Schrodinger equation in parabolic coordinates

The Schrédinger equation for the relative electron motion is written as:
~Zav(xy.2)-£ = Ey(x, Y, 2)

Where the system of atomic units is adopted. The solution for this equation is:

with energy given in Hartree. Note that the solutions should be scaled with u/me. Usualy it is
solved in spherical coordinates because the problem can be separated in spherical polar coordi-
nates. A problem of an 1/r potential can aso be sperated in parabolic coordinates, defined as.
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This givesin matrix form:
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It can be shown that the Laplace operator is equal to:
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Then the Schrédinger equation becomes:
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Define now a solution of this equation as:
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Insertion and deviding by 4y e yields
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and separate the m? term as well as the Coulomb term in two parts with
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These arein fact two identical differential equations, one for y, (&) and onefor y,(n):
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The behaviour of the wave function v, in the limiting casesis:
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A solution istaken of the form:
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with = €§ and ¢ = J/—2E thisleadsto an equation:
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Again aLaguerre-type equation with solutions:

with a quantisation condition, for each equation:
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Also n; must be anon-negative integer if € isto berea and & remains finite. So:
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This gives the energy quantization:

in hartree units. The normalized eiegenfunctions are:
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These eigenfunctions are symmetrical with respect to the plane z=0.
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For the density is on the positive side of z, for at the negative side.



