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Modal Analysis of a Planar Waveguide
with Gain and Losses

T. D. Visser, H. Blok, Member, IEEE, and D. Lenstra

Abstract—In this study, we analyze the waveguiding properties
of a planar waveguide amplifier in which losses and gain can be
present simultaneously. It is found that the subsequent modes
comprise both loss and gain medes. Also, the dependence of
the gain on the state of polarization turns out to be significant
for realistic dielectric structures. For strong losses or gain, the
standard transfer matrix approach may become numerically
unstable, therefore, a scattering matrices formalism is employed.
A semiconductor-like gain profile enables us to study the gain as
a function of w for realistic laser amplifier structures.

I. INTRODUCTION

OR optical telecommunication it is highly desirable that

the amplification of attenuated light signals is independent
of the state of polarization. The reason is that the polarization
is not maintained during propagation in optical fibers.

The motivation of this study is a reported semiconductor
optical amplifier which, indeed, does not show the typical
difference in gain for TE and TM input signals [1). This device
has multiple quantum wells with tensile and compressive
strain.

In this paper, the waveguiding properties of a planar con-
figuration in which both active and lossy media can be present
are analyzed. The formalism is fully vectorial and completely
rigorous. The use of the numerically stable scattering matrices
method allows us to analyze structures in which the gain
and losses are very strong. This in contrast to the usual
transfer matrix approach which may fail in such situations.
The dependence of the gain per unit of length on the thickness
of the active layer, its refractive index, the frequency, and
the state of polarization is examined. Attention is paid to the
numerical aspects of modeling high gain and losses. For a
review of waveguide modeling techniques see [2], [3].

Generally, it is believed that due to the difference in
confinement to the active layer, the gain for TE fields will
differ from that for TM fields [4], [5]. We will argue that
that view is not entirely correct. One result of our study is
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Fig. 1. Geometry of a planar waveguiding structure. V-2 layers are sand-
wiched between a superstrate and a substrate that are both semi-infinite.
The wave propagates in the positive xz3-direction with complex propagation
constant k3. Each permittivity e(*) may have either a positive or a negative
imaginary part. The coordinate x&") indicates the position of the interface
between the layers D(") and D(n+1),

the analysis of a realistic example in which the gain for the
two polarization states differs substantially, even though the
confinement factors are compafable. As is now derived, the
expression connecting gain and confinement for TE modes
differs from that for TM modes [6].

II. FORMULATION OF THE PROBLEM

As a first model for a semiconductor laser amplifier that
allows one to investigate the dependence of the gain on the
state of polarization, we take a waveguide that is stratified
in the vertical or x;-direction (see Fig. 1). It is made up
of homogeneous layers of isotropic dielectric material, which
extend from minus to plus infinity in the - and x3-directions.
In the steady state [time-harmonic light signals are assumed
with complex time dependence exp(jwt)], the imaginary part
of the complex permittivity ¢ can be either positive (corre-
sponding with active media) or negative (corresponding with
lossy media). Gain and losses may be present simultaneously
in different layers. It is also possible to use a negative
conductivity to simulate gain. This has been done, e.g., by
Hawkins and Kallman [7].

Starting point is the Maxwell equations for the steady state
in a source-free region

—V x H+ jweE =0 1)
V x E + jwpeH = 0. [0))
The arguments of the fields H and E are {z1, 2,23, jw}.

The layers are assumed to be homogeneous, isotropic, non-
magnetic, nonconducting, and linear. The relevant boundary
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conditions are that Ez, E3, I-:Tg and H 3 are continuous across
the interfaces between the layers. The polarization P in the
space-time domain for materials with time relaxation is given
by

P(x,t) = /00 eox(x,)E(x,t — t') dt’ 3
0

where x denotes the susceptibility. For the time-harmonic
fields that we study, this gives for the constitutive relation
in the frequency domain

D(x, jw) = eo(1 + R(x, jw)) E(x, jw) = e(x, jw)E(x, jw).

