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Chapter 1

Introduction

1.1 Geometrical optics and physical optics

Optics is the field of science concerned with the behavior and properties
of light. Traditionally, optics is divided into two main branches: geo-

metrical optics and physical optics. Geometrical optics describes light as
rectilinear rays. These rays can be reflected and refracted at the interface
between two media. Geometrical optics is governed by the eikonal equa-
tion. Physical optics describes light as a wave phenomenon. These waves
can interfere with each other, and they can be diffracted by obstacles. The
central formula in this approach is the wave equation. These two theories
are not unrelated, in fact, geometrical optics can be regarded as an asymp-
totic limit of physical optics as the wavenumber k = 2π/λ (λ denoting the
wavelength) tends to infinity [Born and Wolf, 1999, Sec. 3.1]. Physical
optics can be further subdivided into two branches. In the vector theory,
which is based on Maxwell’s equations, the full electromagnetic field is
analyzed. In the scalar theory a much more simplified picture is used, and
field properties such as polarization are ignored.

In this thesis the methods of physical optics are used to analyze the
phase behavior of wave fields under different circumstances.

9



10 1.2. The Gouy phase

1.2 The Gouy phase

More than 120 years ago, L.G. Gouy (see Fig. 1.1) discovered an anoma-
lous phase behavior in a converging, diffracted spherical wave as it passes
through its focus [Gouy, 1890; Gouy, 1891]. He wrote (translated from
French):

“If one considers a converging wave that has passed through a focus and

has then become divergent, a simple calculation shows that the vibration

of that wave has advanced half a period compared to what it should be

according to the distance travelled and the speed of light.”

Figure 1.1: Louis Georges Gouy (1854-1926), around the time of his dis-
covery of the phase anomaly that now bears his name.

Gouy confirmed his theoretical analysis by an interferometric exper-
iment. Letting the light from a point source impinge onto two mirrors,



Chapter 1. Introduction 11

one concave, the other plane, two beams were generated. The mirrors
were positioned so that the beams were nearly parallel to each other. In
any transverse plane of observation their superposition yielded a circular
interference pattern, with ring-shaped fringes. The central disk was found
to change from dark to bright, or vice versa, when the observation plane
was moved through the focus of the converging beam. This transition con-
firmed the predicted 180◦ phase change. Since Gouy’s original work many
additional observations have been reported [Farnell, 1958;Mertz, 1959;
Ruffin et al., 1999; McGowan et al., 2000; Feurer et al., 2002; Chow

et al., 2004; Klaassen et al., 2004; Lamouche et al., 2004; Lindner
et al., 2004; Steuernagel et al., 2005; Zhu et al., 2007; Kandpal

et al., 2007; Rolland et al., 2010].
However, the origin of the phase anomaly continues to be a mat-

ter of debate, with different authors attributing it to widely differing
causes. One of the earliest treatments of the Gouy phase was given by
Walker [Walker, 1904], who used the principle of stationary phase to
demonstrate that when a ray associated with an astigmatic wavefront
passes through the two centers of curvature, there is a phase discontinuity
of an amount of π/2 at each of them, in agreement with Gouy’s predic-
tion. The first three-dimensional analysis of the phase behavior in the
focal region is due to Linfoot and Wolf [Linfoot and Wolf, 1956] who
examined the phase anomaly along different rays through the geometrical
focus.

Boyd [Boyd, 1980] has attributed the Gouy phase to the diffraction
properties of Gaussian beams. But the phase anomaly has also been asso-
ciated with Berry’s phase, which is an additional geometric (or topological)
phase acquired by a system after a cyclic adiabatic evolution in parame-
ter space [Simon and Mukunda, 1993; Subbarao, 1995]. There is also
an explanation based on Heisenberg’s uncertainty relations [Hariharan

and Robinson, 1996; Feng and Winful, 2001], in which the lateral
confinement of the field near the focus is accompanied by an increase in
momentum in the longitudinal direction. The tilted wave interpretation
is yet another way to explain the Gouy phase shift [Zhan, 2004a; Chen

et al., 2007]. There it is related to the averaged phase retardation of the
tilted plane-wave components of a Gaussian beam.

A recent paper showed that the phase anomaly can be considered as
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a degenerate case of a rapid π/2 phase change that occurs at each fo-
cal line of an astigmatic pencil of rays [Visser and Wolf, 2010]. In
this paper, it was pointed out that the phase anomaly near focus can
be understood by considering a wave of a more general form, namely a
converging wave exhibiting astigmatism. As is well-known, a geometri-
cal optics analysis of this situation shows that the wavefront of such a
field has, at each point, two principal radii of curvature and two, mutu-
ally orthogonal, focal lines [Born and Wolf, 1999, Sec. 4.6]. Geomet-
rical optics may be regarded as the asymptotic limit of physical optics
as the wavenumber k = 2π/λ tends to infinity. With the help of the
method of stationary phase it can be shown that in this limit the field
exhibits a phase discontinuity of an amount π/2 at each focal line [Van
Kampen, 1949; Stamnes, 1986]. Geometrical optics is governed by the
eikonal equation, the actual wave field however, satisfies the Helmholtz
equation. The solutions of the latter are well known to be continuous.
Hence, according to physical optics, the two phase discontinuities have
to be “smoothed out”, and become continuous but rapid phase changes.
When the astigmatic wave aberration decreases to zero, i.e., when the field
in the aperture becomes a converging spherical wave, the two foci coincide
and the sharp phase change in the focal region is the Gouy phase change
of an amount π. In this way, the phase anomaly can be understood from
elementary properties of rays and from the relation between geometrical
optics and physical optics.

In higher-order laser modes the Gouy phase has a more complicated
behavior than in the converging spherical waves discussed so far. For a
Hermite-Gaussian mode with indices (m,n) it has the value (m+n+1)π,
and for a Laguerre-Gaussian mode with indices (p, l) it takes on the value
(2p+ l + 1)π [Siegman, 1986].

The Gouy phase is of great importance because it plays a role in so
many physical systems and applications. In curved-mirror laser cavities, it
determines the resonance frequencies of different transverse modes [Siegman,
1986]. For such modes, the Gouy phase also can supply quantitative infor-
mation about the optical aberrations in cavities [Klaassen et al., 2004].
Utilizing the Gouy phase, one can transform a Hermite-Gaussian mode
into a Laguerre-Gaussian mode and vice versa [Allen et al., 1992; Bei-

jersbergen et al., 1993]. In nonlinear optics, the Gouy phase influences



Chapter 1. Introduction 13

the efficiency of higher-order harmonics generation [Boyd, 1992; Lind-
ner et al., 2003]. It has also been used in the creation of so-called
bottle beams [Arlt and Padgett, 2000] and in optical coherence to-
mography [Lamouche et al., 2004]. In singular optics, the Gouy phase
affects the propagation of optical vortices [Hamazaki et al., 2006; Bau-

mann et al., 2009]. In addition, the Gouy phase can be used in the
interferometry of a single nanoparticle [Hwang and Moerner, 2007]
and in the application of Terahertz time-domain spectroscopy [Federici
et al., 2006]. In chemical reactions, the Gouy phase can be used to control
the branching ratio for products formed at different total energies [Barge

et al., 2006; Gordon and Barge, 2007; Barge et al., 2008]. The Gouy
phase is not limited to electromagnetic waves but has also been found in
acoustic fields [Holme et al., 2003; Kolomenskii et al., 2005]. Very re-
cently, it has even been observed in matter waves [Guzzinati et al., 2013].

