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The commonly used con®nement factor-based formula for modal gain in amplifying
waveguides ± gmod = Ggmat, with G a con®nement factor ± is well established and ac-
curate for TE modes. The TM case is rarely, and sometimes erroneously, described in
the literature. Using a variational formulation the fundamental difference between TE
and TM modal gain is illustrated. An accurate expression, correct up to ®rst order, for
the TM modal gain is then derived from a known general perturbation formula. However,
as this does not lead to a true con®nement factor formulation, some approximations are
introduced, leading to a uni®ed formulation of both TE and TM modal gain. A second
method to calculate the modal gain, based on the analyticity of the dispersion equation,
is also discussed. Simulation and comparison with modal gain values from a complex
mode solver will ®nally illustrate the validity of the different approaches.

1. Introduction
One of the most important properties of amplifying waveguides, such as lasers or optical
ampli®ers, is the modal gain experienced by di�erent modes. It has been known for a long
time [1] that for TE slab modes, the modal gain is given by a con®nement factor or ®lling
factor-based expression. The modal gain can be written as a weighted sum of the con-
®nement of the dominant TE ®eld component in each waveguide layer. The weighing
coe�cients contain as the most important factor the material gain of each layer. Very
often this formula is used as a perturbation approximation of the modal gain in the
amplifying waveguide by using the con®nement factor of the ®eld in the waveguide
without gain or loss. This avoids the need for a complex modal calculation and facilitates
the simulation of the e�ects of di�erent gain or loss levels in waveguide design.
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As will be emphasized in this paper, TE and TM modal gain behave fundamentally
di�erently [2]. This fact is very often not recognized in the literature. In [1] and [3] the
discussion is limited to TE polarization and in [4] and [5] the TE expression, using the
con®nement factor for the dominant TM ®eld component, is without motivation applied
to calculate the TM modal gain. In [6] the modal gain is derived under the assumption of
weak guidance, where the di�erence between TE and TM modes vanishes. Only in [7] and
in [8] are the distinctions between both polarizations made. Furthermore in [8] a second
possibility for modal gain calculation, including both polarization states, is suggested, but
not applied. There it is remarked that the dispersion equation for the modal e�ective index
is an analytic function of the refractive index pro®le. We will assess this approach and
compare the results with mode solver and perturbation results.

In [9] it is shown that the correct modal gain formula for TM slab modes di�ers
substantially from the TE expression. The expression derived in [9], although exact, is less
useful as a starting point for a perturbation approach. Vassallo formulates in [8] a general
perturbation expression for the modal gain based on a vectorial ®eld solution for the
unperturbed waveguide with arbitrary two-dimensional cross-section. Unfortunately, this
expression, simpli®ed to the case of a slab waveguide, cannot be recasted directly into a
con®nement factor formalism. Several approximate expressions for the TM modal gain,
each of them based on a di�erent con®nement factor, will be derived and explored in this
paper. It will be shown that it is possible to calculate accurately the TM modal gain using
an expression which approximates Vassallo's formula and which is formally identical to
the well-established TE formula and thereby retains its practical advantages. Finally, the
theory of the analytic approach will be outlined and its accuracy will be proven. This
approach has the same ¯exibility in terms of waveguide design as the perturbation for-
mulation.

2. TE versus TM modal gain
Starting from the TE and TM wave equations for the dominant ®eld components ey�x�
and hy�x� of the one-dimensional slab waveguide with complex refractive index pro®le
n�x�, and with z the propagation direction and k0 the wavenumber in vacuum

d2ey�x�
dx2

� �k2
0n2�x� ÿ b2�ey�x� � 0

n2�x� d

dx

1

n2�x�
dhy�x�

dx

� �
� �k2

0n2�x� ÿ b2�hy�x� � 0

�1�

it can be shown, using a variational approach that the imaginary part of the square of the
e�ective index satis®es [9]

Im�n2
eff� �

R�1
ÿ1

Im�n2�x�� ey�x�
�� ��2 dx

R�1
ÿ1

ey�x�
�� ��2 dx

�2a�

for the TE case, and
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Im�n2
eff� �

