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Theory of Polarization-Dependent Amplification
In a Slab Waveguide with Anisotropic
Gain and Losses

T. D. Visser, H. Blok, and D. Lenstra

Abstract—We analyze the waveguiding properties of a semi- power confinement or filling factors are comparable for the
conductor slab waveguide amplifier in which the gain (i.e., the two polarization states. This is explained by the fact that the

permittivity) in the quantum well (QW) is taken to be anisotropic. : : : _
Losses may be present simultaneously in the cladding layers. often used approximation for the modal g@illoa = L'gpur,

Using scattering theory, a rigorous integral equation is derived. WhereI' is the power confinement factor amg.u. the bulk

Our model incorporates the two main causes of polarization gain of the active layer, is highly inaccurate for TM modes
sensitivity of the amplification, viz., 1) waveguiding and 2) the under typical circumstances. This follows from the fact that
anisotropic light—-matter interaction in the QW. It is determined the TE and the TM solutions satisfy different wave equations.

how much anisotropy is needed in the QW to get a polarization- = derivati f th lati b fi
insensitive amplification. Also, reflection coefficients and TE/TM or a derivation of the exact relation between confinement

mixing are studied. A comparison between the exact results and factors and gain, we refer to [4] and [5].
the Born approximation is made. A Green's tensor for a layered  So, in order to obtain the desired polarization-insensitivity,

structure with losses is derived. one must use either a nonplanar device, e.g., a channel or
Index Terms—Optical amplifiers, polarization, propagation, ridge waveguide [6] or a slab waveguide with an anisotropic
scattering, semiconductor lasers, waveguide theory. active layer. In this paper, we concentrate on the latter.

This is inspired by the report of a high-gain polarization-
insensitive semiconductor amplifier that is now available [7],
. INTRODUCTION [8]. This device uses several quantum wells (QW's) (of both
LIGHT signal that travels along an optical fiber willthe tensile strain and the compressive strain type) to obtain an
continuously change its state of polarization. Thereforamplification that is equal for TE and TM signals. It operates
it is important that the amplification of weakened signals im a wavelength window around 1310 nm that is favorable for
long-haul networks is polarization-independent. The samedptical fiber communication.
true for preamplifiers that are used to enhance the sensitivityin this paper, we model the polarization sensitivity of a
of detectors. It is important to note that even in fiber amplifiessemiconductor slab laser amplifier (SLA) within the linear
polarization effects play an important role. The reason iggime. The gain in the active region is supposed to be
that both the incoming signal and the pump beam can caugsisotropic, i.e., the permittivity there is represented by a
polarization hole burning [1], [2]. tensor rather than a scalar. The anisotropy of the permittivity
Semiconductor optical amplifiers are an attractive alterngrises through the presence of (strained) QW'’s. In other
tive for fiber amplifiers because of their small size, low Cosfayers, isotropic losses may be present. We use the so-called
and easy integration with other components. However, ta@main integral equation method (DIEM), which has been
amplification in these devices is not inherently polarizationseq previously to derive guided modes of channel and ridge
independent. For example, we found in a previous papghveguides [9]-[12]. In this study, it is used to describe
[3_] that, for _realistic isotropic dielect_ric slab structures (i.eine scattering of an incident field by an anisotropic active
with an active layer of~150u:m thickness and &calar yegion of a finite length: the QW. The DIEM is a rigorous
permittivity), the gain in decibels per length unit for TE; 00401 which, unlike many approximate methods, does not
modes can be almost twice as large as that for TM m°d§§rffer from drawbacks such as a finite-sized computation
It should be realized that this can happen even when %dow, or instabilities near cut-off [13]. It is essentially a

Green’s function method, for which the Green's tensor for
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Cover form
AX) . A
: : 1 {ElnC7 HlnC}(xlv x3, jw7 N)
: = {Eg*, Hy}(a1; N) exp[—j(Bzs —wt)].  (5)
Dls+1) (ls+1)
2 Here N = pf/ky is the mode index or effective index,

— T Dl

A with /3 the (complex) propagation constant of the mode, and
i o ko = w/c the free-space wavenumber. In [3], a numerically
, 3 stable method is described to obtain both the effective index

.
.
B

: : ‘ and the field distribution in an active slab configuration, even
24 when the background consists of layers with strong losses (i.e.,
Substrate IIH{G} < 0).

Fig. 1. Geometry of a semiconductor SLA. The domdn (the shaded From now on, thejw-dependence and the mode in

region) indicates the active region (QW). It is completely contained withiWill b€ suppressed in our notation.
the “background layer'D(s). The gain inD is anisotropic, i.e.£ is a

tensor. The incident guided mode propagates in the positjwdirection with M
effective indexs.

