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Nonlinear Optics

Th  first n n lin r ptic l l s r xp rim nt
Nicolaas Bloembergen

Nobel prize 1981 

The first non-linear optical laser experiment
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P.A. Franken, A.E. Hill, C.W. Peters and G. Weinreich, Phys. Rev. Lett. 7 (1961) 118 



The Nonlinear Susceptibility
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 Conclude for centro-symmetric media:      ... EEEEEEP 

The           are tensors even for lowest order n
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Conclude for centro symmetric media
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Polarization not directed along electric field vector

In media with inversion symmetry:
Note that in principle there exist
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Hence:

Note that in principle there exist
also nonlinear magnetic susceptibilities

Hence
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Nonlinear Optics; graphically

Nonlinear response evaluated 

Linear response:

 EP
 1     EEEP

 21  

Nonlinear response:

Nonl near response evaluated 
in terms of Fourier series

DC

AC
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Lorentz model of linear optics: classical oscillator
Intermezzo

Lorentz Equation
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Write electric field and position vector:
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Near resonance 0 

Equation of motion for a damped 
electronic oscillator in one dimension 
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Lorentz model of linear optics: classical oscillator
Intermezzo

    NerP 

Classical polarization of the medium Result: 
Resonance features of driven electron

      "' i

and the complex susceptibility

yields expressions for the susceptibility

 

Real part, 
connected to the index of refraction
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Imaginary part  
Dispersion and absorption
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Imaginary part, 
connected to the absorption coefficient

Note also the Kramers-Kronig relation
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Lorentz model of nonlinear optics: classical oscillator

Motion of electron with anharmonic term: Calculate r and insert in (**); use

Intermezzo
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Motion of electron with anharmonic term: Calculate r1 and insert in (**); use
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Try a solution in power series
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Write polarization;
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Collect terms in same order of E

First order (*)
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Linear and nonlinear sucseptibilities:
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Insert in (*)      mnmn i   20

Verify:                mnmnmn eN
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Maxwell’s equations for nonlinear optics

Starting point:

B


D


Use the equation for E


    

This equation for SI units
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Induced polarization:



Use the vector relation:
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Often used esu units

in statvolt/cm
NLPEP
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Insert in Maxwells equation
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And (no charges in medium) 0 E
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Maxwells wave equation in
nonlinear optics
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Coupled Wave Equations

Input waves, plane waves, at frequencies

1 2 NLPE
t
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Use Maxwell’s equation

          tiEtiEtE 2211 expexpRe  


Polarization at the sum-frequency:
 P

ttt 22 

- take one component of linear polarization
- propagate plane wave along z-axis

      
         tiEE

P

kjijk

i
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and at the difference-frequency:
 

     ziktizEtzE 1111 exp,  

     ziktizEtzE 2222 exp,  

Producing a non-linear polarization at sum.
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A new field is created at 213  Notation:    2
*

2  kk EE 

 21  ijk and  21  ijk

 t i l ti  f th  di

A new field is created at 213  

     ziktizEtzE 3333 exp,  

All this is subsituted into Maxwell’s equation
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are material properties of the medium q
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Coupled Wave Equations - 2
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Again
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Substitute left side:
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For plane waves in a medium;
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So left side of wave equation;

   tzEitzEdik2 

Slowly varying amplitude approximation

2

   tzEitzE
dz
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Right side of wave equation
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V n f mp u f n f
a wavelength is small           zkkitizEzdE

dt
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2

21 exp  



Coupled Wave Equations - 3

Equate left and right side and use:

33 ck 213  

Three differential equations
describe the couplings of the fields

Note that we used cancellation of

  

d
dz

E3(z)  

2


3

E3(z) 
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dE1(z)E2 (z)exp i k1  k2  k3 z 

Then: the frequency terms via: 

But this does not hold for the
spatial phase factors  because:

213  

This is a coupled-wave equation.
Also reverse processes occur:

Leading to other coupled equations 

123  
 
 i 
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spatial phase factors, because:

Hence:

  

d
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E1(z)  

2


1

E1(z)
i1

2

1

dE3(z)E2 (z) * exp i k3  k2  k1 z 

g p q

There is a phase-mismatch because
of dispersion in the medium
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d
dz

E2 (z)*  
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E2 (z)* 
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2

2

dE1(z)E3 (z) * exp i k1  k2  k3 z 
of dispersion in the medium.

Define the wave vector mismatch:

213 kkkk
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This relation pertains to plane waves;
Later we will use focused beams.

