Reduced mass in the Schrodinger equation

The Hamiltonian of the two-particle system in real space with coordinates &, ), £ with index 1
for the proton (mass M) and index 2 for the electron (mass m) can be written as:
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with p the a between the two particles. Hence the Schrodinger equation reads:
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where the Laplacian with index 1 operates in the subspace of the electron:
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and the wave function depends on the six coordinates of the two particles.
The coordinates of the centre-of-mass are:
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and:
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Insertion of the new parametersin the differential equation yields:
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and it follows:
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With the reduced mass;
_ mM
H m+ M
This equation can be separated:
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Giving two equations, one for the centre-of-mass motion:
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and for the relative el ectron motion:
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Thus the atomic units can be adopted to take into account the motion of the nucleus. p can be
taken as the new atomic unit of mass.