C))
We choose a multiple Lorentzian line shape for the frequency
dependence of the permittivity e. The expression for € due to
Z stimulated emission and/or absorption lines is given by [8,
ch. 3]

2I;
w? — wf — jwi

e(w) = € €0 |1+ Z 4)

Here w; is the i*! resonance frequency, -; its line width and
I; its normed intensity. In our examples, we characterize the
different media by their (bulk) refractive index n = c(eu)'/2.
If Im{n} >0, we have a gain medium, if In{n} < 0, the
medium is lossy.

To analyze the propagation properties, we are looking for
solutions that represent guided modes that propagate in the
positive z3-direction, i.e., solutions for the fields which are
of the form

{E,H}(z1,z3; K) = {E,H}(21; K) exp[—jkazs]. (6)
Here K = k3/ko is the mode or effective index, with k3 the
(complex) propagation constant of the mode, and ko = w/c the
free-space wavenumber. The phase velocity in the longitudinal
z3-direction equals w[koRe{K}]~1. If Im{K} >0, then the
field amplityde increases during propagation. We then speak
of gain modes. In the case of loss modes, In{K'} < 0 and the
field amplitude decreases dunng propagation.

We restrict ourselves fo ihe case where the index of refrac-
tion does not change along z3, i.e., we do not treat nonlinear
effects. In many realistic systems, such effects are present
and should be taken into account. We are presently pursuing
this using an integral equatlon method. This publication is an
essential ingredient for that project.

We will often consider the modal power gain of a wave-
guide. It can be expressed either as the gain coefficient g

g = 2Im{k3} = 2ko Im{neqg} [m™!] @)
or as the gain in dB per unit length, e.g.,

gain = 10 x ¥log (e2 Im{ka}w“) [dB/100 ym]. (8)
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III. TE AND TM MODES

The configuration is invariant in the z5- and z3-directions.
The wave propagates in the xz-direction and the fields are
assumed to be independent of x5, hence, 92 = 0. As is
well known, the Maxwell equations now separate into two
independent sets of three relations [9]. pneA set describes
transverse magnetic (TM) fields with {H3,E{,E3} # 0.
The other one describes transverse electric (TE) fields with
(E2,H;,H3} # 0.

TM Modes: For the guided modes of the TM type, we find
through direct substitution of (6) the equations

~jksH> + jweE; =0, ©)
~ Hy + jweEs = 0, 10)
—jksE1 — 01E3 + jwpoHa = 0. 1

In these equations only El,E3 and Hz occur. In the TM
modes the magnetic field is perpendicular to the direction of
propagation x3. It is solely directed along x,, parallel to the
interfaces. The electric field has one component along z3 and
another one in the stacking or z;-direction.

TE Modes: In an identical manner, we find for the TE
guided modes that

»

O Hs + jksHy + jweEy = 0, 12)
JksE2 + jwpoHy = 0, (13)
01E;s + jwugHs = 0. (14)

In these relations, only Ez, H 1 and fIg play a role. In the TE
modes the electric field is perpendicular to the direction of
propagation x3. It is solely directed along z», parallel to the
interfaces. The magnetic field has a component along z3 and
one in the stacking or z;-direction. In general, the total field
will be a superposition of TE and TM fields.

IV. THE SYSTEM MATRIX

Each set of equations, (9)—(11) or (12)(14), consists of
one algebraic, (9) or (13), and two differential equations.
These algebraic equations can be used to eliminate the field
components that are discontinuous at the interfaces. In this
way, we find in each layer D() the field matrix equation

of = Af (15)
in which for TE fields the field vector is introduced as
f= (E~2, I?[3)T (16)
and the system matrix A is given by
_ 0o —Wwiig
A. =7 (k32/(UJ/1,0) _ wf(n) 0 ). (17)

Notice that for given angular frequency w and (™), A depends
on the yet to be determined guided-mode propagation constant
k3 only. It will turn out that only for certain discrete values
of ks solutions of (15) exist. Following [10], we will now
proceed to diagonalize (15).
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The corresponding field vector equations for the TM fields
are found through the substitutions

{Ea, H3, €™, po} — {Hy, E3,—po, —e™}. (18

We only treat the TE modes explicitly. In Section VII, results
for both states of polarization will be presented.

