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Theory of Polarization-Dependent Amplification
in a Slab Waveguide with Anisotropic

Gain and Losses
T. D. Visser, H. Blok, and D. Lenstra

Abstract—We analyze the waveguiding properties of a semi-
conductor slab waveguide amplifier in which the gain (i.e., the
permittivity) in the quantum well (QW) is taken to be anisotropic.
Losses may be present simultaneously in the cladding layers.
Using scattering theory, a rigorous integral equation is derived.
Our model incorporates the two main causes of polarization
sensitivity of the amplification, viz., 1) waveguiding and 2) the
anisotropic light–matter interaction in the QW. It is determined
how much anisotropy is needed in the QW to get a polarization-
insensitive amplification. Also, reflection coefficients and TE/TM
mixing are studied. A comparison between the exact results and
the Born approximation is made. A Green’s tensor for a layered
structure with losses is derived.

Index Terms—Optical amplifiers, polarization, propagation,
scattering, semiconductor lasers, waveguide theory.

I. INTRODUCTION

A LIGHT signal that travels along an optical fiber will
continuously change its state of polarization. Therefore,

it is important that the amplification of weakened signals in
long-haul networks is polarization-independent. The same is
true for preamplifiers that are used to enhance the sensitivity
of detectors. It is important to note that even in fiber amplifiers
polarization effects play an important role. The reason is
that both the incoming signal and the pump beam can cause
polarization hole burning [1], [2].

Semiconductor optical amplifiers are an attractive alterna-
tive for fiber amplifiers because of their small size, low cost,
and easy integration with other components. However, the
amplification in these devices is not inherently polarization-
independent. For example, we found in a previous paper
[3] that, for realistic isotropic dielectric slab structures (i.e.,
with an active layer of 150- m thickness and ascalar
permittivity), the gain in decibels per length unit for TE
modes can be almost twice as large as that for TM modes.
It should be realized that this can happen even when the
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power confinement or filling factors are comparable for the
two polarization states. This is explained by the fact that the
often used approximation for the modal gain ,
where is the power confinement factor and the bulk
gain of the active layer, is highly inaccurate for TM modes
under typical circumstances. This follows from the fact that
the TE and the TM solutions satisfy different wave equations.
For a derivation of the exact relation between confinement
factors and gain, we refer to [4] and [5].

So, in order to obtain the desired polarization-insensitivity,
one must use either a nonplanar device, e.g., a channel or
ridge waveguide [6] or a slab waveguide with an anisotropic
active layer. In this paper, we concentrate on the latter.
This is inspired by the report of a high-gain polarization-
insensitive semiconductor amplifier that is now available [7],
[8]. This device uses several quantum wells (QW’s) (of both
the tensile strain and the compressive strain type) to obtain an
amplification that is equal for TE and TM signals. It operates
in a wavelength window around 1310 nm that is favorable for
optical fiber communication.

In this paper, we model the polarization sensitivity of a
semiconductor slab laser amplifier (SLA) within the linear
regime. The gain in the active region is supposed to be
anisotropic, i.e., the permittivity there is represented by a
tensor rather than a scalar. The anisotropy of the permittivity
arises through the presence of (strained) QW’s. In other
layers, isotropic losses may be present. We use the so-called
domain integral equation method (DIEM), which has been
used previously to derive guided modes of channel and ridge
waveguides [9]–[12]. In this study, it is used to describe
the scattering of an incident field by an anisotropic active
region of a finite length: the QW. The DIEM is a rigorous
approach which, unlike many approximate methods, does not
suffer from drawbacks such as a finite-sized computation
window, or instabilities near cut-off [13]. It is essentially a
Green’s function method, for which the Green’s tensor for
a layered structure with losses is derived. Our model allows
us to investigate TE/TM mixing and obtain reflection and
transmission coefficients. Also, for a certain configuration,
we determine the amount of anisotropy in the active region
that precisely compensates the effect of waveguiding, giving
a polarization-independent amplification.

We also compare our exact results with those obtained by
the Born approximation.
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Fig. 1. Geometry of a semiconductor SLA. The domainD (the shaded
region) indicates the active region (QW). It is completely contained within
the “background layer”D(s). The gain inD is anisotropic, i.e.,�D is a
tensor. The incident guided mode propagates in the positivex3 direction with
effective index�.

