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The usual quantum mechanical explanation of exponential decay is not exact. The 

approximations made lead to an average lifetime which can also be obtained directly using 

Fermi’s Golden Rule. The question whether or not quantum mechanical decay is always 

exponential was recently raised again in connection with the possible decay of the proton. In 

this paper we derive a new criterion for the length of the non-exponential decay era. A 

formalism for general quantum systems is used to derive an exact expression for the survival 

probability in terms of a spectral density function. This expression is used for numerical 

studies. We find that in general, for short times, the decay is not exponential. In some cases a 

quadratic law is followed instead. 

1. Introduction 

The decay of unstable quantum systems has been studied almost from the 

beginning of the formulation of quantum mechanics. Dirac was the first to give 

an explanation of exponential decay within the framework of this theory [l]. 

Later Weisskopf and Wigner studied the related problem of the line shape [2]. 

Recently the quantum mechanical decay formalism has been studied in connec- 

tion with speculations on proton decay experiments [3-51. The basis for these 

discussions was the fact that a quantum system cannot decay exponentially for 

short times. Depending on the length of the time interval during which the 

decay is not exponential it is quite possible that the calculated proton lifetime is 

of the order of 1O33 years while it is nevertheless impossible to observe proton 

decay because at the present time the decay is not yet in its exponential phase. 

This point of view has been advocated by Khalfin [3]. In a paper by Chiu et al. 

[4] one finds arguments against the statements made in ref. [3]. 

Another complication in the discussion of the decay phenomena has to do 

with the possible influence of measurements made on the system while it 
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decays. This point of view can be found in the paper by Ghirardi et al. [6] and 
in a paper by Ekstein and Siegert [7]. 

Here it is our aim to study the decay law for small and intermediate times. 
We consider the survival amplitude and survival probability in the following 
way. 

If the system under consideration is in an initial state 1 $I) at time t = 0 we 

find from the Schrddinger equation the state of the system at a time t > 0 as 

MN = e-‘“‘MO)) . (1) 

The survival probability P(t) to find the system at time t still in the initial state 
is given by 

p(t) = Is(t = I(W9l e-‘“‘lW))l’ , (2) 

where H denotes the total Hamiltonian and the survival amplitude is written as 

S(t) * 
The paper is organised as follows. In section 2 we give a general formalism 

for the calculation of S(t) and CT’(t), we use this formalism for a numerical 
study of the behaviour of the survival amplitude for a few model systems 
(section 3). Finally in section 4 we draw some conclusions about the relevance 
of our results for real physical systems. 

2. Formalism 

In this section we will give a general formalism for the treatment of the 
decay of a pure state. On the basis of this formalism we derive an exact 
expression for the survival amplitude in terms of a spectral density function 
(T(E). This function depends both on the total Hamiltonian H and on the choice 
of the (pure) state at t = 0. Although the expressions that we derive look very 
much like expressions that can be found in the literature we like to state here 
that this similarity is only superficial and we will point out the differences with 
existing formalisms. 

The starting point for our considerations is the same as that of A. Peres [8]. 
We consider a quantum system described by a Hamiltonian H. If at t = 0 the 
system is in a state I I/J) with ( $I+,> = 1 we can introduce the one-dimensional 
orthogonal projection operator 

p= IW(cll (3) 
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and its complement 

Q=l-P. (4) 

With these two projection operators we construct from the full Hamiltonian H 
two new operators HO and V as follows: 

H,=PHP+QHQ, V= PHQ + &HP, (5) 

From these definitions, it is clear that 

H=H,,+V. (6) 

It should be noted at this point that this splitting of H into an H,, and V does 
not mean that HO can be interpreted directly as an unperturbed Hamiltonian 
nor that V is a simple perturbation. In the standard perturbation treatment the 
splitting of the total Hamiltonian is independent of the initial state. Here 
however HO and V both depend on I$) . Now we also decompose the Hilbert 
space SY for the system into two orthogonal subspaces, 

where X0 is the one-dimensional subspace onto which P projects and SY, is its 
orthogonal complement which is left invariant under the action of Q. 