. DOMAIN INTEGRAL EQUATIONS
In this section, we derive domain integral equations which
yield the field anywhere in the SLA. We distinguish between
the actual configuration of Fig. 1 and the corresponding
We study a configuration that is stratified in the vertical ofhackground configuration.” The latter consists of all layers
z, direction (see Fig. 1). It is made up of a “background” oput now without the finite gain domainD, i.e., the layer
homogeneous and isotropic layers of dielectric material whigh(s) with permittivity ¢ now extends all along:s. The
extend from minus to plus infinity in the, andx; directions. packground, which is denoted by the superscrpt has
In layer D(*), however, there is a volume—finite in the and  scalar permittivitye = ¢?(z;). In the configurationwith the
x3 directions, infinite in the direction af;—of active material anisotropic domairD, indicated with the Superscriﬁp, we
in which the incident wave gets amplified. This volume, whicRgye ¢ = 65(3517 z3).
represents the QW, is called the “domaih” The electric  \We can write Maxwell’s equations for the total field in the

properties ofD are anisotropic, i.e., the permittivit” is a total configuratiorwith the domainD by altering (2) and (3)
tensor. The lowest layer of the background, the substrate, apgh

its top layer, the cover or superstrate, are both semi-infinite in

Il. CONFIGURATION AND BASIC EQUATIONS

the z; direction. An incident field, traveling in the positiug -V x IA{ + jwe” ]}) = —Jor (6)

direction, is amplified in the active domai. VXE+jwuoH=0 (7
Often, so-called windows are used in which the active layer.

is embedded in semiconductor material in order to redu)f\@th

reflectivity (similar to how the active layeP is embedded jﬁgﬂ(wl’ x3) = jwlel (x1, z3) — B (21)8mn]

in D) in Fig. 1). Til ive wavegui r for th A
g. 1). Tilted active waveguides are used for the x Ep (a1, z3). ®)
same purpose [14]. X
Both the electric fieldS and the magnetic fielt are written The “electric contrast sourceJ< reflects the presence of

as the sum of the incident field and a scattered field the active volumeD which has a different tensor permit-
A o A tivity €2, within the embedding background. (The electric
{E, H} = {E™, H™} + {E°*, H**}. (1) contrast current has the dimension of the time derivative of

The incident field satisfies th q M I . a polarization contrast. Therefore, it is sometimes called the
f € incident f|e satisfies the steady-state Maxwe equat'o“qe'ﬁuivalent polarization current.”) Everywhere outsitlethe
or a source-iree region contrast source vanishes. Notice that since we had assumed

_V x H 4 juweB B = 0, ) the magnetic permeability to h&, everywhere, in thi_s study
. ] . we do not allow for contrast sources of the magnetic type.
V x B A jwio H™ = 0. (3) Subtracting (2) and (3) for the incident field from (6) and
B I 7) yields two expressions relating the scattered field and the
Heree”(z1) denotes the scalar permittivity of the backgroun tal field
configurationwithoutthe domainD, i.e., with c}; replaced by A A A
¢®). Just like the configuration, the field is assumed to be —V x H*® 4 jweB Es® = _Jeon 9)
independent frome., i.e., V x E 4 jwpg H* = 0. (10)
{H, E} = {H, E}&1, x3, jw) (4) The contrast sourcg<™® can be written as a superposition of

electric current line sources
henced, = 0. The background media are assumed to be homos_
geneous, isotropic, nonmagnetic, nonconducting, and Iinear'.]m (21, 23)
The incident field is assumed to consist of TE or TM guided  _ // Jeon( !, #)6(xy — #,)6(ws — o) dah day. (11)
modes of the background configuration. That is, it is of the D
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The scattered electric and magnetic fields that are generated bigquation (17) can be greatly simplified by using the Born
a single line source are the so-called Green states, symboliapgroximation. The total field appearing in the integral is then
by E¢ and H, respectively. From (9) and (10), it is cleareplaced by the incident field, leading to

that for a current line source &t , =%), which is directed

along a unit vectorn, the Green states satisfy

—V x HY + jwe® B¢ = —ad(x, — 2})6(xs — x)
V x B¢ —i—jquI:IG =0

(12)
(13)
Obviously, bothES and HY are linearly related ta. This

relationship is expressed by the two Green teng@fs and
GH. That is, we define

EF =GE q; (14)
HE =Gl ;. (15)

From the principle of superposition, it follows that the scat-

tered electric field can be written as an integral
Ert(z1, x3)
=[] Gt i ol atp et aty o] def,
D

For the total electric field, we thus get [cf. (1)]

(16)

Em(xh z3) :E;?C(xlv x3) + jw // érEr;n Aenp(@l, 73)
X EAp(x&, x%) dx) dxgp a7)
with
Acpp(a1, 73) = el (21, 23) — €7 (21)60y (18)

In a completely similar manner, we find that

H: (21, @3)

~

- / / GH (. wg; ), )T (o), ) o, dirly
D
(19)

Hence, the total magnetic field is given by

Hrn,(xla $3) :-H;I:C(xla $3) +jCU/ ér{{)n AC"P(‘/EII’ ‘/Eg)
D

x B (), o) dz’ da. (20)
P 3 3

The integrals are over the domain only. We now have two

coupled domain integral equations by, and H,,,. Although

the derivedE and H fields in (17) and (20) are those of the

total structure which contains the active reginit is of prime
importance to note that the Green tensGts andG¥ pertain

to the relatively simple background configuration which does
not containD. For x = (x1, x3) € D, (17) is a Fredholm
equation of the second kind iEm. Once the Green tensor is
known, the electric field can be solved numerically from (17).
The solution can then be used in (20) to find the magnetic field.
Incidentally, one can also derive these domain integrg)

equations from Lorentz’s reciprocity theorem [11].
The derivation of the electric Green tens6t

Ern(xla $3) %E;I:C(xla $3) +Jw / érEr;n AC”P(‘/L{U .’L’g)
D
(21)

For points within the scattering domain, this means that the
field is represented by the first term of the Born series. Rather
than an integral equation, this is an integral that can be
calculated numerically in a straightforward manner once the
Green tensor is known. In Section V, we will compare the
electric field in the Born approximation, (21), with the exact
field given by (17).

x B)(x, o) doy day.