R�1
ÿ1

Im�n2�x�� hy�x�
�� ��2 dx

R�1
ÿ1

hy�x�
�� ��2 dx

ÿ Im

R�1
ÿ1

h�y�x�
dhy�x�

dx

d ln n2�x�
dx

dx

k2
0

R�1
ÿ1

hy�x�
�� ��2 dx

0BBB@
1CCCA �2b�

for the TM case. It is seen that Im n2
eff

ÿ �
is given by two di�erent equations. The ®rst term

in (2b) is the direct analogue of (2a) and the second term occurs because the TM wave
equation describes a magnetic ®eld in a purely dielectric material: the derivative dhy�x�/dx
is, unlike dey�x�/dx, discontinuous at a refractive index step. In typical III±V semi-
conductor waveguides, the dominant TE and TM ®eld pro®les are very similar. The
di�erence between TE and TM modal gain values is therefore dominated by the second
term in (2b). As we will see further on, this di�erence can be as large as a factor of four.

Equations 2 can be used in two ways. In the ®rst instance they may serve as a check on
the accuracy of a complex mode solver. Given the calculated mode e�ective index, the ®eld
pro®les can be constructed and Expressions 2a and 2b should return (in an implicit way) to
the e�ective index itself. A more practical application can be found when interpreting
Equations 2 in a perturbative way. Resetting the imaginary part of the refractive index
pro®le to zero, calculating the real modes of the real index structure and substituting the
obtained mode pro®les in (2a) and (2b), while taking into account the imaginary index
pro®le, gives a ®rst-order estimate of the imaginary part of the e�ective index. However,
Equation 2b is in practice not very useful. Typical input data for laser modelling consist of
the con®nement factors of the dominant ®eld component in the di�erent waveguide layers.
It is immediately clear that (2a) as well as the ®rst term of (2b) lend themselves to a
con®nement factor formulation.

3. Con®nement factor formulation of TE and TM modal gain
Consider a slab waveguide de®ned by a real valued refractive index pro®le n0(x) and
suppose that a modal solution (e0(x), h0(x)) is known. The waveguide is now perturbed by
a pure imaginary index contrast dn00�x�. Applying standard perturbation theory on
Maxwell's two curl equations it is shown in [10] that the ®rst-order correction dne� on the
effective index of the mode is given by

dneff �
�����
e0

l0

r RR
cross-
section

n0�x�dn00�x� e0�x�j j2 dx dyRR
cross-
section

�e0�x� � h0�x�� � uz dx dy
� dn00eff �3�

and is therefore purely imaginary. If we limit the discussion to piecewise constant re-
fractive index pro®les with layer indices n0,i, the general perturbation result (3) can be
simpli®ed in the TE case to

gTE
mod �

1

nTE
eff;0

XN

i�1

n0;iC
ey

i gmat;i �4�

where we introduced the modal gain gmod = 2k0 Im(ne�) = 2k0dn00eff and the material gain
of the ith layer gmat;i � 2k0 Im(ni) = 2k0dn00i and N, the number of layers. Cey

i is the
con®nement factor of the dominant TE ®eld component in layer i of the unperturbed
structure
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Cey

i �

R
layer i

ey;0�x�
�� ��2 dx

R�1
ÿ1

ey;0�x�
�� ��2 dx

�5�

It follows immediately that XN

i�1

Cey

i � 1 �6�

Given the de®nition of the real part of the longitudinal component of the Poynting vector,

STE
z �x� � Re�S�x� � uz� � 1

2Re�e0�x� � h�0�x�� � uz � b0

2xl0

ey;0�x�
�� ��2 �7�

it is seen that the TE modal gain can also be expressed by means of the power ¯ux, as is
frequently done (see for example [6]).

The result (4) is widely known and applied in practice, both for TE and TM polar-
ization. One generally de®nes a con®nement factor based on the dominant hy ®eld com-
ponent in the latter case. The fact that this leads to erroneous results can be understood
from (2b), as was explained in the previous section.