2.1. Properties of HO and V 

From the definitions given in eq. (5) we see that the action of H,, on the 
Hilbert space 2 is such that X0 and X1 are both invariant subspaces and also 
that the action of V on X0 has a resulting vector in X1 and the action of V on 
any vector from X, results in a vector in X0. 

We choose a basis in X1 such that HO is diagonal, 

for any 

The E is the corresponding eigenvalue of HO and the parameters cy serve to 
label possible degeneracies. For the sake of the following arguments we assume 
that the spectrum of HO restricted to X1 is purely continuous. It will be seen 
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later that the formalism is equally valid for other cases. We take the following 
continuum normalisation for the eigenstates: 

(E’, c+, a) = --& S(E - l ‘)S(o - a’) 
7 

(10) 

so that the operator Q can be written as 

Q=Ii~,~,p(~,~)(~,aldtda. (11) 

With these constructions we also find that the initial state I$) is a discrete 
eigenstate of HO, 

%I@) = %I~> 3 

and also that 

(+O+r4 =o. 

The only nonzero matrix elements of V are given by 

(E, ~lVlS> and ($lVle, (.y> . 

From here on our treatment differs from ref. [8]. 

2.2. The survival amplitude 

We now introduce the resolvent operators associated with HO and H, 

R,(z) = (2 - HJ’ , R(z) = (2 - El-’ . 

A well known identity is 

R(z) = R,(z) + &(z)VR(z) 3 

which we iterate once to get the relation 

R(Z) = R,(r) + R,(z)VR,(z) + R,(z)VR,(z)VR(z) . 

The survival amplitude S(t) which was defined in the introduction as 

S(t) = ( $1 emiH’I +) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 
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can now be given as a contour integral, 

S(t) = & f e-y l#(z)l$)dz ) 

% 

where the contour %’ runs counter-clockwise around the spectrum of H. Due to 

the fact that V only connects vectors from ZO and X1 as in (13) and (14) we 

find, using (17), the following relation for the matrix element of R(z): 

wwlrC,) = & [1+ (~lV~,(~>VIICI)(ICIIR(~)l~~l. 
0 

(20) 

If we introduce the complex function n(z) as 

n(z) = ( +w~o(z)vl e) (21) 

we can re-express the survival amplitude as 

S(t) = & f epizt z _ E. ! n(z) dz . 
v 

This is an exact expression for S(t) in terms of n(z). 

2.3. Properties of n(z) 

Using the basis of eigenvectors of Ho we can write n(z) as 

U(z) = 1 P(% 4lk 4+fa2 dE da 
z--E 

(22) 

(23) 

The E integration runs over _Z which is the spectrum of the operator Ho 

restricted to X1. From this expression we see that it is advantageous to define a 

function C(E) of E alone as 

c(c) = I P(E, ~)l(e> @IG)12 da . (24) 

This function depends in a complicated and implicit way on the initial state I (cr ) 
and on the full Hamiltonian. It is an important ingredient since the decay 

amplitude can be given completely in terms of this function. The function n(z) 

can now be written as 

II(z) = $dt. 

P 
(25) 
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If, contrary to what was assumed earlier, H, has discrete eigenstates as well 
with corresponding eigenvalues l i with i = 1,2, . . . , then L!(z) must be 
generalised to 

(26) 

in an obvious way. For the sequel however we will not use this form. 
From expression (25) we see that n(z) is an analytic function on the entire 

z-plane except for a branch-cut on the real axis along 2. From expression (24) 
we see that cr.(e) is positive semi-definite. If we make the assumption that 2 is 
bounded from below, we also see that n(z) is real for z real and smaller than 
this lower bound. So we find that n(z) has the Schwartz reflection property 

zqz*> = n*(z). (27) 

Furthermore since o(e) 2 0 we see that the sign of the imaginary part of n(z) 
is always opposite to the sign of the imaginary part of z, or 

<O for Imz>O 
Irn ncz){ >O for Im z < 0 I 

If we now look at n(z) just above the real axis we may write 

l$ L!(x + ie) = D(X) - iA , (29) 

where A(x) > 0 for all x. The functions A and D can be given in terms of (T(E) 
as 

A(x) = W(X) . (30) 

With the help of these functions we will be able to give the survival 
amplitude as a simple Fourier transform. 