IV. DISCRETIZATION AND IMPLEMENTATION

With the Green tensor known, adgf® given, we can now
proceed to solve the integral (17). This will be done with the
method of moments. Substituting the inverse Fourier transform
of the Green’s tensor into (17) gives

A A Tw
B (x1, v3) = B (x1, 23) + ;— //
Q D
X {/ G exp[—jka(xs — z%)] dkg}
AT C .Té)Ep(.Tll, xh)dxl day.  (22)

Next we writeEm as a sum ofP expansion functiong;,

r
= Z Qo T, fﬁ(xla $3) (23)
L=1
with «,,., expansion coefficients angr = 1, 2, 3. As

weighting functions, we use the sy (z1, x3)} with K =

, P which, just like f;,, have supporD. Expanding the
field in (22), multiplying with wg, and integrating ove®
yields

E (arn; L AI(L — Qp L Crnp; IS’L)
L

= Brn; K, (24)

where

Arxr = // wic(x1, z3) fr(r1, x3) doy dos

/ / wic(zr, 73)
x { / /D { /_ G exp[—jkg(a:g—a:'g)]dkg}

X Aepp (2, x5) fr(x], o) dz) dxg} dxy dzs
(26)
(27)

(25)

rnp, KL —

Bk = // wi (x1, £3)EN(xy, x3) day dus.
D

ext D is discretized into element®;, with 7 = 1, , P.
For the expansion functiong;, we take hat functlons with

IS Very supportDy, ie.,

involved and will be deferred to the Appendices. The magnetic

Green tensor will not be derived since the magnetic field can

be calculated by taking the curl of the electric field.

1, if (.Tl, .’L’g) € D[,

Ji(wy, ws) = {0, otherwise (28)
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andwg is chosen to be the product of two delta functions where

wKzé(:L'l—:L'lK)(S(:L'g—:L'gK) (29) 62:(041;17 Tty L py, 251, 00, 2 P, (X301, "'7a3;P)T
with (x1x, 23k ) the baricenter of elemer®,. This choice (35)
of expansion functions and weighting functions is called thé =(Bu:1, -+, Bi;p, By, -+, Bap, Bai, -+, Bsp)
point-matching method, which leads to (37)
Akr = 6.I(L N B0 4 _—
i .
Cmp; KL = é_ // {/ Gmn(xlk’a 37?[; k?:)
d Dyr —oo A1 Aip O 0 0 0
expl-iba(ea — o] dba 5 -
Apq App O 0 0 0
X Aepp (2, %) dzl daly (31) 0O --- 0 An Aip 0 -+ 0
Brn,; K = E:gc(xl K> $3I\') (32) : : :
. . 0 0 A A 0 0
where éx 1, is the Kronecker symbol. Expression (31) for Il rr A A
. . . : 0 0 0 0 11 ir
Cip; k1. €an be further simplified by assuming that,, is : : : :
constant ovefDy,. As is discussed at the end of Appendix B, . . :
the inner integral of (31) has no singularities. The outer integral 0 0 0 0 Aps App
has an integrable singularity. Therefore, according to Fubini’s P r r
Theorem [15], we may interchange the order of integration (38)
which yields . , .
y and C is defined in (39), shown at the bottom of the page.
Jw = From (30), it is seen that{ is the (3P x 3P) identity matrix.
Crn, KL — 5 A n, ) , Trn,n- CTL k3) dk 33 . . )
pKL = o 5F plzur x?”)/_oo e (hs) dhs (33) The matrix C, which contains the elements of the Green
with tensor, can be calculated from (33) and (83). The vegtor

) which describes the distribution of the incident electric field, is
Tym: i1 (k3) = — sin(ksAzsy /2) exp|—jks(z3x — L supplied by a mode solver [3]. So, with all ingredients known,
i (ks) k3 ( /2 [ (zars ) the simultaneous set of (35) for the field expansion coefficients

X / Gn(w1x, 75 ks) daf (34) ¢ can be solved : o

Dy The matrix elements in (39) are all combinations of the

9P? tensor elements of? . k1. However, because of the
shift invariance of the background configuration along the
d propagation directioncz, these tensor elements are not all

For all (m, n; K, L), the tensorT can be determine : . o
. , o independent. For instance, i, denotes the discretization
analytically. From (85) for the Green'’s tensor, it is seen tha . :
number of the domairD along thex; axis, then

forn, m =1, 2, 3 there are only five out of nine combinations
of n andm that yield nonzero elements @f.

From (24) it follows that the simultaneous linear equations | .. . .
for the expansion coefficients,. ;, of the total electric field Exploiting this symmetry reduces the number of calculations
can now be written in a matrix form as needed to construct from O(P?) to O(P), where P denotes

the total number of elements into which the domdhis

where Azs;, denotes the length alongg of the discretization
elementDy..