To express the TM modal gain the general result (3) is formulated explicitly for a TM
mode of a layered slab

gTM
mod � nTM

eff ;0

XN

i�1

n0;i

R
layer i

ex;0�x�
�� ��2� ez;0�x�

�� ��2� �
dx

R�1
ÿ1

n2
0�x�e2

x;0�x� dx

gmat;i �8�

By analogy with Equation 4, the TM `con®nement factor' should be de®ned as

CTM
i � nTM

eff ;0

� �2

R
layeri

ex;0�x�
�� ��2� ez;0�x�

�� ��2� �
dx

R�1
ÿ1

n2
0�x�e2

x;0�x� dx

� nTM
eff;0

� �2

R
layer i

etot;0�x�
�� ��2 dx

R�1
ÿ1

n2
0�x�e2

x;0�x� dx

�9�

This expression, although exact within the perturbation approximation, has two draw-
backs. First, (9) does not describe a well-de®ned physical quantity with a clear inter-
pretation of ®eld con®nement or power ¯ux con®nement, as was the case for TE
polarization. Second, the property (6) is not ful®lled by CTM

i . We will now derive two
approximate expressions from (9) with a physical meaning and which are true con®nement
factors in the sense of (6) [11].

As we are only interested in guided modes, |kx|� |k0|. Hence

n2
0�x� � nTM

eff ;0

� �2

� k2
x�x�
k2

0

� nTM
eff ;0

� �2

�10�

which corresponds physically to the replacement of the actual refractive index pro®le by
the average index as it is seen by the mode pro®le. Furthermore, it follows from the TM
equations that the inequality
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e2
z;0�x�

e2
x;0�x�

�����
����� � �dhy;0�x�=dx�2

b2h2
y;0�x�

�����
����� � O

k2
x

b2

� �
� 1 �11�

holds for (well-) guided modes. Adding an extra term ez;0�x�
�� ��2 in the denominator leads to

the con®nement factor CTM;etot

i

CTM
i �

R
layer i

ex;0�x�
�� ��2� ez;0�x�

�� ��2� �
dx

R�1
ÿ1

ex;0�x�
�� ��2� ez;0�x�

�� ��2� �
dx

� CTM;etot

i �12�

which approximates very well with the value of CTM
i . As we only consider unperturbed

problems with pure real index pro®le, ex,0(x) is also real valued and hence e2
x;0�x� �

jex;0�x�j2. Alternatively, we can also neglect the ez;0�x�
�� ��2 term in the nominator to obtain

CTM
i �

R
layer i

ex;0�x�
�� ��2 dx

R�1
ÿ1

ex;0�x�
�� ��2 dx

� CTM;ex

i �13�

the con®nement factor of the ex,0(x) ®eld component. This approximation gets less
accurate when the ratio k2

x=b
2

�� �� increases, i.e. for the higher-order guided modes of a
multimode waveguide.

To summarize, we now have three perturbation formulae to calculate the TM modal
gain

gTM
mod �

1

nTM
eff;0

XN

i�1

n0;iC
TM
i gmat;i

� 1

nTM
eff;0

XN

i�1

n0;iC
TM;etot

i gmat;i �14�

� 1

nTM
eff;0

XN

i�1

n0;iC
TM;ex

i gmat;i

The con®nement factors of the last two equations have a clear physical meaning. The
quantity CTM;etot

i expresses the con®nement of the total electric ®eld leading to the same
formula for both TE and TM modal gain. In the case of very strong guidance, where the
modal ®eld is completely con®ned into the core layer of the waveguide characterized by a
complex refractive index, (14) predicts that the higher-order modes (with lower ne�) ex-
perience a higher modal gain. This result might seem rather surprising at ®rst glance, but
can be intuitively understood by considering the ray picture of modal propagation.
Higher-order modes have a more skewed angle with respect to the waveguide axis and
therefore propagate a larger distance in the core layer. They see more gain per unit
distance along the waveguide axis than a paraxial propagating mode.

The quantity CTM;ex
i is the con®nement of the, for TM modes, dominant electric ®eld

component. This con®nement factor has the advantage that it follows immediately from
the hy-con®nement factor CTM;hy

i as
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CTM;ex

i �
CTM;hy

i n4
0;i

.
PN
j�1

CTM;hy

j n4
0; j

. �15�

For waveguides with small index contrast it is clear that CTM;ex
i � C

TM;hy
i . In homogeneous

space this holds even exactly. The di�erence between TE and TM modes vanishes in this
case, so that the e�ective index almost equals all of the refractive indices. Hence, the ratio
between n0,i and ne�,0 can be neglected in both Equations 4 and 14, leading to the result
derived by [1] (only TE). It also follows that under the conditions of extreme guidance
(e�ective index approaches the core index and the con®nement in the cladding layers can
be neglected) or when the mode evolves towards cuto� (e�ective index approaches the
cladding index and the con®nement in the core can be neglected), that CTM;ex

i � C
TM;hy
i .