II. CONFIGURATION AND BASIC EQUATIONS

We study a configuration that is stratified in the vertical or
direction (see Fig. 1). It is made up of a “background” of

homogeneous and isotropic layers of dielectric material which
extend from minus to plus infinity in the and directions.
In layer , however, there is a volume—finite in the and

directions, infinite in the direction of —of active material
in which the incident wave gets amplified. This volume, which
represents the QW, is called the “domain.” The electric
properties of are anisotropic, i.e., the permittivity is a
tensor. The lowest layer of the background, the substrate, and
its top layer, the cover or superstrate, are both semi-infinite in
the direction. An incident field, traveling in the positive
direction, is amplified in the active domain.

Often, so-called windows are used in which the active layer
is embedded in semiconductor material in order to reduce
reflectivity (similar to how the active layer is embedded
in in Fig. 1). Tilted active waveguides are used for the
same purpose [14].

Both the electric field and the magnetic field are written
as the sum of the incident field and a scattered field

(1)

The incident field satisfies the steady-state Maxwell equations
for a source-free region

(2)

(3)

Here denotes the scalar permittivity of the background
configurationwithout the domain , i.e., with replaced by

. Just like the configuration, the field is assumed to be
independent from , i.e.,

(4)

hence . The background media are assumed to be homo-
geneous, isotropic, nonmagnetic, nonconducting, and linear.

The incident field is assumed to consist of TE or TM guided
modes of the background configuration. That is, it is of the

form

(5)

Here is the mode index or effective index,
with the (complex) propagation constant of the mode, and

the free-space wavenumber. In [3], a numerically
stable method is described to obtain both the effective index
and the field distribution in an active slab configuration, even
when the background consists of layers with strong losses (i.e.,

).
From now on, the -dependence and the mode index

will be suppressed in our notation.

III. D OMAIN INTEGRAL EQUATIONS

In this section, we derive domain integral equations which
yield the field anywhere in the SLA. We distinguish between
the actual configuration of Fig. 1 and the corresponding
“background configuration.” The latter consists of all layers
but now without the finite gain domain , i.e., the layer

with permittivity now extends all along . The
background, which is denoted by the superscript, has
scalar permittivity . In the configurationwith the
anisotropic domain , indicated with the superscript , we
have .

We can write Maxwell’s equations for the total field in the
total configurationwith the domain by altering (2) and (3)
into

(6)

(7)

with

(8)

The “electric contrast source” reflects the presence of
the active volume which has a different tensor permit-
tivity within the embedding background. (The electric
contrast current has the dimension of the time derivative of
a polarization contrast. Therefore, it is sometimes called the
“equivalent polarization current.”) Everywhere outsidethe
contrast source vanishes. Notice that since we had assumed
the magnetic permeability to be everywhere, in this study
we do not allow for contrast sources of the magnetic type.

Subtracting (2) and (3) for the incident field from (6) and
(7) yields two expressions relating the scattered field and the
total field

(9)

(10)

The contrast source can be written as a superposition of
electric current line sources

(11)
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The scattered electric and magnetic fields that are generated by
a single line source are the so-called Green states, symbolized
by and , respectively. From (9) and (10), it is clear
that for a current line source at , which is directed
along a unit vector , the Green states satisfy

(12)

(13)

Obviously, both and are linearly related to . This
relationship is expressed by the two Green tensors and

. That is, we define

(14)

(15)

From the principle of superposition, it follows that the scat-
tered electric field can be written as an integral

(16)

For the total electric field, we thus get [cf. (1)]

(17)

with

(18)

In a completely similar manner, we find that

(19)

Hence, the total magnetic field is given by

(20)

The integrals are over the domain only. We now have two
coupled domain integral equations for and . Although
the derived and fields in (17) and (20) are those of the
total structure which contains the active region, it is of prime
importance to note that the Green tensors and pertain
to the relatively simple background configuration which does
not contain . For , (17) is a Fredholm
equation of the second kind in . Once the Green tensor is
known, the electric field can be solved numerically from (17).
The solution can then be used in (20) to find the magnetic field.

Incidentally, one can also derive these domain integral
equations from Lorentz’s reciprocity theorem [11].

The derivation of the electric Green tensor is very
involved and will be deferred to the Appendices. The magnetic
Green tensor will not be derived since the magnetic field can
be calculated by taking the curl of the electric field.

Equation (17) can be greatly simplified by using the Born
approximation. The total field appearing in the integral is then
replaced by the incident field, leading to

(21)

For points within the scattering domain, this means that the
field is represented by the first term of the Born series. Rather
than an integral equation, this is an integral that can be
calculated numerically in a straightforward manner once the
Green tensor is known. In Section V, we will compare the
electric field in the Born approximation, (21), with the exact
field given by (17).