Grn,n;[&',L = Gnl,n;[&'+P1,L+P1 . (40)

(A—C)d=f (35) divided.
Cll;ll Tt Cll;lp Cl?;ll Cl?;lp 013;11 013; ir
Ci; m Ci1, pp Ciz p1 Ci2;pp Ci3; p1 Ciz; pp
021; 11 021; ir 022; 11 022; 1r 023; 11 023; ir
C= : (39)
Ca1; ;1 Co1, pp Ca2; p1 Coa;, pp Caz; p1 Coz; pp
031; 11 031; ir 032; 11 032; r 033; 11 033; ir
Cs1; p1 Cs1,pp Cs2, p1 Cs2,pp Cs3, p1 Cs3, pp

=4

=4
=4
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Cover ny = 3.16 ~ j0.0001 in |5 2 TE
Central Layer ny = 3.60+ j0.0 ool QW «; LillH 0.06
Substrate np = 3.16 ~ j0.0001 L 0.0

Fig. 2. A QW embedded in a lossy three-layer dielectric waveguide (Sidg g4 |
view). The wavelength in vacuuty = 1.3 pum. The QW is situated in the
central layer. It has a length, heightHd, and permittivitye, ;. The background 003l
configuration can only sustain one TE and one TM mode, which are both lossy.

0.02

2
1n |E|

g R

1 2 3 4 5

0.015

Fig. 4. Plot ofln |E|> as a function of position along the propagation
directionz3 (in micrometers) within a em-long QW. The QW is embedded
in the waveguiding structure of Fig. 2. The incident field is TE polarized.
The dielectric contrast tensdxe;; = ay0.016;;, with a« = 1 (lower curve),

a = 2 (middle curve), andi = 3 (upper curve). In this exampldf = 150

0005 nm, L =5 pum, andXo = 1.3 um.

2
AN A A A . . % in |x| ™

/‘vaVVV\/\/\/é ; ; :

Fig. 3. Plot ofln |E|? around a QW that is embedded in the waveguiding
structure of Fig. 2. The QW has a height of 150 nm and a length2sf um ~ °-%°
(x3 = 1.875 pm < x3 < 3.125 pm). The incident field travels in the
positive x3 direction and is TE polarized. In this examplgy; = 1.3 pm, 0.0}

0.06 -

V. NUMERICAL RESULTS

0.02

The numerical integration of (33) was carried out with
routine DO1AJF from the NAG library [16]. The simultaneous®-°*t
system of (35) was solved with routine FO4ADF, also from .
the NAG library. The structure we examine, a QW embedded 1 2 3 . s
in a waveguide, is depicted in Fig. 2. Note that we use bott

A . e . It-lb 5. Plot ofln |E|? as a function of position along the propagation
refractive indices: and relative permittivitieg. The relation directionz (in micrometers) within a 3em-long QW. The QW is embedded

between the two is = nZ2. in the waveguiding structure of Fig. 2. The incident field is TM polarized.
An example of the intensity distribution in and around a"® ?"z'e%tglc Con”a)St tegf@“éjf 61'100101‘;)' V;"thhf_t =1 (|0V|V§ CUflveO)f
o . . a = 2 (middle curve), andt = 3 (upper curve). In this exampld] = 15
QW embedded within this lossy layered background is showm, £ = 5 um, Ao = 1.3 um. ’
in Fig. 3. In the region left of the QWz3 < 1.875 um), the
incident TE field together with the reflected field give rise to
a spatially oscillating intensity distribution with a decreasing . . ) . -
maximum. Within the QW (.875 um < x5 < 3.125 um), the n the dielectric contrast tensor is depicted in Fig. 4. Here
incident field gets amplified. Together with the counter prop&®is = @70.016;;, with a = 1,2, 3. From the interference
gating reflected field this gives a distribution which increas@@ttern one deduces that in the QW the effective wavelength
with z3. In the region right of the QWi > 3.125 um), there Aer = 0.4 pm. This agrees well witheq of the incident
is only a decreasing transmitted field. We note from (5) thdte!d (0-396 um) which one expects to be hardly influenced
for a guided mode of the lossy background structlré E|? is by the relatively small dielectric contrast of the QW. We note

a decreasing linear function of the longitudinal coordinage that in all these cases the amplification is less than that of the
It is seen from Fig. 3 that the transmitted field (i.e., the fiel@orresponding active waveguide structure with an infinitely
to the right of the QW) gradually assumes this linear formong QW.
Note that this transition to a guided mode takes place overThe dependence of the amplification for incident TM waves
a length of approximately one effective wavelength. Using @D the dielectric contrast tensor is depicted in Fig. 5 for the
less rigorous guided mode expansion, one does not obtain $Age values. As expected (see Section I), the amplification is
structure of the near-field of the QW. considerably less for this polarization state.

The field distribution around the QW is similar when Thus far, we studied QW'’s with an isotropic contrast tensor,
the incident field is TM polarized; however, this field getse., A¢;; = ad;;. Next we keep the off-diagonal tensor
amplified less. elements zero, but let the diagonal elements be different.