Under these circumstances, the modal gain calculated by CTM;hy
i will give an accurate

result. This will also be the case for the con®nement of the power ¯ux CTM;Sz
i .

4. Analyticity of the dispersion relation
In the previous section we focused on a perturbation approach to calculate the in¯uence of
a small imaginary perturbation of the refractive index pro®le of a slab waveguide on the
modal e�ective index. In this section we will explore an alternative solution. It is known
that the dispersion relation for the e�ective index as a function of the waveguide geometry
and index pro®le is an analytic function [8, 12] in those parts of the complex plane where
there are no branch points.

Suppose that layer i with index n0,i is perturbed by an imaginary index dn00i . The modi®ed
e�ective index, due to the perturbation, is given by the Taylor expansion

neff�ni� � neff�n0;i � dn00i � � neff�n0;i�

� dn00i
@neff

@ni

�����
ni�n0;i

� 1

2
dn002i

@2neff

@n2
i

�����
ni�n0;i

�O dn3
i

ÿ � �16�

The dispersion relation being an analytic function, the Cauchy±Riemann conditions [13]

@ Re�neff�
@ Re�n� �

@ Im�neff�
@ Im�n� ;

@ Re�neff�
@ Im�n� � ÿ

@ Im�neff�
@ Re�n� �17�

are ful®lled, expressing that the derivative in the complex plane of the dispersion relation
in one refractive index point is independent of the direction. Practically, this means that
the in¯uence of a small imaginary perturbation can be calculated by adding a real per-
turbation to the index pro®le, as is shown by the ®rst equality in (17). It follows also from
(16) that the ®rst-order correction on the e�ective index is purely imaginary (cf. (3)). This
means that the trajectory of the effective index in the complex ni -plane will move away
from the real axis in a direction parallel to the imaginary axis. The difference between TE
and TM polarization is accounted for by the dependence of the dispersion equation on the
refractive index pro®le.

The third term in Equation 16 suggests that the theory can be extended to higher-order
corrections. To evaluate this term it would be preferable to use again the analytic property
(17). It is indeed true that the function @neff=@n is analytic. Knowledge of @neff=@n in the
direct vicinity of the nominal refractive index point n0,i makes it possible to evaluate the
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second-order correction. Practically, the e�ective index in three real index points around
n0,i de®nes a parabola. The coe�cient of the quadratic term determines the second-order
correction, which is found to be real, see Equation 16.

In practical calculations, the derivative in (17) will be numerically evaluated, which may
lead to a loss of accuracy. It is therefore not obvious at ®rst sight if this method predicts
the modal gain correctly. From numerical simulations we found that if the normalized
propagation constant B � �n2

eff ÿ n2
cl;2�=�n2

cl;1 ÿ n2
cl;2�, with ncl,1 > ncl,2, is known up to three

signi®cant digits, the imaginary part of the e�ective index is calculated within an accuracy
of a few per cent, compared with the result of a complex mode solver.

Finally, we remark that the theory has been presented for the case where the refractive
index varies in only one layer. Where di�erent layers are perturbed one could apply the
aforementioned theory separately to each layer and add up all the e�ective index cor-
rections, or one could alternatively parametrize the refractive index pro®le as

ni � n0;i � qdn00i �18�
where i � 1; 2; . . . ;N and take the Taylor expansion with respect to the parameter q.
Evaluating the ®rst-order term gives the modi®ed e�ective index in only one calculation.

5. Numerical examples
5.1. Modal gain calculation
We consider three di�erent waveguide structures and calculate both TE and TM modal
gain using the di�erent perturbation approaches outlined in Section 3. The numerical
results are compared with the gain values predicted by a complex mode solver and by
making use of the analyticity. The waveguide structures are chosen as representative for a
broad class of potential structures and are depicted schematically in Fig. 1. The numerical
results are summarized in Table I for TE and Table II for TM polarization.

