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Abstract. We study the problem of light focusing by a high-aperture lens through a planar
interface between two media with different refractive indices. It is demonstrated how, by using
annular illumination, the intensity distribution can be significantly confined. A new scanning
mechanism is proposed to continuously probe the intensity peak through the second medium.
This mechanism may be applied in, for example, lithography and three-dimensional imaging.

1. Introduction

The influence of a plane dielectric interface on a converging spherical wave has been studied
recently by several groups. Török et al [1] use an angular spectrum representation in the
Debye approximation. Wiersma and Visser [2] employ the so-calledm-theory. Dhayalan
and Stamnes [3] also use a plane-wave decomposition, but without the Debye approximation.
Both [1] and [2] take the classic papers by Wolf [4] and Richards and Wolf [5] as a starting
point. Although the analysis in [1] is very different from that in [2], it was found that the
numerical results of both studies are in good agreement [6]. (Note that this comparison was
for high Fresnel number systems, outside the regime of the focal shift phenomenon.) Other
studies dealing with the effect of a dielectric interface are [7–10].

Focusing through a dielectric interface introduces spherical aberration. The aberrated
wavefront may be expanded in terms of, for example, Zernike polynomials [11]. Spherical
aberration may be suppressed by counterbalancing the terms in the expansion. This is the
basis of adaptive optics and phase mask techniques which are both used to compensate
optical path differences. It has, however, been shown by Török et al [12] that interface
focusing introduces higher-order aberration terms which are likely to be difficult to correct
by means of adaptive optics. For the same reason spherical aberration caused by interface
focusing cannot be fully compensated by altering the tubelength of a lens [13] because this
only compensates for lower-order aberration terms.

A third possibility to reduce aberrations is to use annular illumination rather than an
unobscured lens. It is the aim of this paper to explore this option.

Note that a phase mask is optimized for only one focusing depth, whilst adaptive optics
solutions such as an annulus can, at least in principle, be varied in a continuous manner.
As will be explained, this allows one to scan the intensity through the second medium.
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The analysis in this paper is fully vectorial. However, in order to gain physical insight,
a geometrical optics analysis is presented in the appendix.

In the examples we use refractive indices(n) rather than permittivities(ε). The relation
between the two isn2 = εr , with εr = ε/ε0, whereεr is the relative permittivity andε0 is
the permittivity in vacuo.

In this paper we are concerned with the time-averaged electric energy density, hereafter
simply called ‘the intensity’.

2. The effect of an interface on an unobscured focused beam

The geometry of our problem is depicted in figure 1. A lens focuses an incident, linearly
polarized, plane wave through a dielectric interface. The interface is perpendicular to the
direction of propagation(−z). For the calculations in this section the results of [2] are used.

If there is no interface (i.e.n1 = n2), then an increasing semi-aperture angle�1 will
result in a decreasing width of the peak of the axial intensity distribution, as is shown
in figure 2. This situation changes completely when an interface is present. As is seen
in figure 3, the axial distribution for�1 = 45◦ is highly asymmetric and has a jagged
appearance. For asmaller aperture angle, namely�1 = 20◦, the distribution is now much
narrower. However, for�1 = 10◦ it is seen that the peak is wider again. So, it seems that
for a given configuration there exists an optimum value of the semi-aperture angle for which
the axial diffraction pattern is the most localized. This can be understood by realizing that
there are two competing processes at work. An increasing numerical aperture decreases
the axial resolution as in figure 2. At the same time, however, an increasing aperture
angle causes an increasing phase difference between the secondary Huygens sources at the
interface, giving rise to a widening of the axial diffraction pattern [14].

The broadening of the intensity distribution due to an interface (which increases with
increasing focusing depth) has major implications for three-dimensional imaging (see also

Figure 1. Geometry of the system. A linearly polarized plane wave is converted by a lens with
focal lengthf and semi-aperture angle�1 into a converging spherical wave. The medium left
of the interface has permittivityε1, the medium to the right of the interface has permittivity
ε2. Both media are assumed to be non-magnetic(µ = µ0) and non-conducting(σ = 0). The
system is symmetric with respect to rotations around thez-axis.



Annular focusing through a dielectric interface 1239

Figure 2. Intensity distribution along thez-axis (in µm) for two semi-aperture angles when
n1 = n2. The narrow peak is for�1 = 45◦, the broad distribution is for�1 = 20◦. The other
parameters in both cases areλ0 = 632.8 nm,n1 = n2 = 1.51, f = 10−2 m.