The dependence of the amplification for incident TE waves
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Fig. 6. Plot of R = In |E|3,,/In |E|3,; at the end plane of the QW

as a function ofAeqq. The 3um-long QW is embedded in the waveg- - I3

uiding structure of Fig. 2. The dielectric contrast tengor;; = Bj0.01,

with 0 < B < 6. For B = 3, equal amplification for both polar- Fig. 7. Plot ofln |E]? as a function of position along the propagation

ization states is achieved. The other tensor elements were kept fixeddiggction 23 (in micrometers) according to the exact integral equation (17)

Aegs = Aezz = 70.02. In this example,H = 150 nm, L = 3 um, (solid line) and the Born approximation (21) (dashed line). The incident

and Ao = 1.3 um. field is TE polarized. The dielectric contrast tensor is (from bottom up-
wards) AE,ﬁj = ]'0.02(51']', AEZ']' = j0.056,jj, Aeij = jO.lO(Sl‘]‘, and
Ae;; = j0.206;;. The 3.5zm-long QW is embedded in the waveguiding

If we keepAe,, fixed, while varyingAe;; and Aess, then  structure of Fig. 2. In this exampley = 1.3 um.

the amplification of an incident TE wave remains unchanged.
Likewise, for an incident TM wave, one can vary the valu
of Aego without affecting its amplification. These results ca
be explained by considering th#h component of the first
Maxwell equation for a source-free region:

fe seen from (21), according to which the scattered field
raand hence, to a good approximatidn,|E|?) varies linearly
with Ae. The validity of the Born approximation is further
investigated in Fig. 7 in which the field distribution around
—(V x FI)i +jwe7;jEAj =0. (41) a QW is shown both according to the exact integral equation

P formalism (17) and the Born approximation (21). Two trends
For TE modes, onlyE; is nonzero, whereas.fqr ™ mOdescan be seen clearly: the Born approximation becomes less
both F; and F5 are nonzero. So, from (41), it is seen that

h . v affects the TM aai dql th ccurate for stronger scattering contrasts, and it becomes less
change inciy OF c33 ONly aflects the 1V gain and '€aves Meyqqrate for points that lie further away from the front plane
TE gain unaltered. Since for TM modées is the dominant

e L of the QW. Note that in all four cases the Born approximation
electric field component, it is to be expected that a change Q PP

. . 9€ {lderestimates the scattered field, as is to be expected for a
€33 influences the TM gain to a lesser extent than a S'm'lﬁfa\in medium. Also, in the Born approximation, we again see
change ine;;. Also, one expects that a change ds only ' '

) ) . that the field behind the QW assumes the form of a guided
influences the TE gain. The above results agree with thqﬁ%de of the background structure. That is, for > 4 xm

deliberations. 2 ' . . k
. _ E“Db I function af;. According to (5) th
Therefore, it appears that the TE gain and the TM gaiél [cyg)icale(;grgejige(;n?c:dzgc lon af. According to () this
can be influenced separately by influenciag and ey, When off-axis elements in the permittivity contrast tensor
r5‘?e considered, one finds, as expected from (41), that TM/TE
rpnixing takes place. That is, an incident TM field is not only

. reflected and amplified but now also gives rise to a reflected
before, the off-diagonal tensor elements are supposed to

. . . d a transmitted TE field, and vice versa. (Note that the
zero. This is precisely the anisotropy that one would expe

d . &telectric tensor is always symmetric [17, Sec. 14.1].) As an
for a (001)-grown Q.W structure. To |Ilustrate this, We.tOOkexampIe, we studied a purely imaginary contrast tensor with
a 3um-long QW with Aess = Aezz = 50.02 and varied

effect of waveguiding by introducing an anisotropy in the for
of a uniaxial permittivity. That iSAe¢;; # Aega = Aczz. AS

Aeq; (and therewith the TM gain, while keeping the TE gain 70.03  70.03 0
constant). It was found that, fake;; & j0.03, equal ampli- Ae= | 70.03 50.03 0 . (42)
fication is obtained for both polarization states (see Fig. 6). 0 0  40.03

So, fgr thls partlcular conﬂgurat!on of QW and.(_ambeddllng, I% this case, about %610-%% of the power of the incident
polarization-independent operation of the amplifier can inde

. . ) . mode was reflected as a TE signal. Of the transmitted
be achieved. That this can also be realized under practlfgnd amplified) signal, about-dl0-2% was coupled to the
circumstances was demonstrated by Tiemedjeal. [7]. The P gnal, 0 P

relationship between strain, optical transition matrix element-lél,E mode.

and the dielectric tensor will be the subject of future studies.
The almost linear dependence lof |E|2,; on Ae;; indi-

cates that in the weak contrast regime that we are consideringVe have presented a model to analyze the propagation

the Born approximation is reasonably accurate. This cafi polarized waves through a semiconductor laser amplifier

VI. CONCLUSIONS
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with an anisotropic QW. The model uses a rigorous scatterifiglds generated by the line source are now written as
formalism for which the Green tensor for a layered structure
with losses has been derived. It was found that the effed®-#, H*} = {&, H}(—ky, ks) - £ exp[—jki(z1 — z})]
of waveguiding, which tend to favor the amplification of TE (45)
signals, can be compensated for by having an anisotropic
uniaxial QW structure. The overall effect is then a polarizatio
insensitive amplification.

The use of an integral equation approach, although rigofia,» w5691 _ 5 & 17 e : o
ous, means that the analysis is restricted to scatterers wh Ee H b= A8 HY (R ho) -1, explik (e — )]

% 2 > ) and

dimensions are less than about one hundred wavelengths. (46)
For larger sizes, the matrix equations become too large to

handle. Nevertheless, we believe that the observed polanzat'ibnxl < 7. Here f7 = (f, p, f, )" and £f =
sensitivity does not change when going to longer amplifiéf, . f; z)" are the amplitudes of said exponentials that
lengths (while staying in the linear regime). represent waves traveling in the negative and positiye

With our model, one can study how the amplified fieldirection, respectively. The & coefficient matrices and
behind the QW gradually assumes the form of a guided modié that express all field components in terms 8f? and

of the embedding waveguide. HG’P are given by

Also, the conversion of TE waves into TM waves due to
off-diagonal elements of the permittivity tensor was analyzed. _ 1 0

