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Coherence vortices in partially coherent beams
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Abstract

It is demonstrated that the spectral degree of coherence of a partially coherent beam may possess isolated pairs of

points at which its phase is singular, and that in the neighborhood of these points the phase may possess a vortex

structure. Partially coherent beams consisting of Hermite–Gaussian modes are considered as an example. The physical

consequences of these so-called coherence vortices are discussed.

� 2003 Elsevier Science B.V. All rights reserved.

PACS: 42.25.Kb; 41.85.-p

Keywords: Singular optics; Optical vortices; Coherence
1. Introduction

The field of singular optics [1], which has pri-

marily been studied with fully coherent, mono-

chromatic, scalar wavefields, has recently been
extended considerably by a variety of workers who

have revealed many new effects. For instance,

Gbur et al. [2,3] predicted that the spectrum of a

fully coherent focused polychromatic field will

undergo drastic changes in the vicinity of phase

singularities of the central frequency. These pre-

dictions have since been verified experimentally [4]

and such spectral changes have been shown by
Berry to be a characteristic feature of polychro-
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matic fields near phase singularities [5]. Kessler

and Freund [6] have investigated the polarization

singularities of two-color vector fields and char-

acterized the so-called Lissajous singularities

which arise. Phase singularities which arise at zeros
of the intensity of partially coherent fields have

also been investigated [7,8].

More recently, an examination of the phase

singularities of two-point coherence functions has

been undertaken by Schouten et al. [9]. In that

paper, it was shown that the field produced by a

Young�s interference experiment may possess pairs

of points in the region of superposition at which
the spectral degree of coherence of the field is equal

to zero. It was further shown that these pairs of

points can be associated with pairs of surfaces for

which the spectral degree of coherence vanishes if

the observation points are confined to the com-

plimentary surfaces.
ights reserved.
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As yet, however, the existence of optical vortices

of the spectral degree of coherence has not been

demonstrated. In this paper, we examine a class of

partially coherent beams comprised of Hermite–

Gaussian modes, and show that in general there

exist pairs of points in these beams for which the
spectral degree of coherence vanishes. The phase

of the spectral degree of coherence is shown to

possess a vortex structure around these singular

points and we use the term coherence vortices to

refer to them. It is to be noted that the intensity of

the field at such a pair of points is not required

to vanish, and in general will not. The physical

consequences of these coherence vortices are
discussed.
2. Partially coherent beams

We consider a fluctuating, statistically station-

ary field Uðr; tÞ propagating from the plane z ¼ 0

into the half-space z > 0 (see Fig. 1). Spatial and
temporal correlations between pairs of points

P1ðr1Þ and P2ðr2Þ may be characterized by use of

the mutual coherence function [10, Section 4.3.1],

Cðr1; r2; sÞ ¼ hU �ðr1; tÞUðr2; t þ sÞi; ð1Þ
where the angular brackets denote time or en-
semble averaging.

Because singular optics is typically investigated

with monochromatic fields, it is advantageous to

work instead with the Fourier transform of the

mutual coherence function, the cross-spectral den-

sity [10, Section 4.3.2], defined as
Fig. 1. Illustrating the notation relating to the propagation of a

partially coherent beam. Here qi ¼ ðxi; yiÞ, with i ¼ 1; 2.
W ðr1; r2;xÞ ¼ 1

2p

Z
Cðr1; r2;xÞeixs ds: ð2Þ

The cross-spectral density characterizes the spatial

correlations of the field at a single frequency x. It

can be shown that it satisfies a pair of scalar

Helmholtz equations with respect to its two spatial
variables [10, Section 4.4.1], i.e.,

r2
i W ðr1; r2;xÞ þ k2W ðr1; r2;xÞ ¼ 0; ð3Þ

where k ¼ x=c, c being the speed of light in

vacuum, and ri represents the gradient with re-

spect to the spatial variable ri, i ¼ 1; 2. From this

point on we will consider only a single frequency

x and suppress its depiction in the function

arguments.