Figure 3. Comparison of the intensity distribution along thez-axis (inµm) for three different
semi-aperture angles. The wide symmetric peak is for�1 = 10◦ (broken curve), the narrow
symmetric peak is for�1 = 20◦, and the broad, jagged distribution is for�1 = 45◦. The
other parameters in all cases areλ0 = 632.8 nm, n1 = 1.51, n2 = 1.33, f − d = 300 µm,
f = 10−2 m.

section 6 of [6], [15, 16]). For confocal microscopy, where high numerical aperture oil-
immersion lenses withnoil = 1.51 are commonly used to study biomedical objects with
nwater= 1.33, this dependence of the peak width on�1 indicates that lower aperture angles
can improve the optical sectioning capabilities.
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3. Stationary phase and geometrical optics

In [2] it was derived that for an unobscured lens the axial electric field in the second medium
is given by

Ex(z) = C(z)
∫ �1

0
eik2s−ik1t g(θ1, z) dθ1 (1)

with

C(z) = 1
2f (f − d)2

(
z

f − d − 1

)
exp(ik1f ) (2)

g(θ1, z) =
(

1

s3
− ik2

s2

) (
ηs + ηp cosθ2

)
tanθ1. (3)

The subscriptx in equation (1) indicates that the incident plane wave is linearly polarized
along thex-direction. Also,f − d is the distance between the focus of the lens and the
interface,ki (i = 1, 2) is the wavenumber in mediumi, ηs andηp are Fresnel transmission
coefficients. The angleθ2 follows from θ1 through Snell’s law. The functionss and t are
defined as

t (θ1) = f − d
cosθ1

(4)

s(θ1) =
(
t2+ z2− 2z(f − d))1/2

. (5)

In order to get more insight into the physics of the situation, we now develop a stationary
phase analysis of this integral [8]. The phase of the exponent in equation (1) is stationary
if

d

dθ1
(k2s − k1t) = 0 (6)

which is readily translated into(
k2
t

s
− k1

)
dt

dθ1
= 0. (7)

For f 6= d, one solution is dt/dθ1 = 0. From equation (4) it follows that this is forθ1 = 0.
However, since the amplitude functiong(θ1 = 0) = 0, this stationary endpoint yields a
contribution of order 1/k to the integral and is neglected. The contribution of the non-
stationary endpoint atθ1 = �1 is also of order 1/k, and is neglected too. Another solution
is

k2t = k1s. (8)

Using that ki = nik0, with i = 1, 2 and k0 the wavenumberin vacuo together with
equations (4) and (5) this gives

z2

t2
− 2

z

t
cosθ1+ 1− n

2
2

n2
1

= 0. (9)

Solving this forz/t yields

z

t
= cosθ1±

√
cos2 θ1− 1+

(
n2

n1

)2

(10)

= cosθ1± n2

n1

√
1− sin2 θ2 (11)

= cosθ1± n2

n1
cosθ2. (12)
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Using equation (12) together with equation (4) gives

z = f − d ± n2

n1
(f − d)cosθ2

cosθ1
. (13)

Defining thepositivedepthh below the interface as

h = f − d − z (14)

gives

h = (f − d)n2

n1

cosθ2

cosθ1
. (15)

Equation (15) expresses a relation between the axial positionh and the angleθ1 which
gives the main contribution to the integral of equation (1). This is exactly equation (A3) of
the appendix which was derived using Snell’s law. This is an illustration of the fact that
for k → ∞ (as is implicitly assumed in stationary phase analysis) wave optics reduces to
geometrical optics. It also means that the main contribution to the asymptotic expansion
of equation (1) vanishes outside the so-called geometrical shadow boundaries (see also the
appendix).

We continue the analysis of equation (1) by squaring condition (15) and re-writing it as

sinθs(z) =
[
h2− (f − d)2(n2/n1)

2

h2− (f − d)2
]1/2

(16)

where the subscripts indicates the value ofθ1 for which the phase is stationary at position
z. Equation (16) represents an interior stationary point. Hence, the asymptotic expansion
of equation (1) is given in first order as [8, 17]

Ex(z) ∼
[

2π

|k2s ′′(θs)− k1t ′′(θs)|
]1/2

g(θs, z) C(z)ei(k2s(θs )−k1t (θs )) e±iπ/4. (17)

Figure 4. Comparison of an asymptotic approximation (smooth curve) and the exact expression
(jagged curve) for the axial intensity. In this exampleλ0 = 0.632.8 µm, � = 60◦,
f − d = 50µm, n1 = 1.51, n2 = 1.33.
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Here the upper (lower) sign is taken according as to whetherk2s
′′(θs)− k1t

′′(θs) is greater
(smaller) than zero. Also, using condition (8),

k2s
′′(θs)− k1t

′′(θs) = k2

s

[
1− k

2
1

k2
2

]
t ′2. (18)

So, for the intensity we find

I (z) = 1
4ε2|E(z)|2 (19)

∼ ε2πs(θs)

2k2|1− (k1/k2)2|t ′(θs)2 |g(z) C(z)|
2. (20)

A comparison of the exact expression equation (1) and the asymptotic approximation
equation (20) is depicted in figure 4. Note that the first-order approximation shows no
interference pattern. Also, in contrast to the exact solution, it is discontinuous at the left-
hand geometrical shadow boundary. Finally, the asymptotic expression slightly displaces
the maximum.

