum to "octave spanning"

10 fs, 2 nJ in a 1.7 μm fused silica core holey fiber

- self phase modulation
- shockwave formation
- Raman scattering, FWM ...

Frequency measurements in the optical domain

Extend the spectrum to octave spanning

Feedback to stabilize the laser on RF signals

Using the FC-laser as an optical reference standard