Although the term Gouy phase is traditionally reserved for focused

wave fields, recently its meaning has been extended to apply to beam-like
fields as well. In [Martelli et al., 2010] it is used to characterize the
phase of a non-diffracting Bessel beam by comparing it to that of a plane
wave with the same frequency.

In the next two sections we briefly review some concepts that will be
used throughout this thesis.

1.3 Singular optics

Singular optics [Nye and Berry, 1974; Nye, 1999; Soskin and Vas-

netsov, 2001;Karman et al., 1997; Berry, 1998; Nye, 1998; Schouten
et al., 2003; Schoonover and Visser, 2006; Dennis et al., 2009] is a
branch of wave analysis concerned with the presence of singular structures
in a wavefield and the topology of the wavefield around those structures.
The most common singular structure is a phase singularity. Consider a
complex monochromatic scalar field U(r, t) of frequency ω which can be
written as

U(r, t) = A(r)eiψ(r)eiωt, (1.1)

Here r denotes a position, and t a moment in time. A phase singularity
occurs at points where the amplitude A(r) vanishes and the phase ψ(r)
therefore is undefined or singular. The two key concepts of singular optics
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are the topological charge and the topological index of the features. The
topological charge s of a phase singularity is defined as

s ≡ 1

2π

∮

C
∇ψ(r) · dr, (1.2)

where the path C encloses the phase singularity and is traversed in a
counter-clockwise direction. The topological index is defined as the topo-
logical charge of the vector field ∇ψ(r). In this field the “phase” is the
orientation angle of ∇ψ(r).

In a monochromatic electromagnetic beam, the field is completely po-
larized at each point in space [Born and Wolf, 1999, Sec. 1.4]. The
polarization ellipse is characterized by three parameters describing its ec-
centricity, orientation and handedness, respectively. A polarization singu-

larity [Berry and Dennis, 2001] occurs at a point at which the polariza-
tion ellipse is degenerate. Points where the polarization is purely circular,
and hence the orientation of the ellipse is undefined, are called C-points.
At L-lines, where the polarization is linear, the handedness is undefined.

If the field is partially coherent, its statistical properties in the space-
frequency domain are described by the spectral degree of coherence [Mandel

and Wolf, 1995, Sec. 4.3], see also Sec. 1.4 in this Chapter. This is a
complex-valued function of two spatial variables r1 and r2, so at pairs
of points where the spectral degree of coherence vanishes, its phase is
undefined and a coherence singularity [Gbur and Visser, 2003] occurs.
In contrast to the classical singularities that are found in two or three
dimensions, coherence singularities occur in a six-dimensional space.

1.4 Coherence theory

In optics, coherence theory is the study of the statistical properties of
light. It describes optical fields in terms of correlation functions, which
can be measured through interference experiments.

Consider a random, wide-sense stationary scalar wave field V (r, t),
which is a member of an ensemble of realizations {V (r, t)}. The correlation
properties of the field can be described by the mutual coherence function,
which is defined as ([Mandel and Wolf, 1995], Sec.4.3.1)

Γ(r1, r2, τ) = 〈V ∗(r1, t)V (r2, t+ τ)〉 , (1.3)
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where τ is the time difference, the asterisk indicates the complex conjugate
and the angular brackets denote an ensemble average. It is convenient to
normalize the mutual coherence function by defining the complex degree

of coherence as

γ(r1, r2, τ) =
Γ(r1, r2, τ)
√

I(r1)I(r2)
, (1.4)

where
I(r) = Γ(r, r, 0), (1.5)

is the averaged intensity at position r. In Young’s interference experiment,
the value of |γ(r1, r2, τ)| equals the visibility of fringes that are produced
when two pinholes (located at position r1 and r2) are illuminated with
equal intensity. When |γ(r1, r2, τ)| = 1 the light at the two pinholes is
called fully coherent, resulting in a fringe pattern with maximal sharp-
ness. When |γ(r1, r2, τ)| = 0 the light at the two pinholes is completely
incoherent and there is no visible interference pattern. For intermediate
values of |γ(r1, r2, τ)| the light is called partially coherent.

For many applications it is advantageous to work in the space-frequency
domain, where the basic quantity is the cross-spectral density function

W (r1, r2, ω), which is the temporal Fourier transform of the mutual co-
herence function, i.e.

W (r1, r2, ω) =
1

2π

∫ ∞

−∞
Γ(r1, r2, τ)e

iωτdτ. (1.6)

It can be shown that, like the mutual coherence function, the cross-spectral
density functionW (r1, r2, ω) is also a correlation function ([Mandel and

Wolf, 1995], Sec.4.7.2), that is

W (r1, r2, ω) = 〈U∗(r1, ω)U(r2, ω)〉ω , (1.7)

where U(r, ω) is a member of an ensemble of monochromatic realizations
of the field. The suffix ω on the angular brackets is to stress that the
average is taken over an ensemble of space-frequency realizations. Often
it is useful to consider a normalized version of W , the spectral degree of

coherence, which is given by the expression

µ(r1, r2, ω) =
W (r1, r2, ω)

√

S(r1, ω)S(r2, ω)
, (1.8)
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where
S(r, ω) =W (r, r, ω), (1.9)

is the spectral density at position r. Just like the complex degree of
coherence, the spectral degree of coherence can also be determined by
Young’s interference experiment but now with filters in front of the pin-
holes [Wolf, 1983]. It can be shown that spectral degree of coherence is
bounded ([Mandel and Wolf, 1995], Sec.4.3.2 ) by

0 ≤ |µ(r1, r2, ω)| ≤ 1, (1.10)

where 0 represents complete spatial incoherence, and 1 represents full spa-
tial coherence.

Each of these two correlation functions obeys two precise propagation
laws. The mutual coherence function in free space satisfies the two wave
equations [Wolf, 1955]

(∇2
1 −

1

c2
∂2

∂τ2
)Γ(r1, r2, τ) = 0,

(∇2
2 −

1

c2
∂2

∂τ2
)Γ(r1, r2, τ) = 0, (1.11)

where ∇2
1 and ∇2

2 denote the Laplace operator acting on r1 and r2, re-
spectively and c is the speed of light. The cross-spectral density satisfies
two Helmholtz equations, namely

(∇2
1 + k2)W (r1, r2, ω) = 0,

(∇2
2 + k2)W (r1, r2, ω) = 0, (1.12)

where k = ω/c is the wave number corresponding to frequency ω. The
two pairs of equations above imply that these two correlation functions
both have a wave-like character.

Thus far we have considered scalar fields, but the concept of correlation
functions can be generalized to electromagnetic beams and forms the basis
of the unified theory of coherence and polarization [Wolf, 2003a; Wolf,
2003b]. Coherence describes the correlation between fluctuations at two or
more points in space. Polarization, on the other hand, is a manifestation of
the correlation between fluctuating components of the electric field vector
at a single point. The basic quantity of the unified theory of coherence
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and polarization is the electric cross-spectral density matrix W(r1, r2, ω),
which is defined as

W(r1, r2, ω) =

[

Wxx(r1, r2, ω) Wxy(r1, r2, ω)
Wyx(r1, r2, ω) Wyy(r1, r2, ω)

]

, (1.13)

where

Wij(r1, r2, ω) = 〈E∗
i (r1, ω)Ej(r2, ω)〉 , (i, j = x, y). (1.14)

Here Ei(r, ω) is a Cartesian component of the electric field at a point
specified by a position vector r at frequency ω, of a typical realization of
the statistical ensemble representing the beam.

