
Where the system of atomic units is adopted. The solution for this equation is:

with energy given in Hartree. Note that the solutions should be scaled with /me. Usually it is
solved in spherical coordinates because the problem can be separated in spherical polar coordi-
nates. A problem of an 1/r potential can also be sperated in parabolic coordinates, defined as:

and:

This gives in matrix form:

Then:

and:

It can be shown that the Laplace operator is equal to:
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Define now a solution of this equation as:

with m  0.
Insertion and deviding by 4  yields:

Multiply by  :

and separate the m2 term as well as the Coulomb term in two parts with :

These are in fact two identical differential equations, one for  and one for :

The behaviour of the wave function  in the limiting cases is:

for large

for small

A solution is taken of the form:

with  and  this leads to an equation:

Again a Laguerre-type equation with solutions:

with a quantisation condition, for each equation:
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Also n1 must be a non-negative integer if  is to be real and  remains finite. So:

This gives the energy quantization:

in hartree units. The normalized eiegenfunctions are:

These eigenfunctions are symmetrical with respect to the plane z=0.
For  the density is on the positive side of z, for  at the negative side.
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