2.4. The exponential approximation 

Using the defined functions A and D we can rewrite expression (22) as 

e-‘%(x) 

(x - E,, - D(x))~ + (A(x))~ dx ’ 
(31) 
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We will use this form later on to evaluate S(t) numerically. At this point we 
will assume that the functions A(x) and D(x) are small on the interval 2 in such 
a way that the integrand in (31) is sharply peaked around l 0. We can now 
approximate the integrand by replacing A(x) and D(x) by their (constant) 
values at x = eO. If we also extend the integration interval from 2 to the full 
real axis, the integral (31) can easily be performed to give 

S(t) = e 
-i(co+D(to))~-A(+ 

so that the decay probability is 

g(t) = Is(t)/’ = e-zA(to)f 

(32) 

which is a pure exponential. We will denote this as the exponential approxima- 
tion. Using expression (30) we find for the inverse lifetime of the state I$) 

7 -’ = r = 2rr 
I 

,D(E~, CX)~( l 0, ‘ylVl+)1* da (34) 

which is sometimes known as Fermi’s Golden Rule.* The quantity r is known 
as the decay width. It should be stressed here that in the usual derivation of 
this result, the operator V is the perturbation and has no implicit dependence 
on the initial state I+) contrary to what is done here. The function P(E,,, a) is 
sometimes called the density of final states. 

The exponential approximation works very well if the denominator in 
expression (22) has a complex zero very close to the real axis. 

2.5. The quadratic domain 

We can define the spread in the energy of the initial state as 

(AH*) = ((cll~“Idd - (~lfWz 

which, using the properties of H, and V, reduces to 

and in turn can be written by means of expression (24) as 

(AH)* = j- o(e) de . 

z 

* This expression is, incidentally, derived by Dirac [l], Fermi only gave it its name 

(35) 

(36) 

(37) 
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We note at this point that (AH)* and P as calculated in the exponential 
approximation both depend in a linear way on U(E). 

We will now give a derivation for a lower bound on g(t) in which the 
quantity (AH)* plays a fundamental role. In the Heisenberg picture the state of 
the system is given by the (time-independent) ]t+!r). The time evolution of the 
projection operator P as given in eq. (3) is described by the equation of motion 

i-$P=[P(t),H]. (38) 

If we define the standard deviation for P in the usual way we have 

(39) 

and since P(t) is a projection operator we may also write 

AP= {(+lf’Wl+C,) - (d~lP(~)l~,)~~~‘~~ (40) 

The expectation value appearing in this formula is nothing but the survival 
probability 

P(t) = hww) (41) 

so that 

AP = {L!?(t) - ~?‘(t)*}~‘* . (42) 

We now derive from expression (38) the uncertainty relation 

(43) 

which becomes after using expression (42) 

AH. {p(t) - LY(t)*}l’* 3 ; ; p(t) . 

This inequality gives after a simple integration 

(44) 

la C?(t) 2 cos*(AH . t) , (45) 

a result first derived by Mandelstam and Tamm [9], and later in an indepen- 
dent way by Fleming [lo]. For times much smaller than (AH)-’ the bound can 
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be expanded as 

s(t) 2 1 - (AH)’ . t* . (46) 

Using the Schrodinger equation for infinitesimal times one can show that this is 

in fact a good approximation. For this reason we denote the times for which 

this holds as the quadratic domain. 

We have in the exponential approximation 

P(t) = eerr with r = 2zrcr(~,) , (47) 

while on the other hand the inequality (45) holds. We can now make an 

accurate estimate of the time interval during which exponential decay cannot 

hold. We define the time t, by requiring that the exponential in (47) equals the 

Mandelstam Tamm bound. Since t, depends only on r and AH we must have 

on dimensional grounds 

A first approximation gives 

r -- 
tq - (AH)* . 