Table I shows that the modal gain values for waveguide A calculated by the complex
mode solver and the TE perturbation formula coincide. The error of the analytic calcu-
lation is very small. Turning to TM polarization, Table II reveals that only the pertur-
bation result using GTM reproduces the mode solver result. It is also seen that the
perturbation approaches using CTM;etot and CTM;ex approximate very well the correct so-
lution. Modal gain values predicted by CTM;Sz and CTM;hy are wrong. The error of the
analytic approach is again marginal. The same conclusion applies for the strongly
asymmetric waveguide B. We also notice that TE and TM modal gain values differ by a
factor of two for waveguide A and even a factor of four for structure B.

The last example is the symmetric trimodal waveguide C. According to Table I, the TE
perturbation theory is correct for all three modes. For the TM case only the perturbation
result GTM coincides with the mode solver value. The true con®nement factor CTM;etot is
able to predict the modal gain for all three guided modes with good accuracy and the

Figure 1 Waveguide geometries. The left waveguide is

symmetric, the right strongly asymmetric.
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expression based on CTM;ex underestimates the modal gain of the second-order mode
signi®cantly. This is expected, for the ez(x)-®eld component increases for higher-order
modes. We further remark that for all modes TE and TM modal gain values are com-
parable and that CTM;Sz and CTM;hy lead to wrong results. The analytic approach proves
again to be solid.

In every example the TE modal gain is larger than the TM modal gain, which leads to
the suggestion that bulk semiconductor laser diodes with bulk active layers lase pref-
erentially in the TE regime, not only because of the di�erent mirror characteristics for TE
and TM, but also because of the di�erence in modal gain.

5.2. Variation of TM modal gain as a function of the core thickness
We now calculate the evolution of the modal gain of the symmetric waveguide structure of
Fig. 1 as a function of the core thickness d, and focus on the comparison of the different

TABLE I Comparison between the modal gain calculated by a complex slab

solver, TE perturbation theory and the analytic approach. The numbers in

parentheses indicate the relative deviation from the exact mode solver result

Waveguide TE modal gain, cm±1

Mode solver CTE;ey Analytic approach

A 48.68 48.68 (0%) 48.68 (0%)

B 52.76 52.76 (0%) 52.72 (±0.08%)

C ± mode 0 191.6 191.6 (0%) 191.6 (0%)

C ± mode 1 184.4 184.4 (0%) 184.3 (±0.05%)

C ± mode 2 156.5 156.5 (0%) 156.4 (±0.06%)

TABLE I I Comparison between the modal gain calculated by a complex slab solver, TM perturbation

theory, the different TM con®nement factor expressions and the analytic approach. The numbers in

parentheses indicate the relative deviation from the exact mode solver result

Waveguide TM modal gain, cm±1

Mode solver CTM CTM;etot CTM;ex CTM;Sz CTM;hy Analytic

approach

A 23.22 23.22

(0%)

22.98

(±1.1%)

23.34

(0.5%)

31.36

(+35%)

40.84

(+76%)

23.21

(±0.04%)

B 12.93 12.93

(0%)

12.74

(±1.4%)

12.70

(±1.8%)

18.60

(+44%)

25.72

(+98%)

12.88

(±0.39%)

C ± mode 0 190.7 190.7

(0%)

190.3

(±0.2%)

191.1

(0.2%)

192.1

(+0.8%)

192.9

(+1.2%)

190.7

(0%)

C ± mode 1 179.5 179.5

(0%)

178.3

(±0.7%)

179.9

(0.2%)

184.6

(+2.8%)

188.5

(+5%)

179.5

(0%)

C ± mode 2 140.3 140.3

(0%)

139.1

(±0.8%)

133.8

(±4.6%)

146.6

(+4.5%)

158.2

(+13%)

140.2

(±0.07%)
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TM perturbation approaches. The results are summarized in Fig. 2. One may argue that it
would be preferable to plot the normalized propagation constant versus the normalized
frequency. However, both quantities are in this case complex numbers and in the nor-
malized propagation constant the real and imaginary parts of the effective index are not
separable.