IV. DISCRETIZATION AND IMPLEMENTATION

With the Green tensor known, and given, we can now
proceed to solve the integral (17). This will be done with the
method of moments. Substituting the inverse Fourier transform
of the Green’s tensor into (17) gives

(22)

Next we write as a sum of expansion functions

(23)

with expansion coefficients and . As
weighting functions, we use the set with

which, just like , have support . Expanding the
field in (22), multiplying with , and integrating over
yields

(24)

where

(25)

(26)

(27)

Next is discretized into elements , with .
For the expansion functions , we take hat functions with
support , i.e.,

if
otherwise

(28)
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and is chosen to be the product of two delta functions

(29)

with the baricenter of element . This choice
of expansion functions and weighting functions is called the
point-matching method, which leads to

(30)

(31)

(32)

where is the Kronecker symbol. Expression (31) for
can be further simplified by assuming that is

constant over . As is discussed at the end of Appendix B,
the inner integral of (31) has no singularities. The outer integral
has an integrable singularity. Therefore, according to Fubini’s
Theorem [15], we may interchange the order of integration
which yields

(33)

with

(34)

where denotes the length along of the discretization
element .

For all , the tensor can be determined
analytically. From (85) for the Green’s tensor, it is seen that
for there are only five out of nine combinations
of and that yield nonzero elements of.

From (24) it follows that the simultaneous linear equations
for the expansion coefficients of the total electric field
can now be written in a matrix form as

(35)

where

(36)

(37)

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

(38)

and is defined in (39), shown at the bottom of the page.
From (30), it is seen that is the identity matrix.
The matrix , which contains the elements of the Green
tensor, can be calculated from (33) and (83). The vector,
which describes the distribution of the incident electric field, is
supplied by a mode solver [3]. So, with all ingredients known,
the simultaneous set of (35) for the field expansion coefficients

can be solved.
The matrix elements in (39) are all combinations of the

tensor elements of . However, because of the
shift invariance of the background configuration along the
propagation direction , these tensor elements are not all
independent. For instance, if denotes the discretization
number of the domain along the axis, then

(40)

Exploiting this symmetry reduces the number of calculations
needed to construct from to , where denotes
the total number of elements into which the domainis
divided.

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

(39)
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Fig. 2. A QW embedded in a lossy three-layer dielectric waveguide (side
view). The wavelength in vacuum�0 = 1:3 �m. The QW is situated in the
central layer. It has a lengthL, heightH, and permittivity�ij . The background
configuration can only sustain one TE and one TM mode, which are both lossy.

Fig. 3. Plot ofln jEj2 around a QW that is embedded in the waveguiding
structure of Fig. 2. The QW has a height of 150 nm and a length of1:25 �m
(x3 = 1:875 �m < x3 < 3:125 �m). The incident field travels in the
positive x3 direction and is TE polarized. In this example,�0 = 1:3 �m,
��ij = j0:03 �ij .

V. NUMERICAL RESULTS

The numerical integration of (33) was carried out with
routine D01AJF from the NAG library [16]. The simultaneous
system of (35) was solved with routine F04ADF, also from
the NAG library. The structure we examine, a QW embedded
in a waveguide, is depicted in Fig. 2. Note that we use both
refractive indices and relative permittivities. The relation
between the two is .

An example of the intensity distribution in and around a
QW embedded within this lossy layered background is shown
in Fig. 3. In the region left of the QW m), the
incident TE field together with the reflected field give rise to
a spatially oscillating intensity distribution with a decreasing
maximum. Within the QW ( m m), the
incident field gets amplified. Together with the counter propa-
gating reflected field this gives a distribution which increases
with . In the region right of the QW ( m), there
is only a decreasing transmitted field. We note from (5) that,
for a guided mode of the lossy background structure, is
a decreasing linear function of the longitudinal coordinate.
It is seen from Fig. 3 that the transmitted field (i.e., the field
to the right of the QW) gradually assumes this linear form.
Note that this transition to a guided mode takes place over
a length of approximately one effective wavelength. Using a
less rigorous guided mode expansion, one does not obtain this
structure of the near-field of the QW.

The field distribution around the QW is similar when
the incident field is TM polarized; however, this field gets
amplified less.

Fig. 4. Plot of ln jEj2 as a function of position along the propagation
directionx3 (in micrometers) within a 5-�m-long QW. The QW is embedded
in the waveguiding structure of Fig. 2. The incident field is TE polarized.
The dielectric contrast tensor��ij = aj0:01�ij, with a = 1 (lower curve),
a = 2 (middle curve), anda = 3 (upper curve). In this example,H = 150

nm, L = 5 �m, and�0 = 1:3 �m.