A comparison between an exact expression for the scattered E(kr, k)= 0  —wpo/ks (47)
field and the Born approximation was made. It was found that, ky/ks 0
for the short £5-pm) QW's in the weak contrast regime that

. . - 0 1

we studied, the Born approximation is reasonably accurate. As Tk k) — 1 0 48
expected, it systematically underestimates the field within the (ky, ks) = weé 3 oy ks : (48)

active region. Also, its accuracy decreases with higher contrast

and greater length of the scattering structure. The four components df" andf;r are determined by match-

ing the fields ats; = /. First, the componenti??f’p and

APPENDIX A IfIIGP are eliminated from Maxwell's equations with =
THE ELECTRIC GREEN TENSOR FOR 6pi6(x1 — 1), whereé,; denotes the Kronecker symbol. (The
A HOMOGENEOUS BACKGROUND reason being that these components are not differentiated with

In this appendix, we first derive the electric Green tensor fégspect tar;.) The resulting set of four first-order differential
a homogeneous background with permittivityThis permit- €equations are integrated over an infinitesimally small interval
tivity is assumed to be a complex scalar. This corresponds witrat contains the source &4, which is directed along,,. The
a background that is isotropic and lossy. The Green tensor ¢aault is
be found by determining the response of the background to &G p

G
line source current, cf. (12) and (13). Foe= z), i.e., with the ByY 0
direction of the current line source alomg (p =1, 2, 3), the E:f P ) ESP b (Rsfwe)b
solution for the electric field is called @& 7. It follows from HGp (21 | 21)~ g6p (1 Tay)= 803
(14) that it equals theth column of the electric Green tensor. ~2G » ~2G —5p2
The background structure is invariant in the longitudinal o Hy" Hy"*
x5 direction. We can take advantage of this by employing a (49)

Fourier transform
Combining (45) and (46) while using (49) yields the solution

é(xl; xy, k3) for f;: with p = 1,2, 3
= | Glar,ans ) explibaten — )] doa (43) (ks 50
1 1 0
where we have dropped the superscrft Both above and 0
below the line source level = z7, the field quantities‘if’p, R e <k J2k ) (51)
Ef’pl HS'?, and HS'? can be expressed in terms Bf? sIem
and HIGP by using the source-free Maxwell equations with e k3/2we (52)
&2 = 0. It then follows that 3 3 0 '
(P + BH{ET?P, HP} =0, a1 #4) (44) With thef vectors known, we can solve Maxwell's equations

with a current line source using (45) and (46). As argued
with &y = [w?epo — k3%]'/? andTm{k;} < 0. The solutions above, for each choicér;, x», 23) for the current direction
are exponential functions that must vanish fief] — cc. The p, the resulting electric field? is identical with thepth
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column of the electric Green tensor. The tensor can be written  z, = o3

as the sum of a singular part and a regular part. This gives D+ 2 fprist % reest ;
G(z1, ; k) e : g
= G®8(zy — 21) + G"(ky, ks) exp(—jki|z1 — z}|) (53) . o 3 B o
Ty = Iy
with Fig. 8. The primary and secondary amplitude vectors.
4 [t 00
G = jwe 8 8 8 (54 Here the &4 matrix Q™ is given by
and Q(")(@"ll N
) _ ( Ex(=k, k3)/EXP  Ep(+h7, k3) EXP (59)
g Rk , 9, Sks = \Hyp(—k}, k3)/EXP  Hy(+kD, k3) EXP
Sks 0 —k1 where EXP = exp[jk{(x1 — z1° rehy].

_ _ ~ We can consider the layeP(®), which contains the line
Here S = sign(z, — 7). Notice that the above derivation issource, to be made up of two source-free layers calkt
also valid if the homogeneous background is lossy, i.e., it hgaAd ps—, that are situated above and below the line source

a complex index of refraction. atz; = x4, respectively. The field can now be written as a
sum of a known primary field (which takes the line source into
APPENDIX B account) and a secondary field which represents the multiple
THE ELECTRIC GREEN TENSOR FOR reflections at the various interfaces (see Fig. 8). With the
A MULTILAYERED BACKGROUND notation of (56), the primary amplitude vectaf& ™ *% = in

Consider the layered background configuration corresporfd> " andD*~ are given by (50)(52). The primary, secondary,
ing to the structure of Fig. 1. The line source current @3Nd total amplitude vectors are interrelated through
supposed to be located within layB¥*). Within each source-

s+,+ __ ¢pri, s+,+ sec, s,+
free IayerND("), we can again express all field quantities in £y =1 +1 (60)
terms of E-*? and H-'?, cf. (45) and (46) £t = + £ (61)
{BS» BTy ot = + et (62)
={€, MYk, ks) - £F expl—jkf (w1 — 2]"")] BT =g (63)

+{E, HI(+ET, k3) - £ exp[+ikT(z1 —27™)]  Notice that the primary fields always travel away from the line
(56) source. Elimination of the secondary amplitude vectors yields