4. Annular illumination: localizing the intensity

In figure 4 it is seen that the intensity distribution can have many secondary maxima. Just
as by decreasing the semi-aperture angle (figure 3), we can reduce the number of maxima
by using an annular aperture. This has the additional advantage that the light can be ‘aimed’
to have a peak around any axial positionz, provided thatz lies between the geometrical
shadow boundaries of the unobscured lens.

For a given configuration (i.e. the set of parameters�1, f , d, λ0, n1 and n2) one
can find for any positionz between the shadow boundaries the value ofθs(z) through
equation (16). From the considerations of the previous section, it follows that by restricting
the illumination to an interval aroundθs(z) most of the intensity will be found in the vicinity

Figure 5. Intensity distributions along thez-axis (in µm) for an unobscured lens.λ0 =
0.6328µm, �1 = 50◦, f = 10−2 m, f − d = 200µm, n1 = 1.00, n2 = 2.00. Note that the
peak intensity here corresponds to 2.9% of the peak intensity of the casen1 = n2 = 1.00.
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of z. (In practice, the annulus can be placed at different positions: at the back focal plane
[18], at the exit pupil or at the dielectric interface.) To illustrate this, consider the axial
diffraction pattern for an unobscured lens shown in figure 5. The intensity distribution
is relatively spread out, and exhibits many secondary peaks. It was found that the peak
intensity in this case is 2.9% of that which occurs forn1 = n2 = 1.00 (keeping all other
parameters fixed).

Suppose now that we want to concentrate the intensity around the secondary peak at
z = −302.3 µm. For this particular configurationθs(z = −302.3 µm) = 41.2◦, according
to equation (16). By using an annulus around this value, the light can indeed be localized
around the prescribedz value. The dependence ofI (z) on the annular interval limitsθlow

and θhigh is depicted in figure 6. The optimized interval (i.e. giving the highest intensity)
is determined numerically. The intensity distribution for this annulus is shown in figure 7
(left-hand curve). A sharply enhanced(51%) single peak centred aroundz = −302.3 µm is
indeed obtained. Also, the number of secondary maxima and their heights are both strongly
reduced. If we change the annulus, the intensity peak can be shifted to, for example,
z = −246µm (right-hand curve). We conclude that by adjusting the annulus we can ‘aim’
the light to be focused anywhere between the geometrical shadow boundaries. Note that
one can also localize the intensity around the peak of the distribution for the unobscured
lens (i.e. atz = −215µm in figure 5).
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Figure 6. The intensityI (z = −302.3 µm) as a function of the angular interval limitsθlow and
θhigh. All parameters are as in figure 5.
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Figure 7. Intensity distributions along thez-axis (inµm) for the optimized annuli [37.8◦, 44.2◦]
(left-hand curve) and [23.6◦, 34.3◦] (right-hand curve). The peak intensity is increased by 51%
and 48%, respectively. All parameters are as in figure 5.

Figure 8. The stationary phaseθstat (broken curve), and the two interval limitsθlow (lower
curve) andθhigh (upper curve) which give an optimal intensity as a function of the axial position
z (in µm). All parameters are as in figure 5.

The optimized values ofθlow andθhigh as a function ofz are depicted in figure 8. The
optimal angular interval always includes the stationary phase angleθs(z). Note thatθlow

suddenly becomes nonzero around the position of the original maximum. This is related to
the fact that the paraxial rays, which together make up the maximum peak for the case of
an unobscured lens, gradually get out of phase with the rays aroundθstat(z) as z becomes
more negative. Therefore, from a certainz-value onwards, these paraxial rays are no longer
part of the optimized annulus. Also, it is seen that from certainz-values onθhigh = 50◦.
This is due to the fact thatθhigh cannot exceed�1.
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Figure 9. The maximum intensity that can be obtained by optimizing the annulus, as a function
of the axial positionz (in µm). The normalization, as well as all other parameters, is as in
figure 5.

The maximum intensity, as produced by optimizing the angular interval, is shown in
figure 9. Note that, although this is a smooth distribution, the general form of the diffraction
pattern in figure 5 can still be recognized. For certain applications it may be desirable to
have a constant peak intensity while scanning through the second medium. The curve in
figure 9 indicates how the incident power should be adjusted as a function ofz to obtain
this.

5. Conclusions

We have analysed the effect of a plane dielectric interface on a converging spherical wave.
A relation between the requirement of stationary phase and the geometrical description of
the focusing process was established.

It was found that by using a well chosen annulus the axial intensity distribution can be
significantly confined, and the secondary maxima strongly suppressed. Moreover, the local
intensity can be increased in this manner.

