
1
R
e
l
f
s
b
i
v
t

i
t
s
g
d
a
t
t
a
g
t

b
W
w
t
w
l

2
T
b
t
G

T. D. Visser and J. T. Foley Vol. 22, No. 11 /November 2005 /J. Opt. Soc. Am. A 2527
On the wavefront spacing of focused, radially
polarized beams
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We analyze the phase behavior of strongly focused, radially polarized electromagnetic fields. It is shown that,
under certain circumstances, the spacing between successive wavefronts can be either greater or smaller than
that of a plane wave of the same frequency. Also, this spacing can be significantly larger than that which is
predicted for a linearly polarized field that is focused by the same system. © 2005 Optical Society of America

OCIS codes: 050.1960, 140.3300, 260.2110, 260.5430.
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. INTRODUCTION
adially polarized beams1,2 have several interesting prop-
rties. For example, they exhibit an on-axis phase singu-
arity. Also, when such a beam is focused, the field in the
ocal region has a strong longitudinal component with a
pot size that is smaller than that of a linearly polarized
eam.3–5 Possible applications of focused radially polar-
zed beams are the probing of the dipole moment of indi-
idual molecules,6 high-resolution microscopy,7 and the
rapping of metallic particles.8

It has long since been thought that the wavefront spac-
ng of focused fields is larger than that of a plane wave of
he same frequency. Linfoot and Wolf found within the
calar approximation that the wavefronts in the focal re-
ion are separated by a distance � / �1−a2 /4f2�, where �
enotes the wavelength, a denotes the aperture radius,
nd f denotes the focal length of the lens.9 It follows from
his expression that the wavefronts are equidistant and
hat their spacing increases with increasing numerical
perture (NA). The aim of the present paper is to investi-
ate the wavefront spacing for radially polarized beams
hat are focused by a high-NA system.

The wavefront spacing of focused, linearly polarized
eams has recently been investigated by Foley and
olf.10 They showed that, in systems of high-NA, the
avefront spacing near the focus is significantly larger

han the wavelength of the incident light and that the
avefront spacing changes drastically within a few wave-

engths of the focus and can be less than a wavelength.

. RADIALLY POLARIZED BEAMS
here are several ways to generate a radially polarized
eam.5,11 Perhaps the simplest approach is the superposi-
ion of two, mutually orthogonally polarized, Hermite–
aussian beams.6,12 The time-independent part of the
1084-7529/05/112527-5/$15.00 © 2
lectric field distribution of the TEM10 and TEM01 modes
raveling in the positive z direction is given by the
xpressions13

Ẽ10�x,y,z� =
23/2Aw0

w2�z�
xx̂ exp�i�kz − 2 tan−1�z/z0���

� exp�ik�x2 + y2�/2R�z��exp�− �x2 + y2�/w2�z��,

�1�

Ẽ01�x,y,z� =
23/2Aw0

w2�z�
yŷ exp�i�kz − 2 tan−1�z/z0���

� exp�ik�x2 + y2�/2R�z��exp�− �x2 + y2�/w2�z��.

�2�

ere k=� /c is the wavenumber, with � and c as, respec-
ively, the angular frequency and the speed of light in
acuum and with x̂ and ŷ as unit vectors in the x and y
irections. Furthermore, A is a constant, and w0 is the
pot size of the beam in the waist plane z=0. The radius
f curvature R�z�, the spot size w�z�, and the Rayleigh
ange z0 are given by the formulas

R�z� = z + z0
2/z, �3�

w�z� = w0�1 + z2/z0
2�1/2, �4�

z0 = �w0
2/�. �5�

The total electric field of the beam, E�x ,y ,z , t�, is given
y the equation

E�x,y,z,t� = �Ẽ10�x,y,z� + Ẽ01�x,y,z��exp�− i�t�, �6�

here t denotes the time. On substituting from Eqs. (1)
nd (2) into Eq. (6), we obtain the expression
005 Optical Society of America
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E��,z,t� =
23/2Aw0

w2�z�
�̂l0���exp�i�kz − 2 tan−1�z/z0���

�exp�− i�t�, �7�

ith �= �x2+y2�1/2 and �̂= �x ,y ,0� /� as a unit vector in the
adial direction. The radial amplitude function l0��� is
iven by the formula

l0��� = � exp�ik�2/2R�z��exp�− �2/w2�z��. �8�

ote that the radially polarized beam described by Eq. (7)
s completely characterized by the three parameters A, �,
nd w0.