The coherence properties of a beam are described only by the diagonal
elements of the electric cross-spectral density matrix whereas the state
of polarization depends also on the off-diagonal elements. An overview
is given by Wolf [Wolf, 2007]. Recently, the role of the off-diagonal
matrix elements in characterizing the state of coherence has been empha-
sized [Setäla et al., 2006].

1.5 Outline of this thesis

Nearly all the literature dealing with the Gouy phase uses the scalar the-
ory. In a high-aperture optical system, however, the vector nature of the
field can no longer be ignored. In Chapter 2, the Gouy phases of the three
Cartesian components of the electric field are examined. We show that
these components exhibit different phase anomalies. It is also found that
the phase of the electric field exhibits singularities in all three components.

As one kind of the recently discovered non-diffracting beams, Airy
beams have attracted considerable attention. Such beams have unique
properties, like their “accelerating” behavior and their capacity for “self-
healing”. The latter means that they are remarkably insensitive to per-
turbations. In Chapter 3 the Gouy phase for idealized infinite-energy Airy
beams is defined, and analytical expressions for its behavior are derived. It
is shown numerically that these expressions are excellent approximations
for the Gouy phase of realistic finite-energy Airy beams generated under
typical conditions.
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Under many practical circumstances, light is not monochromatic, but
is partially coherent, and its phase is a random quantity. When such a field
is focused, the Gouy phase is therefore undefined. However, the correlation
functions that characterize partially coherent fields do have a well-defined
phase. In Chapter 4, partially coherent fields are examined and it is
demonstrated that their correlation functions exhibit a generalized Gouy
phase. In the coherent limit this generalized Gouy phase reduces to the
classical Gouy phase. It is also shown that this generalized Gouy phase
affects the interference of focused fields, altering the fringe spacing in a
non-trivial manner.

In Chapter 5 we examine the focusing of radially polarized fields. If one
follows the state of polarization along an oblique ray through the focus, it
is seen to vary rapidly. We show that is a manifestation of the different
Gouy phases that the two electric field components undergo.

Every lens suffers from some form of wave front aberrations. In Chap-
ter 6 we analyze the influence of primary spherical aberration on the Gouy
phase. We find that the phase anomaly in front of the diffraction focus and
right behind it are quite different. This coincides with a wavefront spac-
ing that is larger than the effective wavelength on one side, and smaller
than the effective wavelength on the other side. This has consequences for
optical metrology in which one strives for accuracy levels of 10−10 .



Chapter 2

Phase anomaly and phase

singularities of the field in

the focal region of

high-numerical aperture

systems

This Chapter is based on

• X. Pang, T.D. Visser and E. Wolf,
“Phase anomaly and phase singularities of the field in the focal region
of high-numerical aperture systems,”
Optics Communications, vol. 284, pp. 5517-5522 (2011).

Abstract

The phase characteristics of the three Cartesian components of the electric
field in the focal region of a high-numerical aperture system are studied.
The Gouy phase anomaly and the phase singularities are examined in
detail. It is found that the three components exhibit different behaviors.
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20 2.1. Introduction

2.1 Introduction

With a few notable exceptions [Diehl and Visser, 2004; Foley and

Wolf, 2005; Zhan, 2004a; Chen et al., 2007], most papers published on
the Gouy phase are limited to scalar fields. When a beam of light is focused
by a high-aperture optical system, the phase behavior near focus becomes
more complicated since the scalar description becomes inaccurate.

Using the scalar approximation, it was found by Linfoot and Wolf
[Linfoot and Wolf, 1956] that the on-axis wavefront spacing is larger
than λ, the wavelength of a plane wave. In particular they found that
near the focus the wavefronts are separated by a distance λ/(1− a2/4f2),
where a and f denote the aperture radius and focal length of the lens,
respectively. But using a vectorial description, one finds that in high-
aperture systems, the wavefront spacing is highly irregular. This holds
both for incident fields that are linearly polarized [Foley and Wolf,
2005] and fields that are radially polarized [Visser and Foley, 2005].

In addition, the vectorial character of the field can no longer be ne-
glected in a high-aperture system. For example, for an incident linearly
polarized plane wave, the field components near focus are non-zero in
the two directions perpendicular to the polarization of the incident field.
Wolf et al. [Richards and Wolf, 1956; Wolf, 1959; Richards and

Wolf, 1959; Boivin and Wolf, 1965; Boivin et al., 1967] derived ex-
pressions for the electric and magnetic field vectors in the focal region of
such a system. In the present chapter we use this formalism to analyze
the phase behavior, in particular the occurrence of phase singularities and
the Gouy phase anomaly. Restricting ourselves to the electric field, three
phases–one for each Cartesian component–rather than a single phase have
to be considered. As we will demonstrate, all the three phases exhibit
singularities, and their associated phase anomalies are markedly different.

2.2 Focusing systems with a high angular

aperture

Let us consider an aplanatic focusing system L of focal length f and
with a semi-aperture angle α (see Fig. 2.1). We take the origin O of a
right-handed Cartesian coordinate system at the geometrical focus. A
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Figure 2.1: A high-numerical-aperture focusing system.

monochromatic plane wave of angular frequency ω is incident upon the
system, with the electric field polarized along the x-direction. The posi-
tion of an observation point P is indicated by the dimensionless Lommel
variables u and v, together with the azimuthal angle φ, defined as

u = kz sin2 α, (2.1)

v = k(x2 + y2)1/2 sinα. (2.2)

Here the wavenumber k = ω/c, with c denoting the speed of light. The
electric and magnetic fields are of the form

E(u, v, φ, t) = Re [e(u, v, φ) exp(−iωt)] , (2.3)

H(u, v, φ, t) = Re [h(u, v, φ) exp(−iωt)] , (2.4)

respectively, where Re denotes the real part and t the time. The time-
independent parts, e and h, of the electric and magnetic fields at a point
P (u, v, φ) have been shown to be given by the expressions [Richards and

Wolf, 1959]:

ex(u, v, φ) = −iA[I0(u, v) + I2(u, v) cos 2φ], (2.5a)

ey(u, v, φ) = −iAI2(u, v) sin 2φ, (2.5b)

ez(u, v, φ) = −2AI1(u, v) cosφ, (2.5c)
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hx(u, v, φ) = −iAI2(u, v) sin 2φ, (2.6a)

hy(u, v, φ) = −iA[I0(u, v)− I2(u, v) cos 2φ], (2.6b)

hz(u, v, φ) = −2AI1(u, v) sinφ. (2.6c)

where

I0(u, v) =

∫ α

0
cos1/2 θ sin θ(1 + cos θ)J0

(

v sin θ

sinα

)

exp

(

iu cos θ

sin2 α

)

dθ,(2.7)

I1(u, v) =

∫ α

0
cos1/2 θ sin2 θJ1

(

v sin θ

sinα

)

exp

(

iu cos θ

sin2 α

)

dθ, (2.8)

I2(u, v) =

∫ α

0
cos1/2 θ sin θ(1− cos θ)J2

(

v sin θ

sinα

)

exp

(

iu cos θ

sin2 α

)

dθ.(2.9)

In these integrals Jn(x) denotes the Bessel function of the first kind and
of order n. The amplitude A will be taken to be unity from now on. It
is to be noted that all the functions in Eqs. (2.5)–(2.9) depend on the
semi-aperture angle α (not explicitly shown).