(48) 

We will now make this more quantitative. The variable t, is defined as the 

solution of the equation: 

e -rr = cos’(AH. t) . (50) 

We introduce the new variable T = t * (AH)*/r, so that eq. (50) can now be 

written as 

e -A2T = cos*(A . T) , (51) 

where A = Tl(AH). This equation can easily be solved numerically so that we 

get Tq as a function of the parameter A. In fig. 1 we plot this function for 

values of A between 0 and 2. We see that for values of A below = 0.5, Tq is 

well approximated by one. From this result we can conclude that under the 

condition that Tl(AH) < 0.5, t, = Tl(AH) 2 and thus that for times smaller than 

this value the decay cannot be exponential. Since r and (AH)* are both linear 

in U(E), t, as defined above hardly depends on the coupling strength. 
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I;: 
0. 0.5 

'. A 
1.5 2. 

Fig. 1. The scaled length of the quadratic domain T, as a function of the variable A = Tl(AH). 

2.6. Model calculations 

In order to study deviations from exponential decay at times of order t, we 
will introduce a class of model systems that can be treated using numerical 

Fourier transform techniques. The starting point is the choice of an interval on 

the real axis which we identify as 2 and of a function U(E) on this interval. We 

point out here that a choice of 2 and a corresponding V(E) completely specifies 

a (formal) quantum system. This means that given U(E) we can construct a 

Hilbert space and operators H, and V that satisfy the conditions given in the 

beginning of this section. 

We would like to study the following three cases in detail (numerical results 

are given in the next section). 

(i) The spectrum 2 consists of a finite interval on the real axis. Here we take 

this interval to be [0, 11. For the function a(~) we take the polynomial form 

CT(e) = &“(l - E)m ) (52) 

where we introduce the parameter g2 in order to be able to vary the strength of 

the interaction responsible for the decay. For this case the quantity (AH)’ is 

always finite. 

(ii) The spectrum Z consists of an infinite interval on the real axis for which 

we take [l, co]. The function U(E) is chosen as 

We 

n- 

g(e)=g 
2 cc - 1)” 

En . (53) 

also want the quantity (AH)2 to be finite which means that we must impose 

ma2. 
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(iii) The spectrum 2 and the form of g(e) are as in case (ii) but now we 

want to consider the case where (AH)’ is infinite but where n(z) is still finite 

which means that now we must impose II - m = 1. 
For the first two cases we expect a quadratic domain as given by our analysis 

whereas we expect a more complicated behaviour in the third case. We do not 

know whether there exists a general characterisation of the survival amplitude 

in terms of a power-law or otherwise for this diverging (AH)* case. 

With the choices for Z and a(x) given above it is possible to give analytic 

expressions for II(z), as worked out in detail in the appendix. 

We now turn to the question of the normalization of s(t), and shall prove, 

under the condition that the integrand in eq. (22) has no poles on the first 

Riemann sheet, that S(0) = 1. 

Suppose that II(z) has a cut from 0 to 1 in the complex plane. Consider a 

circular contour %?r (with a counter-clockwise orientation) centered at the 

origin with radius R. If we take R > 1 the contour will enclose the entire cut. 

Now calculate S(0) as follows. Introduce a new variable u = l/z. In the u-plane 

the cut runs from 1 to infinity. The new contour, which we call %YZe,, is a circle of 

radius l/R, still centered at the origin, but with its orientation now clockwise. 

Thus we have 

1 

I 

-1 
=- 

2ni (e2 u(l- UEO - uJI(llu)) duf 

The residue at u = 0 equals 

lim 
-1 -1 

~--to 27ri( 1 - ueO - uII( 1 lu)) = 52 ’ 

(55) 

(56) 

*We assume that lim .__II(z) is finite. So now, because of the orientation of ‘%* 

we have S(0) = 1. This proof is only valid if there are no poles on the real axis 

outside the cut 2. However this is not always the case. From relation (28) it is 

clear that we can only have poles on the real axis. If we take for example 

2 

o(e) = ; ’ 
for OG6G1, 

3 otherwise , 

we then have II(z) = g2 ln(z/(z - 1)). This function has a cut from 0 to 1. The 

denominator of (22) now has two roots on the real axis, one left and one right 

of the cut. The functions that we will consider in the next section have always 
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been chosen such (by varying the coupling constant g) that they have no poles 
on the real axis outside 2. This proof can easily be extended to the case where 
the spectrum Z is infinite. 