213



Second harmonic generation

   zEzE 21 

Use a single input field:

Then:     edELE
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Result of integration:

Assume now:
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Output of second harmonic is:

   
- There is a nonlinearity d (only for certain symmetry)
- No absorption in the medium, so =0
- Only little production of wave 3, so no back-conversion
- Wave vector mismatch is

     

  2

2

242
2

2

22

2
sin

 







 



kL

kL

LEd

LELE





Wave vector mismatch is

The coupled wave equation can be integrated:
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Power at second harmonic:

Conditions
1) Integration for 0 to L (length of medium)
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Second harmonic power; conditions
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Conversion efficiency:
4) Efficiency is optimal if 
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This is the “phase-matching condition”
cannot be met, because:

    kk 22 
1) Second harmonic produced is proportional to

   22  PP 

nonlinear power production

Use:
c
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2) Efficiency is proportional to d2 or
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c
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c
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    nn 2

And dispersion in the medium:

3) Efficiency is proportional to L2

and a sinc function





 i2 kLL

So always 0k

Physics: two waves with

    ziktiEtzE 
   exp,
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2
csin2LSHG    ziktiEtzE  exp,

    ziktiEtzE 
  2

22 2exp, 

will run out of phase



Coherence length and Maker fringes

After a distance the waves will run out of phase

Th  h  li d  i   i  
kl

Experiment:

Then the amplitude is at maximum. 
The wave will die out in: 

lLc 2
P.D. Maker, R.W. Terhune, M. Nisenoff, and C. M. Savage, 
Phys. Rev. Lett. 8, 19 (1962). 
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The coherence length:
Maker fringes
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Typical valuesyp
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m 1
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mLc 25 Only effective length of Lc can be used
(Note: non-sinusoidal behavior due to 
“non-critical phase matching”)



Solution to problem: anisotropic media
Intermezzo

Induced polarization in a medium:

EP


0

S tibilit  i  t  f k 2  i  th

Maxwell’s equations (non-magnetic media)

t
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Susceptibility is tensor of rank 2, causing the
P and E vectors to have different directions
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Derivatives:
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Elements of tensor depend on coordinate frame;

c t
For the plane waves:

HEk


0 DHk




  EEPED ijij


  100

With permitivity tensor ij


Monochromatic plane wave with perpendicular:

Two vectors orthogonal to k

Monochromatic plane wave with perpendicular:

]exp[ rkitiE 


]exp[ rkitiH 


Hk


 Dk
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Wavefront vector
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Group and Phase velocity
Intermezzo

Poynting vector: HES


Poynting vector: HES 

Is not along k-vector

H and D perpendicular to wave vector

Group Velocity is not equal to Phase Velocity
- in magnitude
- in directionp p

Verify:

HE



Further

ED




If  is a scalar then D and E parallel,
but this is not the case in general
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Fresnel equations
Intermezzo
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Fresnel’s equationVerify:

  EssEnD
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Choose coordinate frame (x,y,z) along
principal dielectric axes

  n
 x n y n z

Equation is quadratic in n and will have 
two solutions n’ and n”
Two waves D’(n’) and D”(n”) obey the equation
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Two waves D (n ) and D (n ) obey the equation
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Hence:

  nn  

Summation  is over x,y,z

0"' DD
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Form the scalar product 0Ds


Anisotropic crystal can transmit two waves with
perpendicular parallel polarizations (and any
linear combination of these two)



Refraction at boundary of anisotropic crystal

Incident beam is always decomposed into two
eigenmodes of the anisotropic crystal

 '' nD


 "" nD


 '' nD  "" nD

These modes are orthogonal to each other.
Each of the two modes undergoes refraction

ith its ind x ’  ”with its index n or n

Hence:

221100 sinsinsin  kkk 

This is:

Double refractionDouble refract on

Birefringence
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The index ellipsoid
Intermezzo

Energy stored in an electric field in a medium:

 DE 
2
1

eU

Uni-axial crystal:
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2
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With: Di = iEi
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2
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2
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n
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n
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Index becomes:

zyx

This is a surface (ellipsoid) of constant energy

Define a normalized polarization vector:
Poynting vector

eUDr 2
 

222

Index ellipsoid:

Poynting vector
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2

2

2

2

2


zyx n
z

n
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n
x

Three-dimensional body to find two indices
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of refraction for the two waves D



Birefringent media

For an arbitrary angle:

   coseny     sinenz 0nx 
wave vector

Poynting
Projection of the ellipsoid on x=0

12

2

2
0

2


en
z

n
y

Poynting
vector

 ll d l  d  

Insert:
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2

2

2

2
sincos1

eoe nnn





Two allowed polarization directions 
-one polarized along the x-axis; 
polarization vector perpendicular to the optic axis 
ordinary wave; it transmits with index no. 
-one polarized in the x-y plane but perpendicular to s; 

So index depends on propagation  
of wave vector ()

B f one polarized in the x y plane but perpendicular to s; 
polarization vector in the plane with 
the optic axis is called the extraordinary wave.

