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Abstract

This paper is concerned with the validity of scalar models frequently used in analyzing scattering of electromagnetic
fields by bodies with sharp boundaries. The fact that the electromagnetic field vectors generally undergo discontinuous
jumps at the boundaries is usually ignored. We derive a modified equation which takes the field discontinuities into account
and we discuss some of its consequences. © 1997 Published by Elsevier Science B.V.

1. Introduction

It is well-known that at boundaries of media with
which an electromagnetic field interacts, some com-
ponents of the field vectors are discontinuous. How-
ever, because of the complexity of a full vector
treatment, electromagnetic scattering problems are
often analyzed by the use of scalar theory; and,
moreover, the scalar field and its normal derivatives
are, as a rule, assumed to be continuous at the
boundary of the scatterer. "

In this paper we present some results of the
consequences of ignoring the field discontinuities at
sharp boundaries of scattering bodies.

" On leave from Department of Physics and Astronomy, Free
University, Amsterdam, The Netherlands.

2. Discontinuities of the electric field at the
boundary of a dielectric scatterer

Suppose that a monochromatic electromagnetic
field of angular frequency w (time dependence
exp(—iwt)) is scattered by a homogeneous dielec-
tric medium, surrounded by free space. It follows
from Maxwell’s equations that the normal compo-
nent of the electric displacement vector D is contin-
uous at the boundary (Ref. [1], Eq. (1.17) with
o= 0). Hence if D* and D~ represent the value of
D just outside and just inside the medium and n
denotes the unit outward normal to the boundary we
have

n-(D*=D")=0. (1)

If E* and E™ are the corresponding values of the
electric field (see Fig. 1), we evidently have

D*=E*, D =E +4xP", (2)
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Fig. 1. Illustrating scattering on a dielectric medium occupying a
volume V, bounded by a surface S. E®, H® represent the
electric and magnetic fields incident on the medium.

where P~ denotes the induced polarization just in-
side the scatterer.
It follows from Egs. (1) and (2) that

n-AE=4wn- P, (3)
where
AE=E*—E". (4

Since P~ does not vanish identically it follows that,
in general, the normal component of the electric field
has a discontinuity (or saltus) at the surface bound-
ing the medium 2. This discontinuity is not known a
priori; it can only be determined after the scattering
problem has been solved.

3. Scalar scattering in the presence of field discon-
tinuities at the boundary of the scattering medium

As we already mentioned, discontinuities of the
field at the boundaries of scattering media are usu-
ally not taken into account in scalar treatments. We
will now derive a correction term which must be
added to the usual equation for the scattered field to
take such discontinuities into account. Because the
full calculations are rather lengthy we will only

2 The situation is different for potential scattering in non-rela-
tivistic quantum mechanics. The Schrodinger wave function and
its normal derivative at the boundary of a (finite) potential step or
potential well are necessarily continuous because the probability
density and the probability current are assumed to be continuous
functions of space and time.

indicate the main steps, based on certain general
formulas which were derived in an earlier paper [2],
dealing with quantum mechanical potential scatter-
ing. It was shown in that paper that the following
two equations relating to potential scattering hold:

1
0= —Ej;:p(r’)U(r')G(g ,7) &

- 5Or) )
and
b(r) =0O(r) + = S(r,), ©)
where
aG(r, r
2(r) =/st[w(r')-——(a—,7—l
-G(r, r’)i%(;;-)— dst. (7)

Except for a slight change in the notation, Egs.
(5)-(7) are Egs. (2.7d), (2.14) and (2.82) of Ref. [2].
In the above formulas ¢@(r) represents the incident
field, ¥(r) represents the total field (i.e. incident +
scattered), U(r) represents the scattering potential
and

G(r,r)=e*""l/|r—r| (8)

is the outgoing free-space Green’s function. The
vector r, represents a point outside the scattering
volume, d/9n denotes differentiation along the out-
ward normal to § and the superscripts + indicate that
the integration is taken along a surface S* just
outside or along a surface S~ just inside of S (Fig.
2).
From Eqgs. (5) and (6) it follows that

y(rs) =¢9(r;)
1 ’ 'NA3,/
—z;fvw(r)u(f)c(r>,r)d r
+2(r,), 9)

where

1
#(r) == [20(r) -3 (10)
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Fig. 2. Nlustrating the meaning of the surface S* and S~ in the
integral (7).

or, more explicitly, using the definitions (7) of 3 *,
and proceeding to the limits as the surfaces S~ and
S* approach the surface S,

1 aG(r, , r
y(r>>=;,[g{w<r'>—(—an,——)

_G(r>,r’)A[a¢(r1)]>ds, (11)

on
where
AY(r) =y () —¢(r), (12a)
’ ) (=) 4
A[aw(r)]=a¢ () WD
on' an an

represent the discontinuities (salti) of the total field
¢ and of its normal derivative dy/dn" across the
surface S bounding the scattering volume,

The formula (9) is a generalization of the usual
integral equation of potential scattering (see, for
example, Ref. [3]) when the field and (or) its normal
derivative have discontinuities at the boundary of the
scatterer and the field point is located outside the
scattering volume.