3. Model systems 

The choice of the spectral density function U(E), together with E,,, completely 
determines the survival amplitude s(t). We recall that 

s(t) = ; ,, (x _ E. -e;;;;t,, (A(x))2 dx (57) 

with D(x) and A(x) as given in (30). The expression for s(t) was evaluated 
numerically using the routine DO1 ANF from the NAG library [ll]. It is now 
desirable to consider functions C(X) that enable us to perform the defining 
integral for n(z) analytically. Of each of the three cases from the previous 
section we discuss typical examples. 

(i) Finite spectra. An example of the survival probability in this case is 
shown in fig. 2, with g(e) = 10P2e2(1 - E)* and l 0 =0.15. For t < t, the 
quadratic approximation is very good, whereas for greater times P(t) is closely 
following the exponential curve (see fig. 3). If we turn down the coupling 
constant g* from lop2 to 10-4, the decay will go slower but the length of the 
quadratic domain remains unchanged as expected. (See fig. 4.) 

(ii) Znfinite spectra I. We take Z to be the interval [l, ~1. For C(E) we choose 

a(c) = 10 -3 (e - 1) 3 
E 

With this choice (AH)2 is again finite. In fig. 5 an example is shown with 
E,, = 1.25. Again we see that for short times the decay is very nearly quadratic. 
For longer times it is exponential with the expected lifetime. From all this it is 
clear that cases (i) and (ii) are not fundamentally different. 

(iii) Znjinite spectra ZZ. 2 is again chosen to be the interval [l, ~1, but now 
we choose the function V(E) so that (AH)2 diverges. We take 

E-l 
U(E) = g2 2 

E . 

The integral defining n(z) still exists so the survival amplitude S(t) can be 
evaluated. The numerical integration needed for S(t) runs from x = 1 to a 
cutoff value at x = b. In doing this we actually make 2 finite, and so (AH)* 
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Fig. 2. The survival probability for the model function o(e) = lO-*~~(l - E)* and l 0 = 0.15. The 

exact result is presented by the continuous curve. The almost straight dashed curve is the 

exponential approximation whereas the parabola shaped dashed curve is the Mandelstam-Tamm 

bound. 
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Fig. 3. The survival probability for the model function U(E) = lo-‘~~(1 - 6)’ and e,, = 0.15. Here 

the exact result (full curve) and the exponential approximation (dashed curve) are given for times 

of the order of the average lifetime of the state. 
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Fig. 4. The survival probability for the model function u(c) = 10-4e2(1 - e)’ and l 0 = 0.15. The 

exact result is presented by the continuous curve. The almost straight dashed curve is the 

exponential approximation whereas the parabola shaped dashed curve is the Mandelstam-Tamm 

bound. 
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Fig. 5. The survival probability for the model function O(E) = 10m3(e - 1)/e3 and l ,, = 1.25. The 

exact result is presented by the continuous curve. The almost straight dashed curve is the 

exponential approximation whereas the parabola shaped dashed curve is the Mandelstam-Tamm 

bound. 
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becomes finite too. Consequently this procedure would give a wrong behaviour 

for S(t). The cure is to estimate the neglected tail and add this to S(t), which 

then becomes 

(The first term alone would yield quadratic decay for short times.) The second 

term is given by 

rx 

AS(t) = a 1 
ePi”‘A(x) 

b (x - l 0 - D(X))* - (A(X))* dx ’ 

where we take b arbitrary but large. In this example we have 

A(x) = g2 T ; - -j 
( 1 

and 

D@)=g’($+(Tt_-$jlnll-xl). 

(61) 

(62) 

Because these functions fall off rapidly, we approximate 

m 

I 
-ixt 

AS(t) = g* k dx (63) 
X 

b 

which can be evaluated as 

(64) 

We can expand expression (64) for short times and add the result to the first 

term of (60) which by itself gives a quadratic decay with 

(AH)2 =g2(ln b + i - I) . (65) 

Eventually we get for the total survival probability an expression of the form 

&P(t) = 1 - g2t2(C - In t). (66) 
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Note that the logarithmic b dependence has dropped out as it should have. The 
constant C is a combination of several terms from the expansion of Ci and Si. 
The t2 In t behaviour is characteristic for all models of class (iii). We see that 
here again the decay, although not quadratic, starts off horizontally, as in cases 
(i) and (ii). This was to be expected from the work of Khalfin [3]. For longer 
times we find in a numerical study again the expected exponential behaviour. 