The following symmetry relations follow immediately from Eqs. (2.5)
and (2.7)–(2.9):

ex(−u, v, φ) = −e∗x(u, v, φ), (2.10a)

ey(−u, v, φ) = −e∗y(u, v, φ), (2.10b)

ez(−u, v, φ) = e∗z(u, v, φ). (2.10c)

By comparing Eqs. (2.5) and (2.6) it is clear that the behavior of the mag-
netic field components is similar to that of the electric field components.
In particular, the magnetic field component hx is identical to the electric
field component ey; hy in a meridional plane φ = constant is identical to
ex in the plane φ→ φ+π/2; and hz in the meridional plane φ is identical
to ez in the plane φ→ φ+ π/2. In view of these relations we will restrict
our analysis to the electric field only.

2.3 Phase singularities

According to Eq. (2.5a) the electric field component ex in the focal plane
(u = 0) is purely imaginary. As noted by Richards and Wolf [Richards
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and Wolf, 1959], the focal plane contains ring-shaped phase singularities
of ex, centered on the u-axis, at which Im[ex] changes sign. They also
showed that in the low-aperture limit (α→ 0), ex is the only non-vanishing
component of the electric field, and these singularities form the well-known
Airy rings of classical scalar diffraction theory. An example is shown in
Fig. 2.2. The color blue corresponds to a phase of −π/2, whereas the color
red indicates a phase of π/2. The white lines between the two different
colors are the phase singularities of ex.
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Figure 2.2: The phase behavior of ex in the focal plane. Blue indicates a
phase of −π/2, whereas red indicates a phase of π/2. The white circular
lines are the phase singularities. In this example the semi-aperture angle
α = 45◦

From Eq. (2.5b), it is seen that ey is also purely imaginary in the focal
plane. Its phase behavior is displayed in Fig. 2.3. Again blue denotes a
phase of −π/2, red a phase of π/2 and white lines represent the phase
singularities. Furthermore Eq. (2.5b) indicates that ey = 0 when φ = 0,
π/2, π, or 3π/2. This explains the two (white) line singularities across the
focal plane.
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The phase behavior of ez in the focal plane can be calculated from
Eq. (2.5c). Unlike ex and ey, ez is strictly real-valued. The only two
phase values of ez are therefore 0 and π. In Fig. 2.4 blue indicates a
phase of 0, whereas red indicates a phase of π. White lines are the phase
singularities. From Eq. (2.5c) it is seen that ez = 0 when φ = π/2 or
3π/2. This explains the vertical line singularity in the focal plane. It is to
be noted that the approximately circular singularities of ex, ey and ez do
not coincide.
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Figure 2.3: The phase behavior of ey in the focal plane. Blue indicates a
phase of −π/2, whereas red indicates a phase of π/2. White lines are the
phase singularities. In this example the semi-aperture angle α = 45◦

In the u, v-plane, excluding the points discussed above, no phase sin-
gularities of ex were found. However, for the other two field components,
ey and ez, they were observed. The phase behavior of ey is illustrated in
Fig. 2.5. In this figure the phase is color-coded, with phase singularities
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Figure 2.4: The phase behavior of ez in the focal plane. Here blue indicates
a phase of 0, whereas red indicates a phase of π. White lines are the phase
singularities. In this example the semi-aperture angle α = 45◦

indicated by the intersections of contour lines. A pair of singularities of
opposite topological charge can be seen along the line u = 23. It follows
from Eq. (2.5b) that the phase singularities of ey form rings centered on
the z-axis.

The phase of the longitudinal field component ez is shown in Fig-
ure. 2.6. Again, several ring-shaped phase singularities can be observed.
As shown in [Diehl and Visser, 2004], a pair of these singularities merges
with two phase saddle points when the semi-aperture angle α is changed.
In such an annihilation process both the topological charge and the topo-
logical index are conserved.
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u

v

π

−π

Figure 2.5: Contours of the phase of the transverse electric field compo-
nent ey(u, v, φ) in the u, v-plane. Intersections of different contours (e.g.
at u = 20, v = 8) indicate phase singularities. The semi-aperture angle α
of the focusing system was taken to be 45◦.

2.4 The Gouy phase anomaly

The only component of the electric field which does not vanish along the
optical axis (v = 0) is ex. The wavefront spacing of that component
is highly irregular (see for example [Linfoot and Wolf, 1956; Foley
and Wolf, 2005] and the references therein). This behavior is seen from a
plot of the real and the imaginary part, Re[ex(u, v, φ)] and Im[ex(u, v, φ)],
with the longitudinal Lommel variable u as the parameter. An example
is presented in Fig. 2.7.

Alternatively, one can compare the phase ψ[ex(u, v, φ)] of ex, with that
of a converging, non-diffracted spherical wave in the half-space z < 0,
namely −kR, and with that of a diverging spherical wave in the half
space z ≥ 0, namely +kR, where kR = k(x2 + y2 + z2)1/2 = (v2 +
u2/ sin2 α)1/2/ sinα. The Gouy phase anomaly for the x-component of the
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u

π

−π

v

Figure 2.6: Contours of the phase of the longitudinal electric field com-
ponent ez(u, v, φ) in the u, v-plane. Intersections of different contours (e.g.
at u = 13, v = 3) indicate phase singularities. The semi-aperture angle α
was taken to be 45◦.

electric field, δx(u, v, φ), is then defined as (see [Born and Wolf, 1999,
Sec. 8.8.4] or [Stamnes, 1986, Ch. 8]):

δx(u, v, φ) =

{

ψ[ex(u, v, φ)] + kR when z < 0,
ψ[ex(u, v, φ)]− kR when z ≥ 0.

(2.11)

From Eqs. (2.5a) and (2.11) one immediately finds that the phase
anomaly at two points that are symmetrically located with respect to the
geometrical focus, satisfies the relation

δx(u, v, φ) + δx(−u, v, φ+ π) = −π. (2.12)

At the focus (u = v = 0) one has, according to Eq. (2.5a),

δx(0, 0) = ψ[ex(0, 0)] = −π/2. (2.13)
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Figure 2.7: Parametric plot of Re[ex] and Im[ex] along the optical axis.
The dots correspond with the values u = 0, 2, . . . , 16. The semi-aperture
angle α was taken to be 45◦.

The on-axis phase anomaly δx(u, v = 0) is shown in Fig. 2.8 for selected
values of the semi-aperture angle α of the focusing system. When α in-
creases, the change in phase near focus is seen to become more gradual
and to decrease. Scalar theory [Born and Wolf, 1999, Sec. 8.8.4] pre-
dicts a linear behavior of the phase anomaly, with a discontinuity of π
at each phase singularity (panel a). It is seen that for smaller values of
the semi-aperture angle the phase behavior tends to that given by scalar
theory. In connection with Fig. 2.8 it is important to bear in mind that
the longitudinal coordinate u is, by virtue of Eq. (2.1), dependent on the
value of the semi-aperture angle α.

In Fig. 2.9 the behavior of the phase anomaly of ex is shown along
several rays through the geometrical focus O. As an oblique ray passes
through focus, the angle φ that defines the meridional plane in which the
ray lies, changes by π. It is seen that when the angle of inclination θ of
the ray (with θ = tan−1[v sinα/|u|]) increases, the change in δx(u, v, φ)
near focus decreases.

