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Abstract
In this paper the phase singularities of the electromagnetic field near a
sub-wavelength slit are studied. These phase singularities, such as optical
vortices, are found in regular patterns, which can be created or annihilated
under the conservation of certain topological quantities, when a parameter
such as the slit width is changed. The connection between the phase
singularities and the light transmission though the slit is considered.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

A monochromatic wavefield is characterized by its local
amplitude and phase. At points where the amplitude vanishes,
the phase is indeterminate. Such a phase singularity or
vortex can be found in many different physical systems. The
first mention of optical vortices seems to date back to the
1950s when Braunbek and Laukien theoretically studied the
diffraction of a plane wave by a perfectly conducting, infinitely
thin half-plane [1, 2]. They predicted phase singularities
of both a single component of the magnetic field, and the
time-averaged Poynting vector field. Some 15 years later,
Boivin and Wolf [3] noted that the Airy rings in a focal
plane also correspond to phase singularities of the Poynting
vector. In the early 1970s Landstorfer et al [4] calculated
and measured vortices of the Poynting vector field in the near
zone of antennas. In all these studies it was found that different
phase singularities can coexist at a distance that is much smaller
than the wavelength. The systematic study of such topological
defects of wavefields began with a paper by Nye and Berry [5].
Nowadays several reviews of the subject are available [6–8].
In this paper we discuss some recent developments of the
burgeoning field of singular optics.

2. Phase singularities in scalar and electromagnetic
fields

We consider a complex monochromatic scalar field ψ , and
write it as (suppressing the time dependence exp(−iωt))

ψ(r) = ρ(r)eiφ(r). (1)

A phase singularity is defined as a point r where the amplitude
ρ(r) is zero and hence the phase φ(r) is undefined. The
condition ψ(r) = 0 is equivalent to

Re(ρ(r)) = 0, (2)

Im(ρ(r)) = 0. (3)

These two conditions imply that phase singularities can
typically be found as lines in three-dimensional space, whereas
in two dimensions, they are typically separated points. The
phase around a phase singularity possesses a vortex-like
structure (see figure 1(a)), and increases or decreases as one
moves around the singularity.

In our analysis, we study configurations and electromag-
netic fields, which are invariant along the y-direction. Fur-
thermore, we assume that the field is TE polarized. In that
case the only non-zero component of the electric field is the y-
component, Ê y. Such a field component, however, in general
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(a) positive phase vortex (b) left-handed power flow centre

(e) phase maximum (f) power flow sink

(c) phase saddle (d) power flow saddle

Figure 1. Illustrating the relation between phase singularities (a),
stationary points of the phase ((c), (e)), and the corresponding
singularities of the power flow ((b), (d), (f)). The arrows in the
left-hand column indicate the direction of increasing phase φE .

depends on the coordinates x and z, with an amplitude and a
phase that can be expressed as

Ê y(x, z) = |Ê y(x, z)|eiφE (x,z). (4)

Note that the time dependence exp(−iωt) is again suppressed.
Such a field configuration is suitable for analysing, as in
section 3 below, the problem of propagation of a TE polarized
field through a slit oriented parallel to the y-axis.

The electromagnetic field considered here has an
associated time-averaged Poynting vector field whose only
non-zero components are Sx and Sz . These components are
only dependent on the coordinates x and z, so they can be
expressed as

S(x, z) = (Sx(x, z), 0, Sz(x, z)) = 1
2 Re

{
Ê(x, z)×Ĥ∗(x, z)

}
,

(5)
where Ê and Ĥ are the amplitudes of the complex
monochromatic electromagnetic field. Note that this time-
averaged Poynting vector can be formally considered as a two-
dimensional real-valued vector field.

It is interesting to relate the singular features of the
complex electric field component Ê y(x, z) to those that will

subsequently appear in the associated two-dimensional time-
averaged real-valued Poynting vector field S(x, z). To this end,
a ‘phase’ must be defined for this latter field. This is done via
the pair of relations

sinφS(x, z) ≡ Sz(x, z)

|S(x, z)| ,

cosφS(x, z) ≡ Sx(x, z)

|S(x, z)| ,
(6)

where |S| is the modulus of S. The reason for this definition
of φS is that it has mathematically exactly the same structure
as the phase of a complex scalar field. Analogous to the case
for complex scalar fields, phase singularities of the Poynting
vector are defined as points where the phase is undefined, and
consequently its modulus is zero.