A. Analysis of the System Matrix
Notice that the matrix A is singular if (and only if)

w2e(")u0 = k32, (19)

Since fields satisfying (19) can only occur in free space, we
may safely assume that the system matrix is nonsingular for
the guided-mode solutions. The system matrix A is of the form

(20)

and has eigenvalues SV = —A{™ = —(a{a{?)1/2. The
square root is chosen such that Im{)\gn)} < 0. A convenient

choice for the eigenvectors will turn out to be

= ()

n _(a(my1/2
= ()

where the subscripts 1 and 2 refer to the eigenvalues )\( ) and

)\g ), respectively. Since A is nonsingular, aZI)agg) # 0, and
hence, the two eigenvalues are nondegenerate.
A can be diagonalized by a similarity transformation:

(C)~TACH) = A(M),

and

2D

(22)

Here, the composition matrix C(™ is given by
(n)y1/2 (n) 1/2
n) — n) ( ) (a,
= )= (), 8l e

and for the decomposition matrix (C(™)~! holds

1/(a (n))1/2 1/(a("))1/2
( 1/(af)"? 1/(a3 "W?)

Notice that in this particular case, the nonsingularity of A
implies the nonsingularity of C. The diagonal*matrix A (™)

(™)1 24)

equals
A )‘gn) 0
"= . 25
< 0 /\gn)) (25)
Using A = CMAM™(C™)~1, and defining the wave func-

tion vector w(™) ag

wi?) = (C(")) Lg(n) (26)

we find that the differential equation (15) can be formulated in
terms of this wave function vector in a diagonalized form as

Aw(™ = A w(), 27
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The solutions are simply

W(n)(.’lfl) = exp (A(n)[.’tl _ $ref])w(n)(xref)
with 1, z5*f € D™ and w(™ (z}f) the wave function vector
at a certain reference level z; = z%*f in layer D(*), i.e.,

w(n)(xref) (C(n)) lf(n)( ref)

(28)

(29)

Since A is diagonal, this can be rewritten as

(wﬂ["(zl) )
w™ ()
- (exp[A§"><z1 ~ 1) 0
0 exp[-A{" (@1 —

(n)( ref)
( (“)( ref))
Since we had chosen Im{\{™} < 0, thls means (together
with the time-dependence exp[jwt]) that w )(wl) represents a
wave traveling in the positive ,-direction, whereas w™ (z1)
represents a wave that travels in the negative z;-direction.

Both waves have a transversal wavenumber k(") )\(")

Since A{™ = A{™ (k) it follows that k™ also depends on the
yet to be deterrmned lon%ltudlnal wavenumber k3.

Using that w = (C)™'f, the solution of our original ex-
pression (15) for the TE fields is

f(z1) = T(x1,27)f(2}),

a9)

(30)

e D™ (31)

’
.1;1, .'L'l
with

TM (21, 24) = C™ exp (A™[zy — .’r’l])(C("))_1

Because of the continuity of f across the interfaces, the field
vectors in two points that are located in different layers are
connected by a product of such transfer matrices.

In the case of losses and/or gain, the eigenvalue A\™ is
complex and the elements of the transfer matrix in (30) may
differ in orders of magnitade. A product of such matrices
will lead to numerical instabilities. Therefore, we resort to
a so-called scattering matrices approach because there such
difficulties are avoided, even for very strong losses and gain.
With these scattering matrices the modal analysis can be
carried out. This leads for a given angular frequency w
to the so-called resonance condition, and eventually to the
propagation constants k3(w).