The strength of coherence between a pair of

points at locations r1 and r2 may be described by
the so-called spectral degree of coherence, defined

as

lðr1; r2Þ 	
W ðr1; r2Þffiffiffiffiffiffiffiffiffiffi
Sðr1Þ

p ffiffiffiffiffiffiffiffiffiffi
Sðr2Þ

p ; ð4Þ

where

SðriÞ 	 W ðri; riÞ ð5Þ

is the spectral density (often referred to as inten-

sity) of the field at point ri. It can be shown that

the modulus of the spectral degree of coherence

takes on values between 0 and 1, zero representing

complete incoherence, unity representing complete

coherence.

It is well known (see [10, Section 4.5.3] or [11])
that the cross-spectral density W coh of a fully co-

herent field (jlj ¼ 1) may be represented in the

factorized form

W cohðr1; r2Þ ¼ w�ðr1Þwðr2Þ; ð6Þ

where wðrÞ is a generally complex function which

satisfies the Helmholtz equation. One can con-

struct a partially coherent field by taking an in-
coherent superposition of a number of such

coherent modes, so that

W ðr1; r2Þ ¼
X
n

knw
�
nðr1Þwnðr2Þ: ð7Þ

In the above equation the mode weights kn are

necessarily real and non-negative, and the subscript
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n may represent more than one index of sum-

mation. The cross-spectral density of the field

produced by a multimode laser or by the super-

position of multiple independent coherent lasers

would be of the form of Eq. (7).
If the modes are mutually orthonormal with

respect to a particular chosen domain (such as a

finite volume or, often in the case of beams, a

plane of constant z), Eq. (7) represents a diagonal

decomposition of the cross-spectral density within

that domain, referred to as the coherent mode

representation [12]. Such a decomposition is un-

ique up to the selection of those modes with equal
weights. In this paper, we will be considering in-

coherent superpositions of modes which are not

necessarily orthogonal; we will refer to such a

representation of the field as a mode representa-

tion but it is important to note that it is not a

coherent mode representation.

We restrict ourselves exclusively to the so-called

Hermite–Gaussian modes ulmðx; y; z; z0Þ, defined by
[13, Section 4.7.4]

ulmðx; y; z; z0Þ ¼
w0

wðz� z0Þ
Hl

ffiffiffi
2

p
x

wðz� z0Þ

 !


 Hm

ffiffiffi
2

p
y

wðz� z0Þ

 !

 e�ðx2þy2Þ=w2ðz�z0Þ


 e�ikðx2þy2Þ=2Rðz�z0Þeið1þlþmÞ/ðz�z0Þ;

ð8Þ

where Hl represents the Hermite polynomial of

order l, z0 represents the position of the waist

plane of the mode, w0 represents the width of the

mode at the waist, and

/ðzÞ ¼ tan�1 2kz

ðkw0Þ2

 !
; ð9Þ

wðzÞ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2kz

ðkw0Þ2

 !2
vuut ; ð10Þ

and

RðzÞ ¼ z 1

2
4 þ ðkw0Þ2

2kz

 !2
3
5: ð11Þ
In Eq. (8), wðz� z0Þ represents the width of the

mode at distance z, Rðz� z0Þ represents the radius

of curvature of the equiphase surfaces, and

/ðz� z0Þ represents a longitudinal phase. These

modes represent beams paraxially propagating
into the half-space z > 0 along the z-axis. We will

take k ¼ 9921 mm�1 and w0 ¼ 1 mm in all fol-

lowing calculations; such parameters represent the

typical output of a He–Ne laser. For purposes of

clarity, we will investigate the cross-spectral den-

sity of beams consisting of Hermite–Gaussian

modes with both points r1, r2 constrained to a

single plane normal to the direction of propaga-
tion of the beam, typically the plane z ¼ 0.
3. Coherence vortices

To illustrate the differences between coherence

vortices and their traditional counterparts, we first

briefly review the latter topic from the point of
view of the cross-spectral density W ðr1; r2Þ.

