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Generation of complete coherence in Young’s
interference experiment with random

mutually uncorrelated electromagnetic beams
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The recently developed theory that unifies the treatments of polarization and coherence of random electro-
magnetic beams is applied to study field correlations in Young’s interference experiment. It is found that at
certain pairs of points the transmitted field is spatially fully coherent, irrespective of the state of coherence
and polarization of the field that is incident on the two pinholes. © 2005 Optical Society of America
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In a recently published series of papers1 – 3 a new
theory was developed that unif ies the treatments of
coherence and polarization of random electromagnetic
beams. (The term random electromagnetic beam
means, of course, that the electric and magnetic f ield
components vary randomly in time. Such beams are,
in general, both partially coherent and partially po-
larized). A key element of this theory is the spectral
interference law for the superposition of such beams.
If one measures the field intensity, the visibility of the
interference fringes formed by light beams superposed
in Young’s experiment is proportional to the spectral
degree of coherence of the electric f ield at frequency
v at the two pinholes, Q1�r1� and Q2�r2�. It is given
by the expression
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where Tr denotes the trace. The electric cross-
spectral density matrix that can be used to character-
ize the state of coherence and polarization of the f ield
at the two pinholes is defined as

$
W �0��r1,r2,v� �

"
W �0�

xx �r1,r2,v� W �0�
xy �r1,r2,v�

W �0�
yx �r1,r2,v� W �0�

yy �r1,r2,v�

#
,

(2)
where
0146-9592/05/020120-03$15.00/0
W �0�
ij �r1,r2,v� � �E�

i �r1,v�Ej �r2,v�� ,

�i, j � x, y� . (3)
Here Ei�r, v� is a Cartesian component of the electric
field in two mutually orthogonal x and y directions,
perpendicular to the direction of propagation of the
beam, at a point specif ied by a position vector r at
frequency v, of a typical realization of the statistical
ensemble representing the f ield (Ref. 4, Sec. 4.3). The
asterisk denotes the complex conjugate, and the an-
gular brackets denote the ensemble average. The
absence of off-diagonal elements of the electric
cross-spectral density matrix in definition (1) of the
spectral degree of coherence ref lects a generalization
of the classical Fresnel–Arago interference laws,5

according to which mutually orthogonal components
of the f ield do not give rise to interference. We em-
phasize that definition (1) is based on an analysis of
an actual interference experiment, unlike definitions
suggested in other publications.6

In this Letter we apply the unif ied theory of coher-
ence and polarization to study previously unknown
properties of the spectral degree of coherence in
Young’s interference experiment with random electro-
magnetic beams (see also Ref. 7).

Consider a random electromagnetic beam propagat-
ing close to the z axis, incident on a plane opaque
screen containing two pinholes at points Q1�r1� and
Q2�r2�, with

r1 � �a, 0, 0� , (4)

r2 � �2a, 0, 0� (5)
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Fig. 1. Notation relating to Young’s interference
experiment.

(see Fig. 1).
We first derive expressions for the f ield at two ob-

servation points P1�r1� and P2�r2� in the paraxial ap-
proximation. For brevity, we omit from now on the
v dependence of the various quantities. The compo-
nents of the electric f ield at P1 and P2 are given by
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respectively, with Rij denoting the distance
QiPj �i, j � 1, 2�. Factor K is approximately equal
to 2idA�l, where dA is the area of each pinhole and
the wavelength l � 2pc�v, with c being the speed of
light in vacuum. This expression for K follows from
the paraxial approximation to the propagator. For
observation points P1�r1� and P2�r2� in the far zone,
with position vectors

r1 � r1s1 , (10)

r2 � r2s2 , (11)

with �s21 � s22 � 1�, we can use the approximation

Rij � rj 2 ri ? sj . (12)

Usually one can also make the approximation

r1 � r2 � R . (13)
Let us consider observation points that satisfy the
additional requirement that

s1x � s2x . (14)

These are pairs of points P1 and P2 in directions repre-
sented by the directional vectors s1 and s2 whose end
points both lie in the plane x � constant. From the
formula

six � sin ui cos fi �i � 1, 2� , (15)

it follows that there is an infinite number of pairs of
points that satisfy Eq. (14). Among them are points
P1 and P2, which both lie in the bisecting plane, i.e.,
the plane that is perpendicular to the screen and bi-
sects the line joining the two pinholes. By making
use of Eqs. (3), (6)– (9), and (12) and (13), we obtain
the following equations for the elements of the electric
cross-spectral density matrix at P1 �r1� and P2 �r2�:
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In a similar way we find that
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and
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On substituting from Eqs. (16)–(21) into Eq. (1), it fol-
lows that the spectral degree of coherence is given by
the expression

h�P1,P2,v� � exp�ik�r2 2 r1��

�if s1x � s2x� . (22)

This result shows that, at pairs of points P1 and P2
for which s1x � s2x, the spectral degree of coherence
is unimodular at each frequency, irrespective of the
state of coherence and the state of polarization of the
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field incident on the two pinholes. That is, the f ield is
spectrally completely coherent at such a pair of points.

Next consider a pair of points P1 and P2 that both lie
in the bisecting plane and are a mirror image of each
other in the plane y � 0 (i.e., s1y � 2s2y). It follows
from Eq. (22) that one then has

h�P1,P2,v� � 1 �s1x � s2x , s1y �2s2y � . (23)

This implies that the f ield at P1 and P2 is fully
coherent and cophasal. According to the spectral
interference law for the superposition of random elec-
tromagnetic beams,1 this result has a clear physical im-
plication: If light from two such points is superposed
in a second Young’s experiment, then the visibility of
the resulting fringe pattern will be unity regardless
of the state of coherence and the state of polarization
of the f ield at the two pinholes. We emphasize that
this would be so even if, for example, each pinhole
were illuminated by a different laser.

It is useful to compare our results with the predic-
tions of the van Cittert–Zernike theorem (see Ref. 4,
Sec. 4.4.4). This theorem elucidates how a completely
incoherent source can generate a field in the far zone
that, in certain regions, is highly coherent. However,
in contrast with our analysis, the theorem predicts
only the existence of pairs of points whose degree of
coherence is less than unity. Moreover, the theorem
concerns scalar fields and does not take into account
the polarization properties of the field as our analy-
sis does. Finally, we note the recently introduced con-
cept of the spectral degree of coherence of an electro-
magnetic field—as expressed in Eq. (1)—has not been
applied previously to the study of interfering electro-
magnetic beams.
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