Birefringence 0nne 

0nne 

positive

negative
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Phase matching in Birefringent media

There exists an ordinary wave with

And an extra-ordinary wave with
0n

Phase-matching, or k=0 can be reached now;
required is

 2nn 
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Both undergo dispersion

In case of (for KDP) 0nne 

    ome nn 2

Both undergo dispersion

KDP
nn  22

2

Equation to find the phase-matching angle:
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Solve for sin
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Phase matching in Birefringent media

Graphical: index ellipsoid including dispersion
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TYPE I phase matching
Eo

 + Eo
  Ee

 negative birefringenceo o e g g
Ee

 + Ee
  Eo

 positive birefringence

TYPE II phase matching
Eo

 + Ee
  Ee

 negative birefringence
E  + E   E  positive birefringenceEo + Ee  Eo positive birefringence

Type I  polarization of second harmonic
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yp p
is perpendicular to fundamental

Type II  can be understood as sumfrequency mixing



Phase matching and the “opening angle”

   02 2   
oe nnk

Consider Type I phase-matching and 
a negatively birefringent crystal.
Phase matching 

Spread in k-values relates to spread in 




L
k 2 with m 2sin

  oec
This works for a certain angle m.
Near this angle a Taylor series
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with:

 kd

    oe nn 2 Opening angle:
1) Interpret as angle – 0.1o – of collimated beam
2) As a divergence (convergence) of a laser beam
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 2) As a divergence (convergence) of a laser beam

3) As a wavelength spread






k
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phase matching by angle tuning

For the example of LiIO3

Dispersion:

Calculate phase matching angle

Dispersion:

Use dispersion and phase-matching
relation:

Practical issue of limitation:

   
    2222
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2sin 
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nn LiIO3 starts absorbing at 295 nm
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Non-critical phase matching and temperature tuning

Opening angle for wave vectors: Advantages of 90o phase matching




L
k 2

m 2sin

Best if o
m 90

1) Poynting vector coincides with phase vector
so no “walk-off” 

2) The first order derivative in Taylor expansionBest if m

Calculation of Type I for temperatures      meo
eo

e nn
nn

n
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kd 



2sin22

3
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2




00

 2k

Hence non-critical phase matching:

3)  In many cases d is larger at m=90o
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Temperature tuning



Quasi phase matching by periodic poling

Fundamental and harmonic run out of phase
in conversion processes.
 Coherence length is limited Periodic poling

Manufacturing of segments by external fields
During/after growth

Stick segments of material together with
opposite optical axes- crystal modulation.
Change of sign of polarization in each L
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Change of sign of polarization in each Lc
 Coherence “runs back”



Quasi phase matching: analysis

Coupled wave equation, with

   kidEd '

cnEi 2
2
1 / Loss factor:

m
2

   zkizdE
dz

'exp2 

Integrate for second harmonic

     dkidLE
L

'exp      dzzkizdLE 'exp
0

2  

d(z) consists of domains with alternating signs

    12 'exp'exp 


  kk
N

k
eff zkizkig

di
E     1

1
2 expexp

' 





 kk
k

k zkizkig
k

E

 kk
ki ze 10,

'0 Sign changes (should) occur at:

'0k wave vector mismatch at design wavelength

ck mklz 0,For mth order QPM:

L
m

diE effideal 
2

,2 
A: perfect phase matching
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  LdLE eff2 for perfect phase matching

p p g
C: phase mismatch for non-poling
B1: poling at Lc
B3: poling after 3 Lc



Pump depletion in SHG

In case of high conversion also revers

Intermezzo

In case of high conversion also revers
processes play a role:

321   213  

123  

Then:

131 ' AAA
dz
d  2

13 2
1' AA

dz
d 

Define amplitudes and assume no absorption

i
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i
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dz 2dz

Calculate:

    0''42'2 3311
2

3
2
1  A

dz
dAA

dz
dAzAA

dz
d

Then coupled wave equations turn to
Coupled amplitude equations

kzieAAiAd  231 

dzdzdz

So in crystal:     0constant'2 2
1

2
3

2
1 AzAA 

Consider:eAAiA
dz 231 

kzieAAiA
dz
d  312 

kziAAiAd 

2

0

02

0

0
2
1

2
1

iiiii AEnI 






 iii NI 

kzieAAiA
dz

 213 

Assume second harmonic generation k=0; 
no field with A2; 
field A1 is degenerate 2

121
1 AAA 

Hence: #photons(1) + 2#photons(3)=constant

Energy and photon numbers are conserved
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field A1 is degenerate 121 2
AAA

Rewrite: 33' iAA 



Pump depletion in SHG - 2

     0'201' 22 AAAd

Solve amplitude equation

  zA 01    2
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2
3 0

2
1' AzA 

For:
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2
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Solution:
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Conversion efficiency
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Crystals and properties Lasers