The traditional singular optics of monochro-

matic coherent fields, with cross-spectral density

given by Eq. (6), deals with the singularities of the

phase that arise at points where the field amplitude

is zero, i.e.,

jwðrÞj2 ¼ SðrÞ ¼ 0; ð12Þ

or, equivalently, where

RefwðrÞg ¼ 0; ð13Þ
ImfwðrÞg ¼ 0: ð14Þ
In three-dimensional space, this pair of equations

is underdetermined and will typically have solu-

tions in the form of lines. Around such lines, the

phase /w of the mode wðrÞ will typically have a
helicoidal, or vortex, structure. In a plane of con-

stant z, these singular lines will usually intersect

the plane at isolated points.

Several conserved quantities may be associated

with any vortex. One of the most important of

these is the topological charge s of the singularity,
defined as

s 	 1

2p

I
C
r/w � dr; ð15Þ
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where the path C is taken along a closed coun-

terclockwise path of winding number 1 in a plane

of constant z enclosing the (point) singularity. 1 It

is well known that the topological charge of a

singularity is a conserved quantity which may take
on only integer values, and that such singularities

may only be created and annihilated in ways such

that the total topological charge is conserved. The

vortex is referred to as positive or negative if the

topological charge is positive or negative, respec-

tively.

It should be pointed out that it is also pos-

sible for the singular points of the phase to take
the form of surfaces in three-dimensional space.

For instance, it can be seen that the amplitude

of a beam consisting only of the Hermite–

Gaussian mode u10 vanishes everywhere in the

plane defined by x ¼ 0. This behavior can be

connected to the fact that, for this example, Eqs.

(13) and (14) can be recombined in such a way

that one equation is trivially satisfied. This is
most obvious in the waist plane, where

ImfwðrÞg 	 0 without any recombination. Such a

case is not common, however, as most arbitrary

wavefields will not satisfy such a requirement; it

is said that surfaces of singular phase are not

�generic�. 2

For partially coherent fields, with cross-spectral

density given by Eq. (7), singularities of the spec-
tral density again arise at points such that

SðrÞ ¼ 0. For this to occur at a given point r the

following set of equations must be satisfied:

jwnðrÞj ¼ 0 for all n: ð16Þ
One can ask how common or generic such zeros of

intensity are in a partially coherent field. For a
cross-spectral density with N modes, Eq. (16)

represents 2N equations that must be solved si-

multaneously in a three-dimensional space, for the

real and imaginary parts of each mode must equal

zero. For a fully coherent field (N ¼ 1), we have

seen that such solutions are likely to occur in the

form of lines; for N > 1, however, Eq. (16) repre-
1 The path is counterclockwise with respect to an observer

facing the oncoming beam.
2 Genericity is described in further detail in Chapter 1 of [14].
sents an overspecified set of equations which do

not, in general, have a solution. 3

Zeros of the spectral density of a partially co-

herent field are therefore typically not present. For

the spectral degree of coherence, however, which is
a function of two spatial variables r1 and r2, zeros

are quite common, as we now show. We first note

that because zeros of the spectral density are un-

common in partially coherent fields, the spectral

degree of coherence [given by Eq. (4)] is typically

well-defined throughout space, and the phase of

the spectral degree of coherence and the phase of

the cross-spectral density of the field are the same;
hence results which apply to the phase of one

quantity also apply to the other. We may therefore

work with the mathematically simpler cross-spec-

tral density in the following calculations. For a

fixed value of r1, the cross-spectral density is a

generally complex function of position r2. There-

fore two equations must be satisfied for W ðr1; r2Þ
to vanish,

RefW ðr1; r2Þg ¼ 0; ð17Þ
ImfW ðr1; r2Þg ¼ 0: ð18Þ
In a three-dimensional space, these equations will