(32)

V. SCATTERING MATRICES

The transfer matrix connects the wave function vectors
(wi"),w ™) in two different points. The scattering matrix,
however, relates the waves that are incident on a section with

the waves that are scattered from that section

(1) = s ()

It follows from (30), that the scattering matrix S is of the form

S(wl’xll)
- ‘”'1)]). (34)

(33)

_ ( 0 exp[—/\gn)(xl
exp[—)\gn) (z1 — )] 0
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Notice that the signs of the exponentials in S are the same. This
will prevent the loss of numbers during actual calculations.
The interpretation of the scattering formalism is elucidated in
Fig. 2.

A. The Scattering Matrix Between Two Interfaces
Using the continuity of the field vector f across the inter-
faces, we get from (31) that

lim £z + 8) = T™E™ + 6) (35)

where

T = T ("™, 2{™). (36)

The transfer matrix T() describes propagation through

layer D™ and the interface above it. Since w(z;) =

(C)=1f(2y) if z; € D™, it follows for infinitesimally
small positive § that

w(z(" ) + §) = (CM) I+

x (C+D)=1g((™) 4 )

= exp[A™ (mgn_l) - x&"))]

X (C(n))—lc(n+1)w(x§n) + 5) (3%)

(37

where we have used (32). Taking the limit § | O gives
w(a{" ) = QMw(z{") (39)

with
Q™ = exp[A(")(xgn_l) — xgn))](C("))_IC("‘H). (40)

Writing the elements of Q_(") as ¢;; and using (23) and (24)
leads to

i 1/2 . 1/2
m _ 1| [alz" AN
=3l " @ T\
|\ %12 @31
X exp (-,\ﬁ"’d“‘)) 1)
. o ) r a(n+1) 1/2 a(n+1) 1/27
(I1'721 = 5 - 12(n) + 21(n)
| a2 @21 |
X exp (w)\gn)d(")) (42)
(n) _ 1 [ [ D\ 2 e\ V2]
Q2711 = 9 - 12(n) + 21(n)
| a1o A1 |
X exp ()\(ln)d(”)) (43)
r 1/2 . 1/2
m _ 1| [als™" AN
B2 =3 (n) + (n)
|\ %12 a1
X exp (A(l")d“‘)) “4)
with the thickness of layer D(™) abbreviated as
d™ = g™ — g{"7Y. (45)
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w_u;)% % w(z})

Din)

(n—1)
wy(zy) %kl % w_{z1)

Fig. 2. Interpretation of the scattering matrix. The fields w4 (1) and
w_(z)) are incident on the slab D(*), The fields w_ (x; )and w. (z/) are
scattered away from this layer. The wy waves propagate in the x -direction
with (complex) propagation constant k;. The incident and scattered fields are
related by the scattering matrix S.

z
z) = zgn) !
z3
z2

-1
z; = z&" )

The above applies for 2 < n < N. For the case n = 1 we
define

QW =limQ(ei” - 8,2 +8) = (CM)~'C®. @)

The latter definition will be used later on. The matrix Q
connects the two wave function vectors (wg_"_l), w(_"_l)) and

(wﬂrn) , w™ )- So for the wave function vectors at two interface

(n—1) (m-1)
1 1

levels z and = we can write

w(z{"V) = QMQMHD ... QUm-DQm-Dy(z{™Y)
= Q" ™w(z"™Y). @n

Just as before, we want a scattering matrix formalism which
relates the incident fields at xi"_l) and zﬁ’"‘l) to the scattered

fields at the same points. Therefore, define

(m—1) (m-1)
’LU+(.’L'1 ) ) — S(n,m) (w— ("E ) ) 48
(i w0y )
It is readily derived that
(m—1) 1 (n—1)
w4 (2 )= (n,m) wy (2 )
q11
q(n’m) 1
~ =) (49)
a1
(n—1) qg’ll’m) (n—1)
w—('rl )_ (n,m) w+( 1 )
11

(nmy 2o ™ alp™
+ 922 mm)
11

w_(mgm_l)).