According to Eq. (2.5b) the y-component of the electric field vanishes
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Figure 2.8: The phase anomaly along the optical axis according to scalar
theory (a), and the phase anomaly δx(u, v = 0) of the electric field com-
ponent ex for selected values of the semi-aperture angle α, (b) α = 25◦,
(c) α = 50◦, and (d) α = 75◦.
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Figure 2.9: The phase anomaly δx(u, v, φ) of the electric field component
ex along several rays in the meridional plane φ = 0◦ through the geometric
focus. The angle of inclination of each ray is denoted by θ, with (a)
θ = 10◦, (b) θ = 20◦, and (c) θ = 30◦. In this example the semi-aperture
angle α was taken to be 45◦.
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along the optical axis, and hence its phase ψ[ey(u, v)] is singular there.
Along oblique rays through the geometric focus, however, this phase is de-
fined. In analogy with Eqs. (2.11) we define the phase anomaly δy(u, v, φ)
of ey as

δy(u, v, φ) =

{

ψ[ey(u, v, φ)] + kR when z < 0,
ψ[ey(u, v, φ)]− kR when z > 0.

(2.14)

From Eqs. (2.5b) and (2.14) we find that the phase anomaly at two points
that are symmetrically located with respect to the geometrical focus, sat-
isfies the relation

δy(u, v, φ) + δy(−u, v, φ+ π) = −π. (2.15)

A ray with v ∝ |u| runs through the geometrical focus. On using the fact
that for small arguments Jn(x) ∼ xn, we find from Eq. (2.5b) that along
such a ray ey ∼ −iu2 sin 2φ. Hence

limu↓0 δy(u, v, φ+ π) = limu↑0 δy(u, v, φ) = −π
2
× sign[sin 2φ]. (2.16)

Here the subscripts u ↓ 0 and u ↑ 0 indicate that the quantity u approaches
the limiting value 0 from above and from below, respectively. Further,
sign(x) denotes the sign function

sign(x) =

{

−1 if x < 0,
1 if x > 0.

(2.17)

Although both limits in Eq. (2.16) are equal, the phase anomaly δy(u, v, φ)
is undefined at the geometric focus because ey vanishes there. An example
of this behavior is shown in Fig. 2.10. The two discontinuities near u = 1
and u = 3 are a consequence of the fact that the phase is defined up to an
integral number of 2π.

Next we define, again in analogy with Eqs. (2.11), the phase anomaly
δz(u, v, φ) of the longitudinal component of the electric field as

δz(u, v, φ) =

{

ψ[ez(u, v, φ)] + kR when z < 0,
ψ[ez(u, v, φ)]− kR when z > 0.

(2.18)
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Figure 2.10: The phase anomaly δy(u, v, φ) of the electric field component
ey along two rays in the meridional plane φ = 45◦ through the geometric
focus. The angle of inclination of each ray is denoted by θ. In this example
the semi-aperture angle α = 50◦.

It is seen from Eqs. (2.10) that the phase behavior of the longitudinal
component ez of the electric field in the focal region differs from that of
the two transverse components. From Eqs. (2.5c) and (2.18) it follows
that the phase anomaly at two points that are symmetrically located with
respect to the geometrical focus, satisfies the relation

δz(u, v, φ) + δz(−u, v, φ+ π) = π. (2.19)

Just as the y-component, the longitudinal component ez equals zero along
the optical axis. On using the small argument approximation for the
Bessel function in Eq. (2.5c), one finds that along an oblique ray through
the geometrical focus ez ∼ −|u| cosφ, and hence

limu↑0 δz(u, v, φ) = π ×Θ[cosφ], (2.20a)

limu↓0 δz(u, v, φ+ π)] = π ×Θ[− cosφ]. (2.20b)

with Θ(x) being the Heaviside stepfunction

Θ(x) =

{

0 if x < 0,
1 if x > 0.

(2.21)
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The π phase discontinuity in ez as the ray passes through focus is related
to the fact that the angle φ, which defines the orientation of the meridional
plane that contains the ray, has a discontinuity there of an amount π. (It is
to be noted that the φ-dependence of ex and ey is such that this jump does
not affect these two field components.) Examples of the phase anomaly of
the longitudinal electric field are shown in Fig. 2.11. It is seen that when
the angle that the ray makes with the axis becomes larger, the oscillations
of the phase anomaly become more damped. A comparison of Eqs. (2.12),
(2.15) and (2.19) shows that the phases of the three Cartesian components
of the electric field satisfy different symmetry relations. Furthermore,
Eqs. (2.13), (2.16) and (2.20) show that their behavior at the geometrical
focus is also different.
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Figure 2.11: The phase anomaly δz(u, v, φ) of the electric field component
ez along two rays through the geometric focus in the meridional plane
φ = 180◦. The angle of inclination of each ray is denoted by θ. In this
example the semi-aperture angle α = 45◦.

2.5 Conclusions

We have examined the phase behavior of the electric field in the vicinity
of the geometric focus of an aplanatic, high-numerical aperture system.
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All three Cartesian components were found to possess phase singulari-
ties. We also showed that the phase anomalies associated with each of
the phases are markedly different. The x-component, along the direction
of polarization of the incident field, shows the classical Gouy phase be-
havior expressed by Eqs. (2.12) and (2.13). Its precise behavior depends
on the semi-aperture angle α of the focusing system. In contrast to the
x-component of the electric field, the other transverse component, ey, is
singular at the geometric focus. Equation (2.16) shows that its phase
anomaly at the focus depends on the orientation of the meridional plane
(i.e., on the angle φ), but behaves in a similar manner. The phase anomaly
of the longitudinal component ez is the only one which does not tend to
±π/2 at the focus. Instead this phase undergoes a phase discontinuity
there, by an amount π .
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The Gouy phase of Airy

beams

This Chapter is based on

• X. Pang, G. Gbur and T.D. Visser,
“The Gouy phase of Airy beams,”
Optics Letters, vol. 36, pp. 2492-2494 (2011).

Abstract

The phase behavior of Airy beams is studied, and their Gouy phase is
defined. Analytic expressions for the idealized, infinite-energy type beam
are derived. They are shown to be excellent approximations for finite-
energy beams generated under typical experimental conditions.

35



36 3.1. Introduction

3.1 Introduction

Beams that do not spread on propagation, so-called non-diffracting beams,
have attracted considerable attention since they were discovered by Durnin
et al. [Durnin, 1987;Durnin et al., 1987;Turunen and Friberg, 2010].
A special type of such beams are the so-called Airy beams described by
Berry and Balazs in the context of quantum mechanics [Berry and Bal-

azs, 1979]. These beams have the remarkable property that they “accel-
erate” away from the original direction of propagation. Airy beams are
idealizations, because they carry an infinite amount of energy. Siviloglou
and Christodoulides discussed how an exponentially modulated Airy func-
tion source would produce a finite-energy beam, which would retain its
non-diffracting and accelerating behavior over an appreciable propagation
distance [Siviloglou and Christodoulides, 2007]. After the exper-
imental realization of such a beam [Siviloglou et al., 2007], several
studies have been devoted to their properties [Bandres, 2008; Mor-

ris et al., 2009; S. Vo et al., 2010; Kaganovsky and Heyman, 2010],
and a number of applications are being pursued. For instance, the “self-
healing” capacity of Airy beams [Broky et al., 2008] makes them excellent
candidates for optical communication through turbulent media [Gu and

Gbur, 2010]. Other intriguing applications are the generation of curved
plasma channels [Polynkin et al., 2009], and the manipulation of parti-
cles along bends in labs-on-a-chip [Hannappel et al., 2009].