For a field which is TE polarized, i.e. the only non-zero
component of the electric field is Ê y , it can be readily shown
using equation (5) and Maxwell’s equations that

S(x, z) = − 1

2ωµ0
Im

{
Ê y∇ Ê∗

y

}
. (7)

On substituting equation (4) into (7), one finds that the
Poynting vector may be expressed in the form

S(x, z) = 1

2ωµ0
|Ê y(x, z)|2∇φE(x, z). (8)

For a field which is TM polarized, a similar equation holds,
where the time-averaged Poynting vector is expressed in terms
of the amplitude and the gradient of the phase of Ĥy .

Equation (8) suggests that the singular points of S may
generally be divided into two categories: those which are
related to the singular points of the phase of Ê y (where
|Ê y(x, z)| = 0) and those which are related to the stationary
points of the phase of Ê y (for which ∇φE(x, z) = 0). Because
these topological features of Ê y are directly related to the
singular points of S, we will briefly review some properties
of the singular and stationary points of Ê y and their relation to
the singular points of S.

The singular points of Ê y correspond to vortices (also
referred to as centres) of the power flow S, around which the
power flow circulates (see figure 1(b)). A centre is referred
to as right-handed (left-handed) if it is anticlockwise seen
in the direction of the positive (negative) y-axis. Such a
vortex clearly has ∇ · S = 0, meaning that there is no energy
absorption, and therefore a centre can occur in free space. It is
to be noted that in all the figures in this paper the y-axis points
into the page; a left-handed or right-handed centre therefore
corresponds to a positive or negative phase vortex, respectively.

At the stationary points of Ê y, the phase φE is well defined
but its gradient vanishes. These stationary points include both
minima and maxima as well as saddles, to be referred to as
phase saddles (figure 1(c)). Phase saddles of Ê y correspond
to saddle points of the power flow, as illustrated in figure 1(d).
A phase maximum (figure 1(e)) of Ê y corresponds to a sink of
power flow (figure 1 (f)), and a phase minimum corresponds
to a source of power flow; it is to be noted that for sinks and
sources ∇ · S �= 0, and hence they cannot occur in free space.
A more exotic example of a stationary point is a double phase
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saddle, which is like a normal phase saddle, but has three
directions in which the phase increases and three directions
in which the phase decreases. A double phase saddle of Ê y

corresponds to a so-called monkey saddle [9] of the power
flow. Other, more exotic phase singularities are possible, but
not typical. They are usually unstable, i.e., under a small
perturbation of the field they decay into the simple phase
singularities described above.

Both phase singularities and stationary points are
topological features of the complex field Ê y, and several
conserved quantities can be associated with each of them. The
first of these is the so-called topological charge sE of the field,
defined as the integral of ∇φE around a closed loop enclosing
the feature, i.e.,

sE ≡ 1

2π

∮
C

∇φE · dr, (9)

where C is a closed anticlockwise path of winding number 1.
It can be shown that the topological charge of a given phase
singularity takes on a unique positive or negative integer
value, independent of the choice of the enclosing path C.
Likewise, the topological charge of a phase saddle, maximum
or minimum is always zero.

Another quantity of interest is the topological index tE ,
which is defined as the topological charge of the phase
singularities of the vector field ∇φE . It can be shown that
for both a positive and a negative vortex tE = +1, whereas
for a phase saddle tE = −1. The topological index of a phase
maximum or minimum is tE = +1, whereas for a double phase
saddle tE = −2.

A topological charge sS and index tS can also be associated
with the phase φS of the power flow. It follows directly
from equation (8) that the topological charge of S for a given
feature is equal to the topological index of Ê y . Therefore, the
topological charge of a vortex of the power flow sS = +1,
regardless of whether it is a positive or negative vortex of
Ê y . Similarly, the topological charge of a saddle point of the
power flow sS = −1, the topological charge of a source or
sink sS = +1, and the topological charge of a monkey saddle
sS = −2. Also, a topological index may be defined for the
singularities of the power flow, but this is not necessary for our
interests and will not be considered here.