(50

This yields the elements of the scattering matrix S(™™) as

(n.m) 1
) Tamy
(nm) _ P q
S (nm) g glmm) ) (5D
q qﬁ'r;,m) (n,m)
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V1. THE GUIDED MODES

For the N-layer configuration of Fig. 1 we can write down
the scattering matrix for two points that lie just within the
substrate and superstrate, i.e., we consider the limit § | 0 of

(N-1) (N-1)
wi (T +6)\ _ (1,N)( (=g +5))
("l 5 ) = Wy ) o

wy(zy’ —6)
However, for a guided mode we must have exponentially
decaying scattered fields only, in both the substrate and the
superstrate. That means that

wi(@P =) =w_ @M V46 =0 (53)
Applying this to (52) leads to
-1 (N-1) 0
S(I,N) <w+($1 )) — ( . 54
( ) w_(z) 0 (54)

These equations in w+(m§N_1)) and w_(a:gl)) can only have a

nontrivial solution if the determinant of (S)~!, or the inverse
of the determinant of S, vanishes. Hence, we find the condition
(LN)

(111
(1 N)
UbP)

Det[(s®¥) ™! = =0. (55)

It should be realized that the coefficients g are a function of
the complex longitudinal propagation constant k3, as can be

seen from (41)—(44), (20), and (17). Since qu;'”) is a bounded
function of k3, the so-called dispersion relation reduces to

7™M (ks) =0 (56)
From definition (47) it follows that
QUM = QUIQE+LM . (1 <4< N) (57)

So the coefficient q(1 V) can be determined recursively through
gi,N) _ q& gt (i+1,N) +q (z) (z+1 N) (58)
qéth) — qézl)q(wl N) +gq (1) (z+1 N) (59)

with q(’) given by (41)-(44). The initialization is
QNN =1, (60)

Equations (58) and (59) are equivalent to the Redheffer star
product for “multiplication” of scattering matrices [1 1] They
form a numerically stable method for determining q11 N)(k )
[12).

Only for a finite and discrete set of values of k3 can the
dispersion relation be satisfied. Those values are precisely
the desired propagation constants of the guided modes of
the planar waveguide. A standard root-finding routine (using
Mulier’s method) is employed to find these zeroes of qgl )
in the complex k3 plane. Several limits for the TE roots can
be estimated [13]. These can be used to limit the area of the
plane in which the zeroes are sought. Further implementation
details are given in [10].
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Superstratengy = 3.169355
= 0.5u¢m
D® ng = 3.252398 4 jn”  d® = 500nm
z7 = 0.0pm
D®) ng = 3.252398 — jn”  d® = 500nm
zp = —0.5um

Substrate n; = 3.169355

Fig. 3. Geometry of an asymmetric four-layer dielectric waveguide proposed
by Nolting. The wavelength in vacuum Ao = 1.55 pm. n'’ denotes the
imaginary part of the index of refraction. This waveguide is studied in the
very high gain and losses regime, i.e., for n'’ relatively high.

A. Regaining the Field Distributions

We assume that w4 (ng_l)) is known up to some factor.

For a guided mode w, (2"~ ") and w_(z{"™") can then be
expressed in this quantity with the help of (49) and (50)

wi(2{"Y) = ¢y V), (61)
w_(2{" V) = g wy (o). (62)
So, for a point £; € D) this leads to
w+($1)>
w_(z1)
- (expmg";(xl - g V(e ‘3)) ©3)
n n— n’ p— .
exp[—A;" (71 — z1 Nagy ™ wy(y )

Using that f")(z;) = C™w(™)(z;) eventually yields the
desired expression for the electric and magnetic fields as a
function of z, viz.

ES™ (21) = (—jwpo)/? (W (21) - w™(a1)), G

= (n) Jkaks /2 (n) (n)

A () = (w—m)——we(")) (0 (@1) + 0™ (21))
(65)

B (1) = 22 =5 0 ). (66)

The expression for the third non-zero field component H f")
was obtained by using Eq. (13). The intensity I at a point
z1 € D™ is related with the Poyntmg vector as

<SS)T = —Re{Eng}

Here, the symbol (S3)r denotes the time-averaged longitudi-
nal component of the Poynting vector.