) ) . the excitation conditions
with &7 = [w?e" 1o —k3*]/2 andIm{k}} < 0. The amplitude
vectorsty ™ = (f1, )" andfyt = (fh, frh)" are R e
now layer-dependent. The matric@sind A are still given by £57— — fpri s—— s b— (64)
(47) and (48). For a layeP™ above the source level = 7, r r r
the reference levet}” r*f is taken at the lower interface of the The solution of the line source problem is uniquely deter-

n,ref __

layer, i.e.,z} = z"~L. For layers below the source levelmined by the boundary, continuity, and excitation conditions,
we putz}"™" = z”. The line source problem is solved onces we will now show.
we have determined the vectors in all layers, as we shall In our formalism, the reference vectors in subsequent layers
now do. are related by the continuity condition across the interface. For
In the superstrate and substrate, the fields must dedayers above the line source, a downward recursion scheme is
exponentially. This gives the boundary conditions applied, whereas an upward recursion scheme is used for layers
0 below the line source. Both schemes are then matched at the
T =1t = < ) (57) source level using the excitation conditions.
The transmission coefficienf>™ and the reflection coeffi-
The tangential field components are continuous across t’ﬂ@ntrf’ " for a layer D™ above the source level are defined
interfaces of the background configuration. This leads togg
condition for&; and ;- which are defined as the lowex2

submatrices of and M, respectively. For example, for the vt =t g s =l gt (65)
interface between the layef3™ and D(*+1, the continuity _ _
condition reads The superscriptl denotes downward recursion, and the sub-

prl+ et script ¢ = E, H indicates which component of we are
Q<"+1>(a;§l)< P ) = Q(">($?)< P ) (58) dealing with [see (56)]. The reflection and transmission co-

t; o £ efficients of layerD(*) are expressed recursively in those of



248 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 35, NO. 2, FEBRUARY 1999

layer D™+1) . This is done by using the continuity conditionUsing (77) in the two excitation conditions (64) allows us to

(58) at the interfacer; = 2\™. This gives solve for £ %F and f;7'~. The result is
s+, pri, s+, U, 85— ppri,s—,— U, 5— d,s
an 245" AkT 66 o =TT T T =)
th = kn+1(1 _ 7’d’n+1) + k"(l —i—Td’ n+1) (66) (78)
! i ! i s—,— __ (gpri,s—,— Wy st ppri; sty g 5= d, s+
n41 d,n+1 n d,n+1 fp,i _( P, +7; fp,i )/( -7 T )
d,n R T (LA T ) AR A+ T)
(7 B ey 4,11 d,n+1 (67) (79)
T (=14rg ) =Ry ) . .
; ; With (77)—(79), thef vectors for layerD(*) are expressed in
phn 2" PP (=14 rS ™) et k2 (1475 ™ ) the known primary fieldsP™. By (65) and (71), the vectors
B en kf“(—l +T% N+1) — entl (1 +T%n+1) in any other layer (and hence the total field) are determined

(68) while explicitly satisfying the boundary conditions (57), the
continuity conditions (58), and the excitation conditions (64).
ty" = " T e} (69) Let r¢* be the_reflection coeffici(_ant of layeb** in th_e
kT (L =g TR (1) downward recursive scheme for a line source current situated
. o Catah =0 = (x5 +2771)/2. Also, let** be the reflection
wherey = exp[—jkT («] — 1™ )]. The scheme for determin- cqefficient of layerD*~ in the upward recursive scheme for
ing the reflection and transmission coefficients is initialized by |ine source current situated at =0

taking as their values in the cover

d, n+1 .
dn _ 2t T ykr e

=@ =0), =T =0). (80)

(70 Erom (67), (68), (72), and (74), it then follows that if the

These two conditions express the transparency of the sup“Ban? source i located elsewhere in layefe) the thickness of

+ §—
strate for the wave constituents. and D°™ changes and hence

R N L |}

7

Similarly, for a layerD{ below the line source level, we rd ot (@) = e expl24kS 2], (81)
define ri (@) =7 exp[—24k5 2] (82)
f]}:; =t f;’:; f;j’ =7" f;”; (71) Forp = (x1, 2, z3), the solution for the amplitude vectors

of (77)—(79) together with the general solution of the electric
where the superscript denotes upward recursion. The refield (56) are substituted in Maxwell’'s equations (with line
flection and transmission coefficients of lay&X"+Y) are source along:,). These are then solved for the electric field.
expressed recursively in those of lay@f*). Using the conti- This field corresponds with column numbeér, 2, 3) of the

nuity condition at the interface; = xﬁ"‘l) yields electric Green tensor, respectively. The result is again the sum
+1 of a singular and a regular part
, Er(l—ory™ = KT +r5™) - - -
w, n+1 2 V1 H 1 H / / -
Ty =—9 o o 72 G(zy, 2); k3) = G* 6(zy — 7)) + G’ 83
H k?(l _ 7’[-’[7 ) + k?—l—l(l +7H7 ) ( ) ( 1 1 3) ( 1 1) ( )
o g st with
t?{?n+l = n w nH nl-i—l w,n (73) -1 100
KA =rg )+ kT (A +rg") G = - 00 0 (84)
) ) erS
et _ gz CHRN(-L ) + R (L ) TPEN0 00
E FL (=1 ™) —en KT+ % ™) and
" (74) ) 1 [~F3a/ks 0 ksb
u,n e ntln G" = _ L8 s 85
gt 2t€ née ki : _ (75) e kod k* c/k3 k? (85)
L ER (L — ™) e KT L ™) 3 0 —hRie
where
where § = exp[—jk (a7t — 27)]. The upward recur- L ) o »
sion scheme is initialized by taking for the reflection and a = expljki(z1 — 21)] (exp (27k] 21) + ")
transmission coefficients in the substrate x (exp (—24k; z1) +7H)/Dr (86)
, , b= exp[iki(z1 — 1)) (exp(25k; ) — v
t;f,,1 -1, 7,;1,,1 -0 (76) xpljki (21 o DI( XI;S jkT 1) )
X (exp(—2jk] 1) + %)/ Dk (87)
These two conditions express the transparency of the substrate ¢ = exp[jk{(z1 — 21)] (exp(24k] 1) + )
for the wave constituents. Notice that both recursion schemes x (exp(—27k x1) +rH5) /Dy (88)