Both topological charge and index are quantities which
are conserved under smooth variations of the configuration
parameters, and as such they can only appear or disappear
via creation and annihilation of multiple stationary and/or
singular points. The commonest process involves the creation
(annihilation) of a positive vortex (sE = +1, tE = +1), a
negative vortex (sE = −1, tE = +1), and two phase saddles
(sE = 0, tE = −1 for each). This event may also be described
in terms of the creation/annihilation of phase singularities of
the field of power flow; see figure 2. In this figure, some
possible reactions are shown. Other, more complex, events
are also possible, but are not typical.

3. Optical vortices near a sub-wavelength slit

A rigorous scattering approach [10] was used to calculate the
field in the vicinity of an infinitely long slit in a metal plate.
This method takes into account the finite conductivity and

+ + 2 0

+ 0

2

s   = 1S s   = 1S s   = −1S

s   = 1S s   = −1S

s   = −1S
s   = −2S

(a)

(b)

(c)

Figure 2. Illustrating some of the possible reactions between phase
singularities of the time-averaged Poynting vector field: (a) the
annihilation (creation) of two vortices of opposite direction and two
saddle points; (b) the annihilation (creation) of a saddle point and a
sink; (c) the creation (decay) of a monkey saddle out of two saddle
points.

finite thickness of the plate. The illuminating field is taken
to be monochromatic with time dependence exp(−iωt). For
the electric field this scattering problem reduces to solving the
following integral equation [10]:

Ê = Ê(inc) − iω�ε
∫

slit
G · Ê d2r, (10)

where�ε = ε0−εplate is the difference in permittivity between
the slit (vacuum) and the plate, and G is the electric Green’s
tensor pertaining to the plate without the slit. The incident
field Ê(inc) is the field that would occur in the absence of the
slit in the plate. Here it is taken to be a plane wave propagating
perpendicular to the plate with the electric field polarized along
the slit. It is to be noted that the incident field also consists of
a reflected part and a part that is transmitted by the plate. The
second term on the right-hand side of (10) is the scattered field
due to the presence of the slit. For points within the slit, (10)
is a Fredholm equation of the second kind for Ê, which is
solved numerically by the collocation method with piecewise-
constant basis functions [11].

In figure 3 a typical example of the behaviour of the time-
averaged Poynting vector is shown. It can be seen that the
field exhibits several phase singularities. There are two optical
vortices (a and b) within the plate, which correspond to a
‘funnel-like’ power flow into the slit. In addition, five other
phase singularities are visible just below the slit (c, d, e, f, and
g; three saddle points and two vortices). If the time-averaged
Poynting vector is plotted in the same region for a somewhat
wider slit (see figure 4), a similar pattern can be seen. However,
the power flow through the slit has increased, and instead of
three, only two saddle points are present (e and f). The other
saddle point does still exist, but has moved below the plotted
region. This can be seen in figure 6, where the location of the
phase singularities is shown on a large scale. It is seen that
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a b

c d

e

f

g

Figure 3. The behaviour of the time-averaged Poynting vector near
a 150 nm wide slit in a 100 nm thick silver plate. The incident light
(coming from below) has a wavelength λ = 500 nm. The
left-handed (a and d) and right-handed optical vortices (b and c)
each have a topological charge of +1, whereas the topological
charge of the saddle points (e, f, and g) is −1. The transmission
coefficient T = 0.51. The shading indicates the modulus of the
Poynting vector (see the legend of figure 5).

a b

c d

e

f

Figure 4. The behaviour of the time-averaged Poynting vector near
a 200 nm wide slit in a 100 nm thick silver plate. The incident light
(coming from below) has a wavelength λ = 500 nm. The
transmission coefficient T = 1.11. The shading indicates the
modulus of the Poynting vector (see the legend of figure 5).

they are arranged in an array-like pattern. It is to be noted that
only parts of the phase singularities are shown—the pattern
is continuous in a periodic way to the left and right, and also
downwards. It was found that at least 5000 phase singularities
are present for this particular example.