To summarize, the roots of (56) represent the value of k3
(and hence; the mode-index K) for a particular guided mode.
Knowledge of k3 allows computation of the coefficients g;;
of the scattering matrix. With the help of (64)—(66) the x,-
dependence of the fields can then be determined. That means
that all elements of the desired guided mode solution of the
form of (6) are now complete.

(67

VII. RESULTS

The first configuration that we study was suggested as a
difficult modeling benchmark by H. P. Nolting in connection
with the COST 240 project [14]. It is depicted in Fig. 3. This
InGaAsP-InP waveguide consists of two embedded layers
with identical real parts, but opposite imaginary parts of the
index of refraction. It was found that this structure allows two
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Fig. 4. Intensity profiles for the waveguide of Fig. 3 with n” = 0.07. The
three dashed lines indicate the boundaries between the layers. The two TE
modes (at Ao = 1.55 pm) have equal real and opposite imaginary parts for
their respective propagation constants.

Intensity (a.u.)

1.0 4
0.8 1
0.6 -
0.4 - lossless
gain only
0.2 gain and losses
0.0 T T T T
4 -2

¢
Xq {pm)

Fig. 5. Intensity profile for the TEq mode of a three-layer waveguide. If the
central layer is active, the wave is much more confined than for the passive
(i.e., lossless) case. If losses are included in the substrate and superstrate, the
confinement gets even stronger.

TE modes at Ag = 1.55 um. If n” < 0.064465, then the
imaginary part of the two-mode indexes is zero. For n’’ larger
than this value, the real parts of the two indexes coincide,
whereas the imaginary parts are opposite. For the latter case,
the intensity profiles for the two TE modes are plotted in
Fig. 4 with n” = 0.07. One mode, with gain, is predominantly
located in the active layer. The other one, with loss, is the
mirror image of the first with respect to the plane z; =
0. An identical behavior, but now around n” = 0.069229,
was found for the TM modes. Notice that values of n” in
this range correspond with extremely high gain and losses.
Nevertheless, the scattering matrix method allows us to deal
with- this structure. Our results agree with Nolting’s. This
example demonstrates the usefulness of our approach.

Next, we study a symmetrical three-layer configuration with
n1 = ng = 3.55 and ny = 3.60. The thickness of layer D(?)
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Air ns = 1.00

Ty = 1.6um
D@ nq = 3.40 — 50.002 d") = 600nm

zp = 1.0upm
D®) ng = 3.60 + 50.010 d® = 400nm

zy = 0.6pm
D@ ny = 3.40 — 50.002 d® = 600nm

z; = 0.0
Air ny = 1.00

Fig. 6. Geometry of a five-layer dielectric waveguide with both gain and
losses. D(®) s the active layer. The wavelength in vacuum Ao = 1.3 gm.

TABLE 1
GAIN AND Loss MoDES FOR TE AND TM FIELDs IN A FIVE-LAYER WAVEGUIDE

mode | gain (dB)/100um mode index K = k3/ko

TE 29.82 3.50344333295 + 77.10300097868 E — 03
TE, —0.96 3.33728685820 — 72.29491104011F — 04
TE, -2.23 3.25168520698 — 75.30514779910F — 04
TE; 5.62 3.10425142141 + 51.33798633975E — 03
TE, -0.73 2.87863677988 — 71.73729890360F — 04
TEs 6.50 2.62813932045 + 71.54864433114F — 03
TEg 2.97 2.24395136260 + 77.08377958008 E — 04
TE; 5.68 1.76819096041 + 71.35321718386 F — 03
TEg 10.32 1.07426202652 + 72.45789147357E —~ 03
TM, 27.47 3.49668379589 + ;6.54398171098E — 03
™, 0.14 3.33069711910 + 73.51864222567F — 05
TM, —0.73 3.22433799874 — ;1.74482612621F — 04