High power fixed wavelength
LasersL

Nd-YAG 1064 nm
2nd 532 nm
3rd 355 nmm
4th 266 nm
5th 212 nm

Excimer lasers
KrF 248 nmKrF 248 nm
XeCl 308 nm
ArF 193 nm

Dye Lasersy
Tunable 400-750 nm

Titanium:Sapphire Lasers
Tunable 760-900 nm
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A tracking device for angle tuning based on the opening angle

This curve may be interpreted  as SHG 
as a function of angle

Electronic scheme
Diodes in differential measurement

experiment

rotation
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NLO crystal
Filter



Optical Parametric Oscillation and Amplification
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Optical Parametric Amplification

Consider a NLO-process

Where a short-wavelength photon (pump) is
213  

*
2

1
2
1 igA

dz
dA

 1

*
2

2
1 igA

dz
dA



Coupled amplitudes:

g p (p p)
converted into a photon at 1 (signal) and a
photon at 2 (idler).

Start again from coupled wave equations:
no absorption

2dz 2dz

Boundary conditions: A2(0)=0 and A1(0)=small

    



 cosh011

gzAzA- no absorption
- phase-matched k=0
- k defined
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0

0
2
1

nnn
d 


 

    



 2

cosh011 AzA

    







2
sinh01

*
2

gzAzA

Approximation for gz>0

kzieAAi
dz
dA  *

23
1

2
1 

This leads to coupled amplitudes

*

Approximation for gz>0

    gzezAzA  2
2

2
1

Both fields grow with gain factor: g
Thi  t i  ikzieAAi

dz
dA  *

31

*
2

2
1 

Assume no depletion of the pump:
   0AA

This parametric gain.

Verify that:
dz

AdA
dz

AdA
dz

AdA *
22

*
11

*
33 

and


















 213 PPP
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   033 AzA 

 03Ag Define:




























2

2

2

1

3

3


Manley-Rowe equations



Parametric oscillation

Principle: amplification starts from noise, as in laser

Assume again parametric gain with k=0
Steady state condition;

dz
dA

dz
dA 21 

Nontrivial solution at threshold if:

21
2 g

Retain losses (absorption or mirror losses)

0
2
1

2
1 *

211  igAA

11

Above threshold if

G i   l

21g

21
2 g
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0
2
1

2
1 *

221  AigA 
Gain > losses



Tuning of an OPO

Parameter is the phase-matching condition:

0k


213 kkk




For fixed pump this gives

111   222  

For co-linear beams this equals:

221133  nnn 

And energy conservation

Energy conservation; 12  

Index n3 changes if it is extra-ordinary

n angle dependence
And energy conservation

213  

Phase-matching again in birefringent crystals
e g  Type I


 






m

nn 3
3

1
1

1 




nn dispersion

e.g., Type I
  221133  nnn m

e 

At each specific angle m the OPO will produce
a combination of two frequencies 1 and 2

1 1
 

2
2

2
2

2


 






nn dispersion

N  h h  d
q 1 2

Rotation of angle near m yields
  mm

111 nnn 

New phase-matching condition:

 
     22221111

333







nnnn
nn
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111 nnn 

222 nnn 

333 nnn 

Use: 12   and solve:

21

221133
1 nn

nnn









Tuning of an OPO -2

Then:

1
2

2
21

1

1
1

3
3

nnn























     


33
2

3
23 2sin1  nnn

This results in the angle tuning fucntion:

21
1 nn 


Solve for: 1

    
  


















2

2
2

1

1
121

333
1

2sin
2












nnnn

nnn moeo

  




















2

2
2

1

1
121

3
3

1













nnnn

n

  21 

Use the result for the calculation of the
opening angle obtained previously (SHG)

     moeo nnnn

m


 

2sin
2
1

3
2

3
233  




Lecture Notes Non Linear Optics; W. UbachsW. Ubachs - Advanced Experimental Methods; 2013 Part A



SNLO – Public Domain Software for non-linear optics

http://www.as-photonics.com/SNLO

 

SNLO.lnk
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Practical problemsp

1) The EF1 +  v=0 state in the H molecule can be excited via two photon excitation1) The EF1g
+, v=0 state in the H2 molecule can be excited via two-photon excitation.

For this pulsed laser radiation at 202 nm is required.
Devise schemes that make this possible using pulsed dye lasers in the visible domain.
Devise a scheme based on a tunable titanium-sapphire laser delivering pulses in the
range 780-850 nm.g

2) The EF1g
+, v=6 state in the H2 molecule can be excited in two-photon at 193 nm.

Devise a scheme to produce this radiation by taking one of colors from the fixed
Nd-YAG laser and its harmonics.
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