are independent of the directignof the current line source. s s s
The two F;chemes combined g?\?e us the reflection coefficients d = expljki(zy — 21)] (exp(27ki 21) + 75)
for the layersD*+ and D*~ X (exp(—2jk} x1) — r§') /D (89)
Fotm et pobt Foot e e () €= eXP[‘ikf(xlrfgxll)] (exi(*zjkf zh) —rE")
Pt Lo i ‘ P x (exp(=2jki 1) — r¥’)/DE (90)
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if z1 > 2{. HereD, =1 — r¥* 7;“ with ¢ = F, H, and [6] B. Mersali, L. F. Tiemijer, P. F. A. Thijs, T. van Dongen, R. W. M.
Slootweg, and F. F. M. van der Heijden, “1.55 high gain polarization
a = exp[jk;] (a:’l —z1)] (+exp(25k; 1) + ") insensitive semiconductor traveling wave amplifier with low driving
s d current,” Electron. Lett.,vol. 26, pp. 124-125, 1990.
X (+ eXp(—ij‘l xl) +7rg )/DE (91) [7] L. F. Tiemeijer, P. F. A. Thijs, T. van Dongen, R. W. M. Slootweg, and
_ KSR YW 1.8 Ak F. F. M. van der Heijden, “Polarization insensitive multiple quantum
b= exp[jki(zy — 20)] (+ exr;(Z;kl @) + ) well laser amplifiers for the 1300 nm window&ppl. Phys. Lett.yol.
x (—exp(—27k% ) + r¥)/D 92 62, pp. 826-828, 1993,
( ) Sp(/ JhL 1) B )/ SE e ( ) [8] , “Polarization resolved, complete characterization of 1310 nm
c= eXp[j/fl (371 - 371)] (+ eXp(Qj/fl 371) + 7‘H") fiber pigtailed multiple-quantum-well optical amplifiers]’ Lightwave
18 dx Technol.,vol. 14, pp. 1524-1533, 1996.
X (+exp(=2jki 1) +75)/Du (93) [9] E. W. Kolk, N. H. G. Baken, and H. Blok, “Domain integral equation
d = expliks(z' — x —exp(2iksx pUF analysis of integrated optical channel and ridge waveguides in stratified
p[J 1( 1 1)] ( I;( TP 1) e ) media,”|[EEE Trans. Microwave Theory Techgl. 38, pp. 78-85, 1990.
X (+exp(—2jk; 1) +r%)/DE (94) [10] N. H. G. Baken, M. B. J. Diemeer, J. M. van Splunter, and H.
S ss s e Blok, “Computational modeling of diffused channel waveguides using a
e = exp[jki(z] — 21)] (— exp(2jkiz1) + 7E) domain integral equation,J. Lightwave Technolyol. 8, pp. 576-586,
x (—exp(—=2jk] #}) + )/ D (95) gy 1%

[11] N. H. G. Baken, “Computational modelling of integrated-optical waveg-
. , . uides,” Ph.D. dissertation, Technical University Delft, Delft, The Nether-
if z; < 7. The functionsa through e all have as argu- lands. 1990.
ments (xy, x}, k3). Notice that the above derivation is alsd12] H. J. M. Bastiaansen, “Modal analysis of straight and curved integrated
P ; optical waveguides,” Ph.D. dissertation, Technical University Delft,
valid vyhen the background layers have a complex index of Delft. The Netherlands, 1994
refraction. [13] K. S. Chiang, “Review of numerical and approximate methods for the
The Green tensor has two types of singularities in the modal analysis of general optical dielectric waveguid€pt. Quantum

_ ) ; ; Electron.,vol. 26, pp. S113-S134, 1994.
complex ks-plane. The factorD;(k;) vanishes ifk; equals ] R. J. Hawkins and J. S. Kalman, “Lasing in tilted-waveguide

a (complex) propagation constant of the background configu-" semiconductor laser amplifiersPpt. Quantum Electronyol. 26, pp.
ration. Also, the tensor has branch poikts= +%* because $207-S219, 1994.

o . 15] A. N. Kolomogorov and S. V. Fomirintroductory Real Analysis. New
k3 is defined as a complex root [see (44)]. If the background IS York: Dover, 1975.

lossy, these singularities will not lie on the réalaxis. There [16] Numerical Algorithm Group Ltd., Oxford, UK.

; itac inkS s ; [17] M. Born and E. Wolf, Principles of Optics,6th ed. Oxford, U.K.:
areno singularities ink$ (k3). It can be shown that? (k3), just Pergamon Press, 1980.

like &1 (k3) of all intermediate layers, has no branch points ifig] w. C. Chew,Waves and Fields in Inhomogeneous Medialew York:
the complexks plane [18]. IEEE Press, 1995, p. 112.
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