is 200 nm, and Ay = 1.3 pm. In Fig. 5, the intensity profile
along the z;-direction is plotted for the TEy mode. If a positive
imaginary part is added to n (i.e., layer D) becomes active),
e.g., ng = 3.60 +j5 0.50, the wave gets more confined to the
central layer. This effect is enhanced if the two outer layers
become lossy with n; = n3 = 3.55 —7 0.15. In this example
we have a relatively small refsactive index step and a very large
gain, to show the effects of gain and losses on confinement. It
should be remarked that the increased confinement practically
does not occur in other more realistic configurations, e.g.,
when 71 = n3 = 3.20 and ny = 3.60 (core thickness again
200 nm, Ay = 1.3 pm). The confinement factor for the TE,
mode is now 56.8%. Introducing gain and losses by taking
ny = ng = 3.20 —5 0.01 and ny = 3.60 +j 0.10, merely
changes the confinement to 57.1%.

The next example is the five-layer dielectric structure that is
depicted in Fig. 6. All TE modes, plus the first three TM modes
are given in Table 1. Listed are the mode indexes which are
defined as K = k3/ko, with kg the free-space wave number.
While the first TE mode is a gain mode, the next two TE modes
are loss modes. The higher order modes show a seemingly
random alternation of loss and gain modes. For the TM field
all higher order modes (not tabulated) are gain modes for this
particular case. The intensity distribution along the lateral z;-
direction; as depicted in Fig. 7 for two TE modes, gives some
indication. Since the TE; mode is seen to be mainly confined
to the active layer, it comes as no surprise that this a gain
mode. Likewise, the intensity for the TE; mode is relatively
low in the central layer and this is, indeed, a loss mode.

We can also study what happens with the TE; mode for
this configuration when the imaginary part of n3 is gradually
decreased. This is plotted in Fig. 8, which shows the loci of
the mode index K = k3/ko with Im {n3} as a parameter. As
expected, the imaginary part of the index is lowered, which
means a lesser gain per unit length, for a decrease in the Im
{n3}. For ng purely real the TEy mode is already a loss mode
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Fig. 7. Intensity profiles for the TEp and TM; modes of the five-layer
waveguide of Fig. 6.
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Fig. 8. Effective index loci for theTEq mode of a five-layer waveguide for
varying imaginary part of the refractive index of the central layer D), X:
Im{n{®} = 001, 0:Im{n(®} = 0.00, Z: Im{n(®} = —0.01.

with a negative imaginary part. For Im {n3} < 0, the real
part of the mode index gets smaller, whereas the imaginary
part increases.

In Fig. 9, the root loci are shown for a decreasing thickness
d® of the gain layer. For all modes the real part of the index
decreases with decreasing thickness. The TEy mode, which is
originally a gain mode, shows less gain with decreasing layer
thickness and eventually becomes a loss mode.

In general, there is a substantial gain difference between TE
and TM modes, even though the permittivity e that we consider
is a scalar. In the waveguide under consideration, the TM, gain
per length is almost 10% less than that of the TEy mode, as
can be gathered from Table I. For planar dielectric waveguides
the mode with the lowest cutoff frequency is always TEg. The
confinement for this mode and hence, the gain in case of active
media is therefore greater than for the TMp mode. We return
to the connection between gain and confinement in the next
example.

As a model of a realistic semiconductor amplifier we
examine the configuration of Fig. 10. It consists of a InP
substrate, and an InGaAsP active layer, which is sandwiched
between a n-doped and a p-doped layer of InP. On top a thin
_ gold contact layer is deposited. The imaginary parts of the
index of refraction of the doped InP layers correspond with
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Fig. 9. Effective index loci for decreasing thickness d(3) of the active layer
of a five-layer waveguide. All modes move in the direction of decreasing
Re{n.g} with decreasing thickness (see arrow). Eventually all modes are
lossy. The thickness is varied from 0.4 pm to zero.