typically have simultaneous solutions in the form

of lines; this is identical to the situation that arises

for singularities of the spectral density of fully

coherent fields. Again, in a plane of fixed z these

singularities will take the form of points.
The correspondence between traditional vorti-

ces of coherent fields and coherence vortices of

partially coherent fields is perhaps not surprising

for it can be seen from Eq. (3) with r1 fixed,

W ðr1; r2Þ is a solution of the Helmholtz equation

with respect to r2, and it is expected to have es-

sentially the same behaviors as a fully coherent

field. The interpretation of the zeros, however, is
somewhat different, as we will discuss in Section 4.
3 It is to be noted that such partially coherent fields can be

found, as described for instance in [7,8]. The fields described in

these papers have been carefully constructed to possess optical

vortices, however, and are not typical of the behavior of

partially coherent fields.



Fig. 3. Phase contour lines of the cross-spectral density as a

function of r2, with r1 kept fixed, for the example illustrated in

Fig. 2. It can be seen from the choice of contours that the

singularities are extremely anisotropic.

Fig. 2. Illustration of the zeros of the real (Re) and imaginary

(Im) part of the cross-spectral density W ðr1; r2Þ, with r1 kept

fixed. The þ and � indicate the side of the zero lines on which

the function is positive or negative. Here x1 ¼ 0:3 mm,

y1 ¼ 0:5 mm, k0 ¼ k1 ¼ 1, z0 ¼ �50 mm, z1 ¼ z2 ¼ 0, and

l ¼ 1, m ¼ 0. The points A and B represent a positive and

negative phase vortex, respectively.
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As examples, let us consider partially coherent

beams consisting of only two modes, i.e., with a

cross-spectral density given by the expression

W ðr1; r2Þ ¼k0u�00ðr1; 0Þu00ðr2; 0Þ
þ k1u�lmðr1; z0Þulmðr2; z0Þ; ð19Þ

where the ulm are defined in Eq. (8). Eq. (19) rep-

resents an incoherent superposition of a Gaussian

beam with waist plane at z ¼ 0 and a Hermite–

Gaussian beam of order lm with waist plane at

z ¼ z0. The waist planes are taken to not coincide,
because coincident waists would result in a real-

valued cross-spectral density in the waist plane,

and the singular points of W ðr1; r2Þ would then

take the form of surfaces. It is to be noted that

because the waist planes do not coincide, the

modes are not necessarily orthogonal. The spectral

density of a partially coherent beam of the form

(19) is nonzero throughout space because the
mode u00ðr; 0Þ has no zeros.

The zeros of the real and imaginary parts of the

cross-spectral density were computed numerically

for fixed r1 and a variety of values of r2, the

computation being done in a single z-plane, i.e.,
z1 ¼ z2. A typical example of such a calculation is

shown in Fig. 2. Those points for which the phase

is singular are located at the intersection of the
curves. In this example, the points labeled A and B
represent a positive (charge s ¼ þ1) and negative

(s ¼ �1) phase vortex, respectively. This can be

seen explicitly in the phase contours shown in Fig.

3. The vortices presented here are highly aniso-

tropic; 4 that is, the phase changes extremely fast in

the neighborhood of a set of cophasal lines, in this

case the p=2 and 3p=2 phase lines.
Even in this simple example, there exist a large

number of parameters that can be smoothly varied

to alter the position and behavior of the singular

points. Creation and annihilation of singular points

can be observed by allowing the beam to propagate

to a different z-plane, by changing the relative po-

sition of the waist planes of the modes, by changing

the relative weights of the modes, or even by
changing the position r1. An example of this latter
4 For a discussion of anisotropic phase singularities, see [15].
variation is shown in Fig. 4. As the point r1 is con-
tinuously varied, two pairs of new coherence vorti-

ces are created in the region under consideration.