. FOCUSING BY SYSTEMS WITH A HIGH
UMERICAL APERTURE
hen a beam of light is focused by a high-angular-

perture system, classical scalar theory no longer applies,
nd the vector character of the field has to be taken into
ccount.14 Wolf and co-workers analyzed the field in the
ocal region of such a system for the case of a linearly po-
arized beam.15–19 The focusing of radially polarized
eams has been analyzed by Youngworth and Brown.11,20

e follow their analysis, but we adopt the sign convention
f Richards and Wolf.17

Consider an aplanatic focusing system L, as illustrated
n Fig. 1. The system has a focal length f and a semiaper-
ure angle �, and hence its NA=sin �. The geometrical fo-
us is indicated by O and is chosen to be the origin of the
oordinate system. A monochromatic beam is incident on
he system. The electric and magnetic fields at time t at
osition r are given by the expressions

E�r,t� = Re�e�r�exp�− i�t��, �9�

H�r,t� = Re�h�r�exp�− i�t��, �10�

espectively, where Re denotes the real part. It was shown
y Richards and Wolf17 that the time-independent parts,
and h, of the electric and magnetic fields in the focal re-

ion can be expressed as a superposition of plane waves,
.e.,

ig. 1. Illustration of a high-NA focusing system. The incident
eam propagates along the z axis.
e�r� = −
ik

2�
��

�

a�sx,sy�

sz
exp�ik�sxx + syy + szz��dsxdsy,

�11�

h�r� = −
ik

2�
��

�

b�sx,sy�

sz
exp�ik�sxx + syy + szz��dsxdsy.

�12�

he unit vector s= �sx ,sy ,sz� indicates the direction of
ropagation of each wave. The set of all vectors s spans
he geometrical light cone �. The strength factors a and b
an be determined by a ray-tracing procedure.

It is advantageous to express the vector s in spherical
olar coordinates, i.e.,

s = �sin � cos 	,sin � sin 	,cos ��. �13�

et us also introduce two unit vectors g0 and g1 in the
eridional plane of the ray, such that g0 is perpendicular

o the ray in the object space and g1 is perpendicular to
he ray in the image space:

g0 = �− cos 	,− sin 	,0�, �14�

g1 = �− cos � cos 	,− cos � sin 	, sin ��. �15�

n the object space the inward radial direction is along g0,
nd the azimuthal direction is along g0�k, where k is a
nit vector along the z axis, the direction of propagation
f the incident beam. In general, the electric field in the
bject space, e�0�, can be written as the sum of a radial
art, er

�0�, and an azimuthal part, e	
�0�, namely,

e�0� = l0����er
�0�g0 + e	

�0��g0 � k��, �16�

ith l0��� given by Eq. (8). The refractive action of the
ens rotates the radial field component from a direction
pecified by the vector g0 into a direction specified by the
ector g1. The azimuthal field component remains un-
hanged, with the azimuthal direction in the image space
eing along g1�s. The strength factor a is related to the
lectric field in the object space through the expression

a = fl���cos1/2 � �er
�0�g1 + e	

�0��g1 � s��. �17�

or cylindrical vector beams focused by a system that sat-
sfies the sine condition,17,21 the angular amplitude func-
ion is given by the formula l���= l �sin−1�� / f��, i.e.,

ig. 2. Example of the angular amplitude function l��� for two
ifferent values of the beam-spot size w0. For the upper curve
0=0.02 m, for the lower curve w0=0.01 m. In both cases f
0.01 m.
0
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l��� = f sin � exp�ikf 2 sin2 �/2R�z��exp�− f 2 sin2 �/w2�z��.

�18�

f we assume the entrance plane of the focusing system to
oincide with the waist plane of the beam �z=0�, then the
xpression for the angular amplitude function reduces to

l��� = f sin � exp�− f 2 sin2 �/w0
2�, �z = 0�, �19�

here w0 is the spot size of the beam in the waist plane.
n example of the angular amplitude function is shown in
ig. 2.
For an observation point P in the focal region, with cy-

indrical coordinates ��P ,	P ,zP�, the inner product ap-
earing in Eq. (11) can be seen to be

s · r = �P sin � cos�	P − 	� + zP cos �. �20�

or an incident beam that is radially polarized, the factor

	
�0� in Eq. (16) equals zero. On then substituting from
qs. (15), (17), and (20) into Eq. (11) we obtain for the
lectric field in the focal region the expression

Table 1. Position and Spacings (Both Expressed
Longitudinal Electric Field Component


=2

ero # Position ��� Spacing ��� Positi

1.20 1.20 1.
2.40 1.20 2.
3.39 0.99 4.
4.31 0.92 5.
5.50 1.19 7.

aIn this example NA=0.75, and 
= f /w =2 �column 2�, 
=1 �column 3�, and 


ig. 3. Longitudinal electric field component Ez�0,0,z� along
he z axis. In this example, NA=0.75, and 
= f /w0=2.

ig. 4. Longitudinal electric field component Ez�0,0,z� along
he z axis. In this example, NA=0.75, and 
= f /w0=1.
0

e�P� =
ikf

2�
�

0

��
0

2�

l���sin � cos1/2 �

� exp�ik��P sin � cos�	P − 	� + zP cos ���

� �cos � cos 	,cos � sin 	,− sin ��d�d	, �21�

here we used the fact that dsxdsy /sz=d�=sin � d�d	

nd with er
�0� set equal to unity.