Traditionally, the term Gouy phase describes how the phase of a monochro-
matic, focused field differs from that of a plane wave with the same fre-
quency (see [Visser and Wolf, 2010] and the references therein). Re-
cently, however, it has also been used to describe the phase of a non-
diffracting Bessel beam [Martelli et al., 2010]. In this chapter we study
the phase behavior of both finite-energy and infinite-energy Airy beams.
By comparing their phase to that of a suitable reference field, their Gouy
phase can be defined. A good understanding of the phase properties of
Airy beams is of great importance in interferometric or remote sensing
applications employing them.
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3.2 The Schrödinger equation and the paraxial

wave equation

The one-dimensional potential-free Schrödinger equation for a particle
with mass m reads

− ~

2m

∂2ψ(x, t)

∂x2
= i~

∂ψ(x, t)

∂t
. (3.1)

A possible solution [Berry and Balazs, 1979] can be expressed as

ψ(x, t) = Ai

[

B

~2/3

(

x− B3t2

4m2

)]

exp

[

i
B3t

2m~

(

x− B3t2

6m2

)]

. (3.2)

Here Ai denotes the Airy function and B is an arbitrary constant. In this
solution, the probability density |ψ|2 propagates without distortion and
with constant acceleration. The correctness of Eq. (3.2) can be verified
by direct substitution, while making use of the differential property of the
Airy function [Abramowitz and Stegun, 1965]

d2Ai(z)

dz2
= zAi(z). (3.3)

The one-dimensional paraxial wave equation reads [Mandel and Wolf,
1995, Sec. 5.6.1]

∂2φ

∂x2
+ 2ik

∂φ

∂z
= 0, (3.4)

where k = 2π/λ is the wavenumber and (x, z) are the transverse and
longitudinal coordinates, respectively. Comparing Eqs. (3.4) and (3.1)
we find that the two equations are of the same mathematical form. We
therefore try a solution for the paraxial wave equation of the type

φ(x, z) = Ai(χx− ǫz2) exp[i(γxz − ηz3)], (3.5)

with χ an arbitrary constant, and ǫ, γ, η to be determined. Differentiation
with respect to x yields

∂φ

∂x
= (χAi′+iγzAi) exp[i(γxz − ηz3)], (3.6)
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and

∂2φ

∂x2
=

(

χ2Ai′′+i2χγzAi′−γ2z2Ai
)

exp[i(γxz − ηz3)]. (3.7)

Using the differential property of the Airy function [Eq. (3.3)], we find
that the previous equation can be re-written as

∂2φ

∂x2
=

[

i2χγzAi′+(χ3x− γ2z2 − ǫχ2z2)Ai
]

exp[i(γxz − ηz3)]. (3.8)

Differentiation with respect to z of Eq. (3.5) gives

− i2k
∂φ

∂z
=

[

i4ǫkzAi′+(2γkx− 6ηkz2)Ai
]

exp[i(γxz − ηz3)]. (3.9)

The terms in Ai and Ai′ in Eq. (3.8) and Eq. (3.9) must be identical, and
thus we obtain the relations

2γkx− 6ηkz2 = χ3x− (γ2 + ǫχ2)z2, (3.10)

4ǫk = 2χγ. (3.11)

Since the same kind of terms in x and z must have the same coefficients,
we find the following relationships

γ = χ3/(2k) = 1/(2kx0
3), (3.12)

ǫ = χ4/(4k2) = 1/(4k2x0
4), (3.13)

η = χ6/(12k3) = 1/(12k3x0
6), (3.14)

where we have defined χ = 1/x0. So a solution of the paraxial wave
equation in terms of an Airy function can expressed as

φ(x, z) = Ai

[

x

x0
−

(

z

2kx20

)2
]

exp

[

i
xz

2kx30
− i

1

12

(

z

kx20

)3
]

. (3.15)

Next we define s ≡ x/x0, which represents a dimensionless transverse
coordinate, and ξ ≡ z/(kx20), a normalized propagation distance. The field
envelope φ can then be rewritten as [Siviloglou and Christodoulides,
2007]

φ(s, ξ) = Ai

[

s−
(

ξ

2

)2
]

exp(isξ/2− iξ3/12). (3.16)

This expression for the envelope of an infinite-energy Airy beam will be
analyzed in the succeeding sections.
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3.3 Green’s function and Hankel function

The Helmholtz equation for scalar fields reads

∇2U(r, ω) + k2U(r, ω) = −4πκ(r, ω), (3.17)

where κ is the source density.
A differential equation such as Eq. (3.17) defines a local relationship

between the field at given point and the source term. A Green’s function is
an integral kernel that can be used to solve such an equation with certain
boundary conditions. For the Helmholtz equation, the Green’s function is
defined as:

∇2G(r, r′, ω) + k2G(r, r′, ω) = −4πδ(r− r′). (3.18)

The Green’s function of Eq. (3.18) can be used to construct the solution

U(r, ω) =

∫

V
d3r′ G(r, r′, ω)κ(r′, ω), (3.19)

in which a homogeneous solution of Eq. (3.17) is omitted and the V is the
support of κ. In three-dimensional space the Green function is of the form

G(r, r′, ω) =
eik|r−r

′|

|r− r′| .
(3.20)

In two-dimensional space the Green’s function is given by the formula

G(ρ,ρ′, ω) = − i

4
H

(1)
0 (k

∣

∣ρ− ρ
′
∣

∣), (3.21)

where H
(1)
0 is the Hankel function of the first kind and zero order. The

Hankel functions of order α, which are also known as Bessel functions of
the third kind, are defined by the relations

H(1)
α (x) = Jα(x) + iYα(x), (3.22a)

H(2)
α (x) = Jα(x)− iYα(x), (3.22b)

where Jα(x) and Yα(x) are Bessel functions of first and second kind, re-
spectively. We will make use of Eq. (3.21) in the next section.
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3.4 The Gouy phase of Airy beams

Consider a monochromatic, one-dimensional beam-like wave field U(x, z, ω)
that propagates in the positive z-direction, and can be written as

U(x, z, ω) = φ(x, z)ei(kz−ωt), (3.23)

with the envelope φ(x, z) a solution of the paraxial wave equation

∂2φ

∂x2
+ 2ik

∂φ

∂z
= 0. (3.24)

Here k = ω/c is the wavenumber associated with frequency ω, c denotes
the speed of light, and t the time. As discussed in Section 3.2, a possible
solution to Eq. (3.24) is the so-called Airy beam, given by the expres-
sion [Berry and Balazs, 1979]

φ(s, ξ) = Ai

[

s−
(

ξ2

4

)]

exp

[

i

(

sξ

2
− ξ3

12

)]

, (3.25)

with Ai the Airy function, s = x/x0 a dimensionless transverse coordinate,
and ξ = z/kx20 a normalized propagation distance. In the remainder
the constant x0 is taken to be positive, and the time-dependent part of
the wave field is suppressed. An example of the intensity distribution of
an Airy beam is shown in Fig. 3.1, from which both the diffraction-free
propagation and the transverse acceleration can be seen.

Because of its curved trajectory, we define the Gouy phase δ of an
Airy beam as the difference between its phase ψ and that of an ideal
(non-diffracted) diverging cylindrical wave Ucyl(x, z, ω) centered on the
y-axis and propagating into the half-space z > 0, i.e.