Fig. 4. Illustration of the creation (annihilation) of coherence

vortices, for y1 ¼ 0:5 mm, k0 ¼ k1 ¼ 1, z0 ¼ �50 mm, l ¼ 3,

m ¼ 1, as the parameter x1 is varied. Two pairs of singular

points are clearly created when x1 ¼ 0:74 mm. In the center

plot, arrows indicate the locations where the singular points are

created.

Fig. 5. Illustration of the annihilation (creation) of coherence

vortices, for x1 ¼ y1 ¼ 0:5 mm, k1 ¼ 1, z0 ¼ �50 mm, l ¼ 1,

m ¼ 1, as the parameter k0 is varied. Two pairs of singular

points are clearly annihilated when k0 ¼ 4.
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Fig. 5 shows an annihilation event produced by

varying the relative weight of the modes.

In all the previous discussions, the point r1 was

treated as a parameter of the system and the singu-

larities of W ðr1; r2Þ were determined with respect to
the variable r2. One may reverse this prescription

and hold r2 fixed and determine the singularities

with respect to the variable r1. Because W ðr1; r2Þ is
also a solution of the Hemholtz equation with re-

spect to the variable r1 (as displayed in Eq. (3)), it

follows that the nature and behavior of the singu-

laritieswill be comparable to those foundby varying
r2. In fact, given a pair of points r1 and r2 for which

the cross-spectral density is zero, it follows that

there exist ‘‘complementary’’ vortices with respect

to this pair of points: one whichmay be observed by



Fig. 6. An examination of the relation between the vortices produced by varying r1 and r2 in the neighborhood of a pair of points for

which the cross-spectral density vanishes. In (a), r1 is kept fixed with x1 ¼ 0:3 mm, y1 ¼ 0:5 mm, z1 ¼ z2 ¼ 0, k0 ¼ k1 ¼ 1,

z0 ¼ �50 mm, l ¼ 1, m ¼ 0, and the point r2 is varied, showing a pair of vortices A and B. In (b), the point r2 is kept fixed at the

location of vortex A: x2 ¼ �0:425 mm, y2 ¼ �0:405 mm, and the point r1 is varied, showing the complementary vortex at x1 ¼ 0:3 mm,

y1 ¼ 0:5 mm. Likewise, in (c), the point r2 is kept fixed at the location of vortex B: x2 ¼ �0:425 mm, y2 ¼ 0:420 mm, and the point r1 is

varied, showing the complementary vortex at x1 ¼ 0:3 mm, y1 ¼ 0:5 mm. It can be seen that for A, the complementary vortices cir-

culate in opposite directions, whereas for B, the complementary vortices circulate in the same direction.
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varying r1 with r2 kept fixed, and one which may be
observed by varying r2 with r1 kept fixed.

Given such a pair of points r1, r2 for which the

cross-spectral density vanishes, onemight wonder if

there is a simple relation between the direction of the

complementary vortices. In other words, if there is a

positive vortex about the point r2, can we state with

certainty that there is a positive (negative) vortex

about the point r1? It can be shown by example that
this is, in fact, not the case. InFig. 6 such an example

is shown. The behavior of two vortices with respect

to r2, denoted A and B, are shown in (a) with an

arrow indicating the direction of increasing phase.

In (b), the vortex complementary to A is shown, and

in (c), the vortex complementary to B is shown. It

can be seen that the complementary vortices ofA are

in opposite directions, while the complementary
vortices of B are in the same direction. Evidently

there is no direct relation between the complemen-

tary vortices.
Fig. 7. Illustration of the notation relating to Young�s inter-

ference experiment and the spectral interference law. The planes

A and B are assumed to be parallel.
4. Discussion

Although the mathematical behaviors of the
coherence vortices are essentially identical to the

traditional vortices of intensity, their observable
effects are quite different, as we now show. Let us
consider as an observable quantity the interference

pattern produced by a Young�s interference ex-

periment (Fig. 7) when the light incident upon the

pinholes P1ðr1Þ and P2ðr2Þ is (a) fully coherent and

possesses traditional intensity vortices and (b)