Since the incident electric field has no azimuthal de-
endence and the configuration is invariant with respect
o rotations around the z axis, it follows that the electric
eld in the focal region has no azimuthal component. The
utward radial direction at a point P is specified by the
ector

gP = �cos 	P,sin 	P,0�. �22�

he electric field at P can thus be written as the sum of a
adial component, e��P�, along gP and a longitudinal com-
onent, ez�P�, along k, i.e.,

e�P� = e��P�gP + ez�P�k, �23�

here

ez�P� = −
ikf

2�
�

0

��
0

2�

l���sin2 � cos1/2 �

� exp�ik��P sin � cos�	P − 	� + zP cos ���d�d	,

�24�

e��P� =
ikf

2�
�

0

��
0

2�

l���sin � cos3/2 � cos�	P − 	�

� exp�ik��P sin � cos�	P − 	� + zP cos ���d�d	.

�25�

arrying out the integration over 	 in Eqs. (24) and (25)
ields the formulas

ez�P� = − ikf�
0

�

l���sin2 � cos1/2 �

� exp�ikzP cos ��J0�k�P sin ��d�, �26�

avelengths) of the First Five Axial Zeros of the
the Focal Region of a High-NA Systema


=1 
→0

Spacing ��� Position ��� Spacing ���

1.26 1.28 1.28
1.31 2.62 1.34
1.66 4.21 1.59
1.40 5.65 1.44
1.59 7.21 1.56

lumn 4�.
in W
Ez in

on ���

26
57
23
63
22

→0 �co
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e��P� = − kf�
0

�

l���sin � cos3/2 �

� exp�ikzP cos ��J1�k�P sin ��d�, �27�

here Ji denotes the Bessel function of the first kind of
rder i. It is seen from Eqs. (26) and (27) that, on the z
xis (i.e., �P=0), ez is the only nonzero part of the electric
eld. In Section 4 we analyze the behavior of this longitu-
inal field component.

. ON-AXIS LONGITUDINAL ELECTRIC
IELD
t time t=0 the axial longitudinal electric field compo-
ent Ez is given by the expression

Ez�0,0,z� = kf�
0

�

l���sin2 � cos1/2 � sin�kz cos ��d�,

�28�

=kf 2�
0

�

sin3 � cos1/2 � sin�kz cos ��

� exp�− 
2 sin2 ��d�, �29�

here we used Eqs. (9), (19), and (26). The parameter 

f /w0 denotes the ratio of the focal length of the system

nd the spot size of the beam in the waist plane. In Figs.
and 4 the on-axis longitudinal electric field in the focal

egion of a high-NA system is shown for two selected val-
es of the parameter 
. Notice that the amplitude is
trongly modulated. We define the axial intersections of
he wavefronts as those points where the field Ez�0,0,z�
as the same phase (modulo 2�) as at the geometrical fo-
us O. The wavefront positions and wavefront spacings
orresponding to Figs. 3 and 4 are summarized in Table 1.
t is seen from both examples that the spacings between
he successive wavefronts are highly irregular. Notice
hat when 
=2 the spacing can even be smaller than �.

For the case of a spot size much larger than the focal
ength (i.e., 
→0) we find a similar behavior, as is listed
n the rightmost column of Table 1. [Notice that then in
he waist plane of the beam the amplitude function l0���
�, which is to be distinguished from a uniform illumina-

ion.]
It is instructive to compare our results with those of Fo-

ey and Wolf,10 who analyzed the field distribution of a fo-
used, linearly polarized beam with a uniform amplitude.

ig. 5. Longitudinal electric field component Ez�0,0,z� along
he z axis. In this example NA=0.3, and 
= f /w0=2.
hey found the spacing between wavefronts to vary with
A value and axial position. In their examples the largest

pacing always occurs next to the geometrical focus. On
oving away from the focus, the spacing for high-NA sys-

ems decreases and then rises again. As can be seen from
able 1, this is not the case for radially polarized light. In
articular, the largest wavefront spacing does not always
ccur near the focus. Another remarkable difference is
hat for NA=0.75 the maximum spacing is found to be
.19� for linearly polarized light, much less than the
alue of 1.66� that is predicted for radially polarized
ight.

Our findings for high-NA systems are in stark contrast
ith the predictions of scalar theory, according to which

he distance between successive wavefronts is constant
nd always greater than �.9 It should be noted that the
mplitude modulation and the irregular spacing of the
avefronts is found only for systems with a high-NA
alue. This is illustrated in Fig. 5 from which it can be
een that for NA=0.3 the amplitude modulation is neg-
ible and the wavefronts are equidistant, their separation
istance being 1.030�. This value is in good agreement
ith scalar theory according to which the distance be-

ween successive wavefronts is 1.025�.9

. CONCLUSIONS
e have examined the wavefront spacing of the longitu-

inal electric field of a strongly focused, radially polarized
eam. It was found that the distance beween successive
avefronts is highly irregular and may be either greater
r smaller than that of a plane wave of the same fre-
uency. Also, this distance can be much larger than that
hich occurs for a linearly polarized beam focused by the

ame system. Our results have implications for the design
f focusing systems with a high numerical aperture.
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