When the field and its normal derivative on the
boundary S of the scatterer are continuous, Ay(r')
= A[oy(r)/dn]=0 on S and then 3*=3". In
this case we see from Eq. (10) that #(r,) =0 and
Eq. (9) reduces to the usual integral equation of
potential scattering. Evidently Eq. (9) is a generaliza-
tion of that equation when the field and (or) its
normal derivative are discontinuous across the
boundary of the scattering volume.

4. Effects of discontinuities on the far field

We will now use Eq. (9) to estimate the effect of
the discontinuities on the field at points far away
from the scatterer.

Suppose that the point r is in the far zone, in a
direction specified by a unit vector u, i.e. ro=r, u
(see Fig. 3). The asymptotic form of the free-space
Green’s function as kr, — , with the unit vector u
being kept fixed is [4]

G(r, rr) ~e—iku-r’eikr/r’ (13)

where, for the sake of simplicity, we have now
written r in place of r, . If ' denotes the unit
outward normal to S, we readily find from Eq. (13)
that

OG(r, ¥)/on ~ikn - we " Te* /. (14)

On using the asymptotic approximations (13) and
(14) in Eq. (11) it follows that the contribution of the
surface integral (11) to the integral in Eq. (9) when
the field point is in the far zone is (writing now %
in place of .%):

F(ru)

1 eikr o al,b
=~ s fs{lkn . uAdt—A[a—n,]}

X gikusrgs, (15)

Since this surface term contains the unknown discon-
tinuities of the field and of its normal derivative, it is
not easy to determine quantitatively its contribution
to the scattered field. However, for the special case
of s-wave scattering by a homogeneous sphere, one

Fig. 3. Illustrating the notation pertaining to the formula (13). u is
the unit vector r/ | r|.
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can obtain an order of magnitude estimate for this
contribution. We have, in this case,

U(r)=U,, whenr<R,
=0, when r >R, (16)

where R is the radius of the scatterer. As is well
known, the field in this case is given by the expres-
sion (see, for example, Ref. [5])

ll’(r) =Cj0(kr<)’
= Ajo(kr ) + Bny(k, 1),

where j(x) and ny(x) are the spherical Bessel
function and the spherical Neumann function respec-
tively of order zero, k. and k., are the wave
numbers inside and outside the spherical potential
and A, B and C are constants. We assume that the
discontinuities Ay and Ady/dn" are proportional to
Y and ay/dn respectively, with the proportionality
factors being of the order of unity. (The assumption
concerning A is seen to be plausible from Eq. (2).)
If we bear in mind that the scattering potential is
proportional to k2, with proportionality factor also of
the order of unity (see, for example Ref. [6]) we
obtain from Eq. (9) with . replaced by .7 the
following order of magnitude estimate for the ratio
of the surface term to the volume term (denoted now
by #7°) in Eq. (9):

) 1

——=0|—|, k. R=1. 18
4 (kR) > (18)

(The constraint &, R = 1 ensures that one is dealing
with s-wave scattering.) The order of magnitude

when r <R,
when r >R, (17)

relation (18) implies that when the linear dimensions
of the scatterer are of the order of the wavelength of
the incident field or smaller, the discontinuities of
the field and of its normal derivatives across the
surface may significantly affect the scattered field in
the far zone.

We stress that whilst the formula (9) is exact the
order of magnitude estimate (18) has been obtained
only for s-wave scattering.

Acknowledgement

This research was supported by the National Sci-
ence Foundation, the New York State Foundation for
Science and Technology and by the Army Research
Office under the University Research Initiative Pro-
gram. T.D. Visser is supported by the Technology
Foundation (STW).

References

[1] J.D. Jackson, Classical electrodynamics, 2nd Ed. (Wiley, New
York, 1962) Sec. 1.5.

[2] D.N. Pattanayak and E. Wolf, Phys. Rev. D 13 (1976) 913.

[3] P. Roman, Advanced quantum mechanics (Addison-Wesley,
Reading, MA, 1965) Sec. 3.2.

[4] L. Mandel and E. Wolf, Optical coherence and quantum optics
(Cambridge Univ. Press, Cambridge, 1995) Eq. (3.2-86).

[5] C.J. Joachain, Quantum collision theory (North-Hclland, Ams-
terdam, 1983).

[6] E. Wolf and R.P. Porter, Radio Sci. 21 (1986) 627, Eg. (6).