partially coherent and possesses coherence vorti-

ces. The spectral interference pattern SðrÞ observed
at a point P ðrÞ on the screen B depends on the
light at the pinholes through the spectral interfer-

ence law [10, Section 4.3.2],



Fig. 8. A schematic comparison of the observed fringes in the

neighborhood of a traditional vortex in a coherent beam and a

coherence vortex in a partially coherent beam.
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SðrÞ ¼ Sð1ÞðrÞ þ Sð2ÞðrÞ þ 2½Sð1ÞðrÞSð2ÞðrÞ�1=2


 jlðr1; r2Þj cos½/lðr1; r2Þ � xd sin h=c�;
ð20Þ

where SðiÞðrÞ is the spectrum of the light at position

r if the ith pinhole is opened alone, /l is the phase

of the spectral degree of coherence of the field at

the two pinholes, h is the angle between the di-

rection of observation and the normal to the ob-
servation plane, and d is the separation of the

pinholes. Eq. (20) describes how the spectrum of

the field at the observation point P ðrÞ depends

upon the spectral density of the field at the two

pinholes P1 and P2 and the degree of coherence

between them.

Let us first assume that the light incident on the

pinholes is fully coherent, and that the point P2 is
in the immediate neighborhood of a singular point

of the spectral density. Because the light is fully

coherent, we may write lðr1; r2Þ ¼ exp½ið/wðr2Þ�
/wðr1ÞÞ�, where /wðriÞ is the phase of the mode

wðrÞ at the pinhole i; the spectral interference law

then reduces to the form

SðrÞ ¼ Sð1ÞðrÞ þ Sð2ÞðrÞ þ 2½Sð1ÞðrÞSð2ÞðrÞ�1=2


 cos½/wðr2Þ � /wðr1Þ � xd sin h=c�: ð21Þ

If the point r2 is moved around the singularity in a

counterclockwise manner, the phase /wðr2Þ will

increase or decrease according as the vortex is
positive or negative; this will cause the entire in-

terference pattern to move to the left or right.

After a complete circuit around the singularity, the

interference pattern will have reproduced itself.

Because the pinhole P2 is in the immediate

neighborhood of a zero of the spectral density, it

follows that typically Sð2Þ will be much smaller

than Sð1Þ. The latter two terms of Eq. (21) may be
considered a perturbation of the uniform spectral

density Sð1Þ due to a single pinhole.

Next let us suppose that the light incident upon

the pinholes is partially coherent, and that the point

P1 is fixed and the point P2 is in the neighborhood of

a coherence vortex. The pattern observed on the

screen is given by the full formula (20), but now Sð1Þ

and Sð2Þ are generally of comparable magnitude.
Again, as the point r2 is moved around the singu-

larity, the interference pattern will move to the left
or right and will reproduce itself after a complete

circuit. However, since P2 is in the neighborhood of

a coherence vortex, jlðr1; r2Þj � 1 and only the last

term of Eq. (20) may be considered negligible. The

interference pattern is therefore a perturbation of

the summed intensity due to both pinholes. The

difference between the two cases is illustrated sche-

matically in Fig. 8.
There is another important difference between

traditional optical vortices and the coherence

vortices discussed here. It is to be emphasized that

a coherence vortex cannot be associated with any

single point of a wavefield, but only pairs of

points; it might be said that it is a �virtual� feature
of the wavefield. This can be seen by considering

again the Young�s interference experiments with
coherent and partially coherent light and examin-

ing the effect of changing the point P1 on the be-

havior of the vortex in the neighborhood of P2.
For a traditional optical vortex in a coherent

beam, a change in the position of P1 changes the

phase /wðr1Þ and the spectrum Sð1Þ, but the loca-

tion of the vortex near P2 is unchanged. For a

coherence vortex, however, a change in P1 changes
the location of the vortex near P2 (recall Fig. 4). As

P1 is moved further away from its starting position,

the coherence vortex will move further away from

point P2 and eventually no singular behavior will

be observed there.
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