Fig. 5. Plot of ln jEj2 as a function of position along the propagation
directionx3 (in micrometers) within a 5-�m-long QW. The QW is embedded
in the waveguiding structure of Fig. 2. The incident field is TM polarized.
The dielectric contrast tensor��ij = aj0:01�ij, with a = 1 (lower curve),
a = 2 (middle curve), anda = 3 (upper curve). In this example,H = 150

nm, L = 5 �m, �0 = 1:3 �m.

The dependence of the amplification for incident TE waves
on the dielectric contrast tensor is depicted in Fig. 4. Here

, with . From the interference
pattern one deduces that in the QW the effective wavelength

m. This agrees well with of the incident
field (0.396 m) which one expects to be hardly influenced
by the relatively small dielectric contrast of the QW. We note
that in all these cases the amplification is less than that of the
corresponding active waveguide structure with an infinitely
long QW.

The dependence of the amplification for incident TM waves
on the dielectric contrast tensor is depicted in Fig. 5 for the
same values. As expected (see Section I), the amplification is
considerably less for this polarization state.

Thus far, we studied QW’s with an isotropic contrast tensor,
i.e., . Next we keep the off-diagonal tensor
elements zero, but let the diagonal elements be different.
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Fig. 6. Plot ofR = ln jEj2
TM

= ln jEj2
TE

at the end plane of the QW
as a function of��11. The 3-�m-long QW is embedded in the waveg-
uiding structure of Fig. 2. The dielectric contrast tensor��11 = Bj0:01,
with 0 < B < 6. For B � 3; equal amplification for both polar-
ization states is achieved. The other tensor elements were kept fixed at
��22 = ��33 = j0:02. In this example,H = 150 nm, L = 3 �m,
and �0 = 1:3 �m.

If we keep fixed, while varying and , then
the amplification of an incident TE wave remains unchanged.
Likewise, for an incident TM wave, one can vary the value
of without affecting its amplification. These results can
be explained by considering theth component of the first
Maxwell equation for a source-free region:

(41)

For TE modes, only is nonzero, whereas for TM modes
both and are nonzero. So, from (41), it is seen that a
change in or only affects the TM gain and leaves the
TE gain unaltered. Since for TM modes is the dominant
electric field component, it is to be expected that a change in

influences the TM gain to a lesser extent than a similar
change in . Also, one expects that a change in only
influences the TE gain. The above results agree with these
deliberations.

Therefore, it appears that the TE gain and the TM gain
can be influenced separately by influencing and ,
respectively. This gives us the opportunity to counteract the
effect of waveguiding by introducing an anisotropy in the form
of a uniaxial permittivity. That is, . As
before, the off-diagonal tensor elements are supposed to be
zero. This is precisely the anisotropy that one would expect
for a -grown QW structure. To illustrate this, we took
a 3- m-long QW with and varied

(and therewith the TM gain, while keeping the TE gain
constant). It was found that, for , equal ampli-
fication is obtained for both polarization states (see Fig. 6).
So, for this particular configuration of QW and embedding, a
polarization-independent operation of the amplifier can indeed
be achieved. That this can also be realized under practical
circumstances was demonstrated by Tiemeijeret al. [7]. The
relationship between strain, optical transition matrix elements,
and the dielectric tensor will be the subject of future studies.

The almost linear dependence of on indi-
cates that in the weak contrast regime that we are considering
the Born approximation is reasonably accurate. This can

Fig. 7. Plot of ln jEj2 as a function of position along the propagation
direction x3 (in micrometers) according to the exact integral equation (17)
(solid line) and the Born approximation (21) (dashed line). The incident
field is TE polarized. The dielectric contrast tensor is (from bottom up-
wards) ��ij = j0:02�ij , ��ij = j0:05�ij, ��ij = j0:10�ij, and
��ij = j0:20�ij. The 3.5-�m-long QW is embedded in the waveguiding
structure of Fig. 2. In this example,�0 = 1:3 �m.

be seen from (21), according to which the scattered field
(and hence, to a good approximation, ) varies linearly
with . The validity of the Born approximation is further
investigated in Fig. 7 in which the field distribution around
a QW is shown both according to the exact integral equation
formalism (17) and the Born approximation (21). Two trends
can be seen clearly: the Born approximation becomes less
accurate for stronger scattering contrasts, and it becomes less
accurate for points that lie further away from the front plane
of the QW. Note that in all four cases the Born approximation
underestimates the scattered field, as is to be expected for a
gain medium. Also, in the Born approximation, we again see
that the field behind the QW assumes the form of a guided
mode of the background structure. That is, for m,

becomes a linear function of . According to (5) this
is typical for guided modes.