δ(x, z, ω) = ψ[U(x, z, ω)]− ψ[Ucyl(x, z, ω)], (3.26)

with

Ucyl(x, z, ω) =
iC

4
H

(1)
0 (kρ). (3.27)

Here C is a complex-valued constant, H
(1)
0 denotes a Hankel function

of the first kind of order zero, and ρ = (x2 + z2)1/2. The asymptotic
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Figure 3.1: Normalized intensity distribution of an Airy beam propagating
in the positive ξ-direction.

behavior of the cylindrical wave field is given by the expression [Arfken

and Weber, 1995]

Ucyl(x, z, ω) ∼ C

√

2

πkρ
ei(kρ−π/4), (kρ≫ 1/4). (3.28)

We choose the constant C in Eq. (3.27) such that ψ[Ucyl(x, z, ω)] = kρ.
For z ≫ x this may be written as

kρ ≈ kz

[

1 +
1

2

(x

z

)2
]

= kz +
1

2

s2

ξ
. (3.29)

Thus we have from Eqs. (3.23), (3.25) and (3.29) that

δ(s, ξ, ω) =
sξ

2
− ξ3

12
− s2

2ξ
+ ψAi, (3.30)

where ψAi is the phase of the Airy function of Eq. (3.25). For real values
of its argument the Airy function is real, and hence ψAi equals 0 or π.
The first zero of Ai(x) (i.e. the zero with the largest value of x), occurs
near x = −2.34. On making use of this in Eq. (3.25), we find that ψAi = 0
when ξ < 2(s + 2.34)1/2. We first restrict our attention to this region of
sξ-space.
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It is seen from Eq. (3.25) that the maximum beam intensity, |φ(s, ξ)|2,
occurs on a quadratic trajectory. We therefore study the behavior of the
Gouy phase on curves of the type s = αξ2, with a a positive constant.
On substituting this form into Eq. (3.30), it immediately follows that the
Gouy phase vanishes identically along two curves, viz.

δ(s, ξ, ω) = 0, if s = (3± 31/2)ξ2/6. (3.31)

Similarly, it is seen that the maximum Gouy phase occurs along the curve
s = ξ2/2, namely

δ(s, ξ, ω) =
ξ3

24
, if s = ξ2/2. (3.32)

The quadratic trajectory along which the intensity equals Ai2(0), (next to
the maximum intensity, see Fig. 3.1) is given by the expression s = ξ2/4.
On substituting this form into Eq. (3.30) we find that

δ(s, ξ, ω) =
ξ3

96
, if s = ξ2/4. (3.33)

We notice in passing that along the ξ-axis (i.e., the z-direction) the Gouy
phase takes on negative values, i.e.

δ(0, ξ, ω) = − ξ
3

12
. (3.34)

Contours of the Gouy phase are shown in Fig. 3.2. Superposed are
several quadratic curves. It is seen that the two dashed curves given by
Eq. (3.31) indeed coincide with the zero contours. The curve along which
the Gouy phase reaches its maximum [see Eq. (3.32)] is displayed as a
solid line. The dotted curve is given by Eq. (3.33).

We next turn our attention to the region ξ > 2(s + 2.34)1/2. Here
the Airy function can take on the value zero. At such points its phase
ψAi is singular, as is the Gouy phase. Both phases display a discontinuity
of an amount π at these singularities. An example of this behavior is
shown in Fig. 3.3. The diagonal line that runs from the left-hand bottom
to the right-hand top indicates the fifth zero of the Airy function, i.e.
Ai(s− ξ2/4 = −7.94) = 0. It is seen from the color-coding that the Gouy
phase exhibits a π-discontinuity across this line.
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ξ = 2 (s+2.34)1/2

π

−π

Figure 3.2: Color-coded plot of the Gouy phase of an Airy beam. Only
the sξ-region in which the Airy function has no zeros is shown. Along
the two dashed curves, given by Eq. (3.31), the Gouy phase equals zero
. Along the solid curve, given by Eq. (3.32), the Gouy phase reaches its
maximum. The dotted curve is given by Eq. (3.33).

The beams we discussed so far are idealizations because the Airy func-
tion is not square integrable, i.e. a beam described by Eq. (3.25) carries
an infinite amount of energy. Siviloglou and Christodoulides [Siviloglou
and Christodoulides, 2007] considered an Airy beam source with an
exponential envelope, i.e.

φ(fe)(s, 0) = Ai(s) eas, (3.35)

with the decay parameter a > 0 as to ensure a finite energy contribution,
called (fe), from the tail of the Airy function. They showed that such a
beam propagates as

φ(fe)(s, ξ) = Ai(s− ξ2/4 + iaξ)eas−aξ
2/2

×e[i(−ξ3/12+a2ξ/2+sξ/2)]. (3.36)

Such a finite-energy beam still shows the characteristic acceleration and
is, at least to some extent, diffraction-free. A beam of this type has
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π

−π

Figure 3.3: Color-coded plot of the Gouy phase of an Airy beam. A
portion of the region in which the function Ai(x) has zeros is shown. The
solid black line indicates the fifth zero of the Airy function. The Gouy
phase jumps by an amount π across this line.

been realized using a Gaussian beam incident on a spatial light modu-
lator [Siviloglou et al., 2007]. It follows from Eqs. (3.26) and (3.4) that
the Gouy phase for such beams is given by the expression

δ(fe)(s, ξ, ω) =
sξ

2
− ξ3

12
− s2

2ξ
+
a2ξ

2
+ ψAi. (3.37)

It is to be noted that ψAi now pertains to the Airy function of Eq. (3.4),
and is no longer restricted to the values 0 and π. In the experiment
reported in [Siviloglou et al., 2007] the parameter values were x0 =
53 µm, a = 0.11 and λ = 488 nm. In Fig. 3.4 intensity contours of a
finite-energy Airy beam are shown and in Fig. 3.5 selected cross-sections of
the corresponding beam intensity are plotted. On propagation the height
of the central peak gradually decreases and the beam remains essentially
diffraction-free up to ξ ≈ 5 (corresponding to a propagation length of
18 cm), after which it rapidly spreads. However, the result expressed in
Eq. (3.31), namely that the Gouy phase is zero along two quadratic curves,
is still an excellent approximation under these conditions. This is shown in
Fig. 3.6 in which the Gouy phase δ(fe)(s, ξ, ω) is plotted along the curves



Chapter 3. The Gouy phase of Airy beams 45
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Figure 3.4: Normalized intensity distribution of a finite-energy Airy beam
propagating in the positive ξ-direction. In this example x0 = 53 µm,
a = 0.11 and λ = 488 nm.

s = (3 ± 31/2)ξ2/6. It is seen that the actual value of the phase anomaly
is always less than 2. This corresponds to a deviation of less than λ/3
from the approximate value zero after a propagation distance of 360,000
wavelengths. Along the curves of Eqs. (3.32) and (3.33) the difference
between the analytic expressions pertaining to the infinite-energy beam
and a numerical evaluation of Eq. (3.37) is even smaller.