4. Conclusions 

In this paper we have considered the behaviour of quantum states that are 
unstable. We have presented a general formalism where the survival amplitude 
can be expressed in terms of a spectral function n(z) which in turn depends on 
the total Hamiltonian and on the initial state 1 $I). We use this formalism to 
obtain numerical results on several model systems where it is possible to show 
clearly the quadratic behaviour of the survival probability for short times. It is 
also demonstrated that for model systems with (ALQ2 finite the derived lower 
bound on the time interval during which the decay cannot be exponential is 
actually of the same order of magnitude as the time scale for which there is a 
cross-over from quadratic to exponential behaviour. Although the model 
systems described in section 2 were introduced because they allow analytical 
evaluation of the function L!(z) it is nevertheless clear that for many systems of 
physical importance such as unstable elementary particles the corresponding 
function V(E) can be well approximated by the functions we have introduced 
here. 
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Appendix A 

The function II(z) for model systems 

Here we will calculate some of the integrals that are needed for the numerical 
study. We start by defining the polynomials B,,,(x) as 

B,,,(x) = x”( 1 - x)” 
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and the associated functions Q,,,(Z) as 

If we use the following notation for the well known Euler B-function: 

1 

B(n + 1, m + 1) = 
I 

~“(1 - x)” dx , (69) 
0 

we find the following recursion relation for the Qn,m: 

Q nil,&) = zQ,,&) - B(n + 1, m + 1). (70) 

By means of a change of integration variable in eq. (68) we can also derive the 

following relation: 

Q,,,(z) = - Q,,,<l - z> . 
For the simplest case n = 0 and m = 0 we find 

Q,,,(z) = ln( 5) . 

(71) 

(72) 

From this starting point and the relations (70) and (71) it is easy to see that the 

functions Q, ,m must have the general form 

Q,,,&> = ~“(1 - 4” ln( 5) + K,&> y (73) 

where P n,,(z) is a polynomial in z, which can be expressed in closed form as 

1 

Pn,m(4 = I x”(1 - X)” - z”(1 - z)” dx 

z-x 
0 

(74) 

Using this form for P,,, we can easily evaluate these polynomials for arbitrary 

n and m with the help of the algebraic manipulation program SCHOONSCHIP 

[12]. In table I we give these polynomials for IZ + m s 6. 

In the case of infinite spectra we consider the following model functions in 

complete analogy with the previous examples: 

R = n,m 
(x - 1)” dx 

X”(Z -x) . 
1 

(75) 
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Table I 

The polynomials P.,, for n + m s 6. 

n m P” _(z) 

1 1 

1 2 

2 1 

1 3 

2 2 

3 1 

1 4 

2 3 

3 2 

4 1 

1 5 

2 4 

3 3 

4 2 

5 1 

(22 - 1) 12 

(-6z* + 9z - 2)/6 

(62’ - 32 - 1) /6 

(12~~ - 3Oz* + 222 - 3) /12 

(-12~~ + 182’ - 42 - 1)/12 

(12~~ - 6z* - 22 - 1)/12 

(-60~~ + 2102’ - 260~’ + 1252 - 12) 160 

(60~~ - 150~’ + 110~’ - 15z - 3)/60 

(-60~~ + 90z3 - 202’ - 5z - 2) /60 

(60~~ - 302’ - 102’ - 5z - 3) /60 

(602’ - 270~~ + 470~’ - 3852’ + 1372 - lo)/60 

(-60~~ + 210~~ - 260~~ + 125~’ - 122 - 2)/60 

(60~~ - 150~~ + 110~~ - 152’ - 3z - 1)/60 

(-60~~ + 90z4 - 202’ - 52’ - 22 - 1)/60 

(602’ - 30z4 - 10z3 - 5~’ - 3z - 2)/60 

Here we impose the condition IZ - m > 0 with n and m integers. This function 
can be obtained by means of a transformation of variable. If one uses u = 1 lx it 
can easily be seen that the integral for R,,, can be expressed in terms of the 
functions Q,,, . 

This completes our calculation of the model functions. 
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