It was shown how by continuously varying the annulus and the input power, a constant
intensity peak can be scanned axially (within certain limits) through the second medium.
This new scanning method has possible applications in, for example, three-dimensional
imaging and lithography.

Appendix. Geometrical optics analysis

In this appendix we analyse our problem from a geometrical optics point of view. We
discuss the axial focal displacement associated with the aberration caused by the interface,
and the so-called geometrical shadow boundaries. The latter are relevant for the stationary
phase analysis of section 3.
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Figure A1. Ray tracing for focusing through an interface. A lens with focal lengthf and
semi-aperture angle�1 is placed at a distanced in front of an interface between two media.
A typical ray which is incident under an angleθ1 passes the interface at a distanceρ from the
z-axis. After refraction, it crosses the axis at a distanceh from the interface.

Let ρ denote the distance from thez-axis at which a ray incident under an angleθ1

crosses the interface (see figure A1). We then have

tanθ1 = ρ

f − d . (A1)

If the refracted ray makes an angleθ2 = arcsin(n1 sinθ1/n2) with the z-axis, then

tanθ2 = ρ

h(θ1)
. (A2)

Hereh(θ1) is the distance between the interface and the point where the refracted ray crosses
the z-axis. Eliminatingρ gives

h(θ1) = (f − d) tanθ1

tanθ2
= (f − d)n2

n1

cosθ2

cosθ1
0< θ1 6 �1. (A3)

(Note that this expression does not hold for the ray incident atθ1 = 0.) From figure A1 it
is clear that the refracted ray crosses thez-axis atz = f − d − h(θ1). In other words, the
interface introduces an axial focal displacement1f (θ1) of

1f (θ1) = (f − d)
(

1− n2 cosθ2

n1 cosθ1

)
. (A4)

For n1 = n2 there is no focal displacement. In that case equation (A4) reduces to1f = 0,
as expected.

In contrast to diffraction theory, geometrical optics predicts that the intensity distribution
is confined to a finite part of thez-axis in the second medium. Equation (A3) defines two
‘shadow boundaries’ on thez-axis between which the intensity is concentrated. Although,
as remarked above, this equation does not hold forθ1 = 0, this ray corresponds to an
infinitely small area of the incident beam, its contribution to the intensity distribution is
negligible. Therefore, these shadow boundaries, a marginal onezm and a paraxial onezp,
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are at

zm = f − d − h(�1), (A5)

zp = f − d − lim
θ1↓0

h(θ1) = (f − d)
(

1− n2

n1

)
. (A6)

Note that forn2 6= n1 both zp and zm are finite. The above derivation is only valid if no
total internal reflection takes place and we may hence use Snell’s law.

Every pointz on the optical axis within the shadow boundaries corresponds to a single
value ofθ1. In order to determine this inverse relation, equation (A3) is squared to obtain

h2
(
1− sin2 θ1

) = (f − d)2(n2

n1

)2
[

1−
(
n1

n2

)2

sin2 θ1

]
(A7)

or

sin2 θ1(h) =
[
(f − d)2

(
n2

n1

)2

− h2

]/[
(f − d)2− h2

]
. (A8)

Using thath = f − d − z (see figure A1) we finally find that

θ1 = arcsin

( (f − d)2 [(n2/n1)
2− 1

]
2z(f − d)− z2

+ 1

)1/2
 (n1 6= n2). (A9)

As is shown in section 3, the main contribution to the intensity at axial positionz comes
precisely from the ray which is incident underθs = θ1 with θ1 given by equation (A9).
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[12] Török P, Varga P and Ńemeth G 1995 Analytical solution of the diffraction integrals and interpretation of

wave-front distortion when light is focused through a planar interface between materials of mismatched
refractive indicesJ. Opt. Soc. Am.A 12 2660–72

[13] Sheppard C J R and Gu M1991 Aberration compensation in confocal microscopyAppl. Opt.30 3563–8
[14] Török P, Varga P, Konkol A and Booker G R 1996 Electromagnetic diffraction of light focused through a

planar interface between materials of mismatched refractive indices: structure of the electromagnetic field
II J. Opt. Soc. Am.A 13 2232–8



1248 S H Wiersma et al

[15] Visser T D and Oud J L 1994 Volume measurements in three dimensional microscopyScanning16 198–200
[16] Török P, Hewlett S J and Varga P 1997 The role of specimen-induced spherical aberration in confocal

microscopyJ. Microsc.II 188 158–72
[17] Mandel L and Wolf E 1995Optical Coherence and Quantum Optics(Cambridge: Cambridge University

Press) section 3.3
[18] Gan X, Sheppard C J R and Gu M1997 Effects of Fresnel diffraction on confocal imaging with an annular

lensBioimaging 5 153–8