From Fig. 2 it is concluded that the curves calculated by CTMand CTM;etot are hardly
distinguishable on the scale of the plot. The accuracy of the modal gain values based on
CTM;ex decreases progressively for higher-order modes. For the fundamental mode, the
di�erence with the CTM;etot result is, as expected, negligible. The con®nement factor ap-
proaches based on CTM;Sz and CTM;hy overestimate the modal gain signi®cantly. Only under
the conditions of cuto� or extreme guidance is the correct value approximated.

5.3. Variation of the effective index as a function of the material gain
We investigate now the accuracy of the analytic approach. Therefore we consider a
monomode waveguide, typical for semiconductor optical ampli®ers at 1.3 lm and vary the
material gain of the active layer in a very broad interval going from 10 cm±1 to 104 cm±1.
This extremely high (and physically unrealistic) upper boundary will enable us to explore
the limits of the algorithm. The modal gain will be calculated using the analytic approach,
perturbation theory and a complex mode solver. The in¯uence of the gain on the real part
of the e�ective index will be calculated using (16) and a complex mode solver. The var-
iation of the e�ective index as a function of the core index n is approximated, in the
vicinity of the nominal core index 3.60, for both polarizations by the parabolas

nTM
eff � 0:287n2 ÿ 1:778n� 5:908

nTM
eff � 0:0915n2 ÿ 0:496n� 3:804

�19�

de®ned by the core index points 3.59, 3.60 and 3.61. Substitution of (19) in the Taylor
expansion (16) leads to the curves labelled `analytic' in Fig. 3. The modal gain values
obtained by the complex mode solver, the analytic approach and the perturbation theory
coincide perfectly, both for TE and TM polarization. The modal gain varies linearly.
Considering the real part of the e�ective index it is seen that the expansion (16) predicts
accurate results. Additional simulations have shown that the numerical results are in-
sensitive to the precise choice of the core indices for the calculation of the parabolas
(19).

Figure 2 Variation of TM modal gain as a function of the
core thickness of the waveguide. On the scale of the

®gure, the modal gain calculated by a complex slab sol-

ver, the correct perturbation expression and the analytic

approach are indistinguishable. The three curves corre-
spond (from left to right) to the fundamental, the ®rst- and

the second-order mode. The performance of the different

con®nement factor expressions are also compared.
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6. Conclusion
It has been shown from a simple variational calculation (see [9]) that TE and TM modal
gain behave fundamentally di�erently. Therefore, one has to be very cautious when
generalizing TE formulae to the TM case, as is frequently done in the literature for the case
of the con®nement factor formulation, which relates the material gain of the waveguide
layers to the modal gain of the waveguide mode. Starting from a general perturbation
formula, an accurate expression, correct up to ®rst order, for both TE and TM modal gain
were derived. Unfortunately, the TM modal gain is not given by a true ®lling factor
formulation. By approximating the TM relation we have shown that both TE and TM
modal gain are given by the same expression

gmod � 1

neff ;0

XN

i�1

n0;iC
etot
t gmat;i �20�

which is exact for TE modes and approximate for TM modes.

Figure 3 Variation of real and imaginary (ex-

pressed through the modal gain) parts of the ef-
fective index of the fundamental mode as a function

of the material gain of the core. The waveguide is

depicted in (a). On the scale of the ®gure, the dif-
ferences between the results obtained using a

complex mode solver, the correct perturbation for-

mula and the analytic approach disappear. TE re-

sults can be found in (b) and TM results in (c).
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An alternative way of calculating the modal gain to ®rst order has also been in-
vestigated. This method relies on the fact that the dispersion equation for the e�ective
index is an analytic function of the refractive index pro®le. The distinction between TE
and TM polarization is accounted for in the form of the dispersion relation. Using this
approach the e�ect of an imaginary index perturbation on the real part of the e�ective
index can be calculated very accurately.

The advantage of both methods is that in order to obtain the complex e�ective index
only a real index modal calculation has to be done and that the e�ect of di�erent material
gain or loss levels can be directly estimated without any additional simulation. The validity
of the TM con®nement factor approximation, as well as that of the analytic approach, has
been numerically veri®ed.
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