When off-axis elements in the permittivity contrast tensor
are considered, one finds, as expected from (41), that TM/TE
mixing takes place. That is, an incident TM field is not only
reflected and amplified but now also gives rise to a reflected
and a transmitted TE field, and vice versa. (Note that the
dielectric tensor is always symmetric [17, Sec. 14.1].) As an
example, we studied a purely imaginary contrast tensor with

(42)

In this case, about 610 % of the power of the incident
TM mode was reflected as a TE signal. Of the transmitted
(and amplified) signal, about 410 % was coupled to the
TE mode.

VI. CONCLUSIONS

We have presented a model to analyze the propagation
of polarized waves through a semiconductor laser amplifier
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with an anisotropic QW. The model uses a rigorous scattering
formalism for which the Green tensor for a layered structure
with losses has been derived. It was found that the effects
of waveguiding, which tend to favor the amplification of TE
signals, can be compensated for by having an anisotropic
uniaxial QW structure. The overall effect is then a polarization-
insensitive amplification.

The use of an integral equation approach, although rigor-
ous, means that the analysis is restricted to scatterers whose
dimensions are less than about one hundred wavelengths.
For larger sizes, the matrix equations become too large to
handle. Nevertheless, we believe that the observed polarization
sensitivity does not change when going to longer amplifier
lengths (while staying in the linear regime).

With our model, one can study how the amplified field
behind the QW gradually assumes the form of a guided mode
of the embedding waveguide.

Also, the conversion of TE waves into TM waves due to
off-diagonal elements of the permittivity tensor was analyzed.

A comparison between an exact expression for the scattered
field and the Born approximation was made. It was found that,
for the short ( 5- m) QW’s in the weak contrast regime that
we studied, the Born approximation is reasonably accurate. As
expected, it systematically underestimates the field within the
active region. Also, its accuracy decreases with higher contrast
and greater length of the scattering structure.

APPENDIX A
THE ELECTRIC GREEN TENSOR FOR

A HOMOGENEOUSBACKGROUND

In this appendix, we first derive the electric Green tensor for
a homogeneous background with permittivity. This permit-
tivity is assumed to be a complex scalar. This corresponds with
a background that is isotropic and lossy. The Green tensor can
be found by determining the response of the background to a
line source current, cf. (12) and (13). For , i.e., with the
direction of the current line source along , the
solution for the electric field is called as . It follows from
(14) that it equals theth column of the electric Green tensor.
The background structure is invariant in the longitudinal or

direction. We can take advantage of this by employing a
Fourier transform

(43)

where we have dropped the superscript. Both above and
below the line source level , the field quantities ,

, , and can be expressed in terms of
and by using the source-free Maxwell equations with

. It then follows that

(44)

with and . The solutions
are exponential functions that must vanish for . The

fields generated by the line source are now written as

(45)

if and

(46)

if . Here and
are the amplitudes of said exponentials that

represent waves traveling in the negative and positive
direction, respectively. The 32 coefficient matrices and

that express all field components in terms of and
are given by

(47)

(48)

The four components of and are determined by match-
ing the fields at . First, the components and

are eliminated from Maxwell’s equations with
, where denotes the Kronecker symbol. (The

reason being that these components are not differentiated with
respect to .) The resulting set of four first-order differential
equations are integrated over an infinitesimally small interval
that contains the source at, which is directed along . The
result is

(49)

Combining (45) and (46) while using (49) yields the solution
for with

(50)

(51)

(52)

With the vectors known, we can solve Maxwell’s equations
with a current line source using (45) and (46). As argued
above, for each choice for the current direction
, the resulting electric field is identical with the th
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column of the electric Green tensor. The tensor can be written
as the sum of a singular part and a regular part. This gives

(53)

with

(54)

and

(55)

Here sign . Notice that the above derivation is
also valid if the homogeneous background is lossy, i.e., it has
a complex index of refraction.