Air ng = 1.00 X

z; = 4.19um
Au ng = 0.18 — §10.2 d®®) = 40nm

z1 = 4.15pm
p-InP ng = 3.16 — j0.0001  d® = 1.0um

21 = 3.15um
InGaAsP  n3 = 3.60 + j0.002 d® = 150nm

N z; = 3.00pum

n-InP ny = 3.16 — j0.0001  d® = 3.0um

zy =0.0
InP ny = 3.16

Fig. 10. Geometry of a planar optical amplifier with both gain and losses.
The wavelength in vacuum Ao = 1.3 pm. The gain of this device is very
sensitive to the state of polarization. N. B. vertical distances are not true to
scale. *

doping levels of the order of 10'8/cm? [15]. It is found that at
Ap = 1.3 um only one guided TE and one guided TM mode
can be sustained. It was found that the sensitivity of the gain
to the state of polarization is very great. For an active layer
thickness of 150 nm, the TE gain is almost twice as great
as that for the TM, namely 3.84 dB/100 pm against 2.29.
Contrary to what is sometimes thought, the confinement (i.e.,
the percentage of the intensity of the mode in the active layer)
is quit similar for the two modes (45% for TE against 41%
for TM). The role of the confinement factors and their relation
with the modal gain is elucidated in [6]. The difference in gain
is due to the difference in the imaginary part of the effective
index of the two modes. It was found that n.g = 3.2808 +j
9.139 x 10~* and n.g = 3.2480 +; 5.463 x 10~* for TE
and TM, respectively.

Due to the good confinement, the presence of the thin Au
contact layer makes very little difference to the mode indexes.
So, in most practical situations one does not have to take this
layer into account.

Finally, we studied the frequency dependent permittivity ¢
by taking six closely spaced Lorentz lines [see (5)] around
Ao = 1.3 pm. Five lines were emission lines and one described
absorption. Constructing the gain profile this way ensures that
the complex permittivity e(w) satisfies the Kramers-Kronig
causality relations. The resulting Im{e} profile of Fig. 11 is
similar to measured gain profiles [16, ch. 3]. As can be seen
from Fig. 12 the TE, gain for this profile can be up to two
times greater than that for the TMy mode. Also, the width of
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Fig. 11. The imaginary part of the permittivity € versus w for the InGaAsP
gain layer D(3). This profile is the sum of five Lorentzian emission and one
absorption line. The peak at Ao = 1.325 pm corresponds with a bulk gain
exponent of 268 cm~1.
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Fig. 12. Gain in dB per 100 pgm for the TE; and TMy modes as a
function of w for a semiconductor laser amplifier. At the resonance frequency
(corresponding with Ag = 1.32 um) theTE( gain is 103% larger than the
TMo gain. Off resonance, both modes become lossy, but the TMy mode does
so first.

the TE profile is substantially larger. Off resonance both modes
eventually become lossy, but the TMy mode does so first.

The difference in gain between TE and TM modi for
laser amplifiers with thin (~100 nm) active layers is usually
accredited to a difference in confinement factors. The present
authors do not entirely agree with that view. In the first place,
we have shown that even with similar confinement factors
there may still be a substantial difference in gain. In the second
place, contrary to conventional wisdom, the relation between
modal gain and confinement factors for TE differs from that
for T™M [6].

VIII. CONCLUSION AND DISCUSSION

We have used a scattering matrix approach to study the
waveguiding properties of planar configurations with strong
losses and gain. Contrary to the usually applied transfer matrix
method, the model that we use is numerically stable. Even
configurations. with very strong losses and gain can easily be
dealt with.

It was seen that increasing the gain in the active layer causes
the fields to be more confined.

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 31, NO. 10, OCTOBER 1995

For realistic semiconductor laser amplifiers with losses in
the embedding around the active layers, the gain is found to
be very sensitive to the state of polarization. The TE gain (in
dB/100 pm) can be 100% greater than that for the TM mode.
This is in agreement with measurements.

From this study we conclude that isotropic planar amplifiers
inherently posses a significant gain sensitivity to the state of
polarization. That means that in order to achieve the desired
polarization independence one must resort to an anisotropic
active layer, and/or to two-dimensional devices, such as ridge
waveguides.
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