In figure 5 the time-averaged Poynting vector is shown in
the same region as in figures 3 and 4, but now for a configuration
with an even wider slit. The four phase singularities below
the plate in figure 4 are not present any longer; they have
annihilated each other (topological charge being conserved in
the process). In fact, the other phase singularities present on
the symmetry axis (see figure 6) are also annihilated. This
coincides with an enhanced power flow through the slit.

The annihilation of the phase singularities occurs because
of the changes in the guided modes inside the slit. More
specifically, at w ≈ 0.4λ the first guided mode changes
from evanescent to propagating [12]. Due to this change, the
incident field can more efficiently couple to the guided mode,
which results in a qualitatively different power flow. Similar

a b

0 2.02

Figure 5. The behaviour of the time-averaged Poynting vector near
a 250 nm wide slit in a 100 nm thick silver plate. The incident light
(coming from below) has a wavelength λ = 500 nm. The
transmission coefficient T = 1.33. The shading indicates the
modulus of the Poynting vector (see the legend).

250 nm

Figure 6. Location of phase singularities in the field of power flow
for the same configuration as in figure 4, i.e. for a slit width of
w = 0.4λ = 200 nm. The left- and right-handed optical vortices are
denoted by LV and RV, respectively; S denotes a saddle point.
Notice the larger scale as compared to figure 4.

annihilations, but now of different arrays of phase singularities
in the power flow [13], occur when other guided modes change
from evanescent to propagating.

In figure 7, the time-averaged Poynting vector is plotted
around a 100 nm wide slit in a silicon plate. In the case of
a silver plate (e.g., figure 3), two vortices are visible, which
correspond to a funnel-like power flow into the slit. In contrast,
the power flow near a slit in a silicon plate exhibits two vortices
and two saddle points located inside the slit, coinciding with
a power flow into the plate rather than into the slit. Notice
the different handedness of the vortices: vortex a in figure 3
is left handed, whereas vortex b in figure 7 is right handed. In
figure 8 a detail of figure 7 is shown. There it can be observed
that in this region a sink and a saddle point are present. Due to
conservation of energy, a sink is only possible inside a lossy
material. If the width of the slit is decreased, the sink and
the saddle point annihilate each other, a process in which the
topological charge is again conserved.

In figure 9 the field of power flow is shown in the dashed
region depicted in figure 7, but now for a slightly wider slit.
In this figure, a monkey saddle singularity (e) is present. The
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a
b c

d

100 nm

Figure 7. The behaviour of the time-averaged Poynting vector near a 100 nm wide slit in a 100 nm thick silicon plate. The incident light
(coming from below) has a wavelength λ = 500 nm. Two vortices (b and c) and two saddle points (a and d) are present in the middle region.
In the smaller dashed regions on the right and the left a saddle point and a sink are present (see figure 8). The dashed box in the middle
denotes the region depicted in figure 9 for a different slit width.

f

g

10 nm

Figure 8. Detail (from the right-hand side) of figure 7. A sink (f)
and a saddle point (g) are present.

monkey saddle is unstable, as it exists for one value of the
slit width only; for a larger width it decays into two saddle
points [14]. With the aid of symmetry considerations, one can
show that the singularity in figure 9 is indeed a monkey saddle,
and not two closely spaced saddle points.

4. Discussion

We have shown that the field of power flow near a sub-
wavelength slit possesses numerous phase singularities. The
phase singularities are present in a regular array-like form.
Furthermore, these arrays of phase singularities can annihilate,
under conservation of topological charge, if the slit width
is changed. This is related to effects such as enhanced
transmission [12] and frustrated transmission [14]. Enhanced
(frustrated) transmission is the phenomenon where an aperture
transmits more (less) light than one expects on the basis of
geometrical optics considerations [15, 16].

We note that the configurations under consideration
consist of linear materials. Clearly, the occurrence of phase
singularities does not require a non-linear response.

For TM polarized light, surface plasmons may be
generated [17]. Their influence on the light transmission
process will be discussed elsewhere.

e

b c

25 nm

Figure 9. The time-averaged Poynting vector near a 109.5 nm wide
slit in a 100 nm thick silicon plate. A monkey saddle (e) with
topological charge −2 can be seen.

Further study of the sub-wavelength features of optical
fields may lead to increased resolution in microscopy, or an
ability to ‘write’ information on an optical disk with a higher
density than is currently possible.
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