APPENDIX B
THE ELECTRIC GREEN TENSOR FOR

A MULTILAYERED BACKGROUND

Consider the layered background configuration correspond-
ing to the structure of Fig. 1. The line source current is
supposed to be located within layer . Within each source-
free layer , we can again express all field quantities in
terms of and , cf. (45) and (46)

(56)

with and . The amplitude
vectors and are
now layer-dependent. The matricesand are still given by
(47) and (48). For a layer above the source level ,
the reference level is taken at the lower interface of the
layer, i.e., . For layers below the source level,
we put . The line source problem is solved once
we have determined the vectors in all layers, as we shall
now do.

In the superstrate and substrate, the fields must decay
exponentially. This gives the boundary conditions

(57)

The tangential field components are continuous across the
interfaces of the background configuration. This leads to a
condition for and which are defined as the lower 22
submatrices of and , respectively. For example, for the
interface between the layers and , the continuity
condition reads

(58)

Fig. 8. The primary and secondary amplitude vectors.

Here the 4 4 matrix is given by

(59)

where .
We can consider the layer , which contains the line

source, to be made up of two source-free layers called
and , that are situated above and below the line source
at , respectively. The field can now be written as a
sum of a known primary field (which takes the line source into
account) and a secondary field which represents the multiple
reflections at the various interfaces (see Fig. 8). With the
notation of (56), the primary amplitude vectors in

and are given by (50)–(52). The primary, secondary,
and total amplitude vectors are interrelated through

(60)

(61)

(62)

(63)

Notice that the primary fields always travel away from the line
source. Elimination of the secondary amplitude vectors yields
the excitation conditions

(64)

The solution of the line source problem is uniquely deter-
mined by the boundary, continuity, and excitation conditions,
as we will now show.

In our formalism, the reference vectors in subsequent layers
are related by the continuity condition across the interface. For
layers above the line source, a downward recursion scheme is
applied, whereas an upward recursion scheme is used for layers
below the line source. Both schemes are then matched at the
source level using the excitation conditions.

The transmission coefficient and the reflection coeffi-
cient for a layer above the source level are defined
as

(65)

The superscript denotes downward recursion, and the sub-
script indicates which component of we are
dealing with [see (56)]. The reflection and transmission co-
efficients of layer are expressed recursively in those of
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layer . This is done by using the continuity condition
(58) at the interface . This gives

(66)

(67)

(68)

(69)

where . The scheme for determin-
ing the reflection and transmission coefficients is initialized by
taking as their values in the cover

(70)

These two conditions express the transparency of the super-
strate for the wave constituents.

Similarly, for a layer below the line source level, we
define

(71)

where the superscript denotes upward recursion. The re-
flection and transmission coefficients of layer are
expressed recursively in those of layer . Using the conti-
nuity condition at the interface yields

(72)

(73)

(74)

(75)

where . The upward recur-
sion scheme is initialized by taking for the reflection and
transmission coefficients in the substrate

(76)

These two conditions express the transparency of the substrate
for the wave constituents. Notice that both recursion schemes
are independent of the directionof the current line source.
The two schemes combined give us the reflection coefficients
for the layers and

(77)

Using (77) in the two excitation conditions (64) allows us to
solve for and . The result is

(78)

(79)

With (77)–(79), the vectors for layer are expressed in
the known primary fields . By (65) and (71), the vectors
in any other layer (and hence the total field) are determined
while explicitly satisfying the boundary conditions (57), the
continuity conditions (58), and the excitation conditions (64).

Let be the reflection coefficient of layer in the
downward recursive scheme for a line source current situated
at . Also, let be the reflection
coefficient of layer in the upward recursive scheme for
a line source current situated at

(80)

From (67), (68), (72), and (74), it then follows that if the
line source is located elsewhere in layer the thickness of

and changes and hence

(81)

(82)

For , the solution for the amplitude vectors
of (77)–(79) together with the general solution of the electric
field (56) are substituted in Maxwell’s equations (with line
source along ). These are then solved for the electric field.
This field corresponds with column number of the
electric Green tensor, respectively. The result is again the sum
of a singular and a regular part

(83)

with

(84)

and

(85)

where

(86)

(87)

(88)

(89)

(90)
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if . Here with , and

(91)

(92)

(93)

(94)

(95)

if . The functions through all have as argu-
ments . Notice that the above derivation is also
valid when the background layers have a complex index of
refraction.

The Green tensor has two types of singularities in the
complex -plane. The factor vanishes if equals
a (complex) propagation constant of the background configu-
ration. Also, the tensor has branch points because

is defined as a complex root [see (44)]. If the background is
lossy, these singularities will not lie on the real axis. There
areno singularities in . It can be shown that , just
like of all intermediate layers, has no branch points in
the complex plane [18].
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