In conclusion, the phase behavior of infinite-energy Airy beams has
been analyzed. By comparing this behavior to that of an outgoing cylin-
drical wave, analytical expressions for their Gouy phase were derived. It
was shown numerically that these results are excellent approximations for
the Gouy phase of finite-energy Airy beams generated under typical con-
ditions.
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Figure 3.5: Intensity of a finite-energy Airy beam in different cross-sections
perpendicular to the ξ-axis: the source plane ξ = 0 (black), ξ = 2 (blue),
ξ = 4 (red), and ξ = 6 (green),
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Figure 3.6: Gouy phase of a finite-energy Airy beam along the curves
s = (3 + 31/2)/6]ξ2 (red), and s = (3− 31/2)/6]ξ2 (blue).
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Abstract

When a monochromatic wavefield is focused, its phase, compared to that
of a non-diffracted spherical wave, undergoes a rapid π phase change.
This effect bears the name of its discoverer, L.G. Gouy. In a partially
coherent wavefield the phase is a random quantity and therefore, when
such a field is focused, its Gouy phase is undefined. However, the phase of
the correlation functions that characterize partially coherent fields, such
as the cross-spectral density and the spectral degree of coherence, do have

47



48

a well-defined phase. By introducing a generalized Gouy phase that is a
function of two positions, we demonstrate that the correlation functions
also undergo a rapid π phase change near focus. The dependence of this
phenomenon on the state of coherence is examined. It is shown that in the
coherent limit this generalized Gouy phase reduces to the classical Gouy
phase. The implications for practical applications such as interference
microscopy are examined. It is found that the fringe spacing is strongly
influenced by the state of coherence.
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4.1 Introduction

Traditionally, the Gouy phase is defined as the phase difference between
a deterministic monochromatic, focused field and a plane wave or a non-
diffracted spherical wave with the same frequency (see [Visser and Wolf,
2010] and the references therein). In practice, however, the field is often
partially coherent, such as light that is produced by a multi-mode laser,
or light that has traveled through the atmosphere or biological tissue. In
those cases the phase of the wave field is a random quantity, and hence
the Gouy phase is undefined in this situation.

In the space-frequency domain, partially coherent wavefields are char-
acterized by correlation functions such as the cross-spectral density and
the spectral degree of coherence [Mandel and Wolf, 1995]. In contrast
to the field, these complex-valued functions typically have a well-defined
phase. By introducing a generalized Gouy phase we show that the cor-
relation functions exhibit a phase anomaly near focus that is remarkably
similar to the rapid π phase change that occurs in focused, deterministic
wavefields and in the coherent limit the generalized Gouy phase reduces
to the classical phase anomaly. The phase behavior of the two-point cor-
relation functions plays a central role in interference effects. We find that
the fringe spacing that is observed in a Linnik interferometer is influenced
by the state of coherence in a non-trivial manner. The focusing of par-
tially coherent light has been examined by several authors and is reviewed
in [Gbur and Visser, 2010]. Whereas most such studies deal with inten-
sity distributions, in this chapter we will be concerned with the behavior
of correlation functions.

4.2 Fully coherent focused fields

Let us first consider a converging, monochromatic field of frequency ω that
emerges from a circular aperture with radius a (see Fig. 4.1). The origin O
of the coordinate system is taken at the geometrical focus. The amplitude
of the field in the aperture is U (0)(r′, ω), with r′ the position vector of
a point Q(r′). According to the Huygens-Fresnel principle, the field at
a point P (r) near focus can be expressed as ([Born and Wolf, 1999],
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Figure 4.1: Illustrating the notation.

Sec. 8.8)

U(r, ω) = − i

λ

∫

S
U (0)(r′, ω)

exp(iks)

s
d2r′, (4.1)

where the integration extends over the spherical wavefront S that fills the
aperture, s = |r− r′| denotes the distance QP , λ is the wavelength and
k = 2π/λ is the wavenumber associated with frequency ω. Using the
Debye approximation one can derive for the space-dependent part of the
field the expression ([Born and Wolf, 1999], Sec. 8.8)

U(x, y, z) = −ik
a2

f2
Ceikz

∫ 1

0
J0

(

k
a

f

√

x2 + y2 ρ

)

e−ikzρ2a2/2f2 ρ dρ,

(4.2)
where f denotes the radius of the wavefront, C is a positive constant, and
J0 is the Bessel function of the first kind and zero order. For axial points
(x = y = 0), Eq. (4.2) reduces to

U(0, 0, z) = −ik
a2

f2
Ceikz

∫ 1

0
e−ikzρ2a2/2f2 ρ dρ, (4.3)

= −ik
a2C

2f2
sinc

(

kz
a2

4f2

)

eikz(1−a
2/4f2), (4.4)
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where sinc(x) ≡ sin(x)/x. The argument (or “phase”) of the field is
therefore given by the expression

arg[U(0, 0, z)] =






















−π
2
+ kz

(

1− a2

4f2

)

(mod 2π) 1, if sinc

(

kz
a2

4f2

)

> 0,

π

2
+ kz

(

1− a2

4f2

)

(mod 2π), if sinc

(

kz
a2

4f2

)

< 0.

(4.5)

Since

sinc

(

kz
a2

4f2

)

> 0, if |z| < 2λf2/a2, (4.6)

the phase of the field in the immediate vicinity of the focus can be written
as

arg[U(0, 0, z)] = −π
2
+ kz

(

1− a2

4f2

)

. (4.7)

It follows from Eq. (4.7) that on the optical axis the phase changes slower
than that of a plane wave of the same frequency2: The effective wavelength
near focus equals λ/(1− a2/4f2).

The Gouy phase δ(z) of a focused, monochromatic field at an axial
point r = (0, 0, z) is defined as the difference between the argument of the
field U(0, 0, z) and that of a plane wave of the same frequency, i.e.

δ(z) ≡ arg[U(0, 0, z)]− kz (mod 2π). (4.8)

On substituting from Eq. (4.7) into Eq. (4.8) we find that

δ(0) = −π/2. (4.9)

Furthermore, the Gouy phase has the symmetry property

δ(z) + δ(−z) = −π, (4.10)

1The symbol mod 2π denotes that the two sides of the equation are indeterminate
to the extent of an additive constant 2mπ where m is any integer.

2This was first derived in [Linfoot and Wolf, 1956], but on page 828 it is er-
roneously stated that “the equiphase surfaces are spaced closer together, by a factor
1− a2/4f2 ...”.
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and its derivative of near focus is given by the expression

dδ(z)

dz
= −k a

2

4f2
[rad/m]. (4.11)

An example of the behavior of the Gouy phase is shown in Fig. 4.2. The
discontinuities by an amount of π occur at the zeros (or phase singularities)
of the field.
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Figure 4.2: The classical Gouy phase δ(z) along the optical axis for a
deterministic (i.e., fully coherent) focused wave field. In this example
a = 1 cm, f = 10 cm and λ = 0.6328 µm.

4.3 Partially coherent focused fields

For a partially coherent wave field one must consider, instead of the
stochastic amplitude U (0)(r′, ω), the cross-spectral density function ([Mandel

and Wolf, 1995], Sec. 2.4) of the field at two points Q1(r
′
1) and Q2(r

′
2),

namely,
W (0)(r′1, r

′
2, ω) = 〈U (0)∗(r′1, ω)U

(0)(r′2, ω)〉. (4.12)

Here the angled brackets denote the average, take over a statistical en-
semble of monochromatic realizations {U (0)(r′, ω) exp(−iωt)} ([Mandel

and Wolf, 1995], Sec. 4.7) and the asterisk denotes the complex conju-
gate. The cross-spectral density of the focused field is given by the similar
expression

W (r1, r2, ω) = 〈U∗(r1, ω)U(r2, ω)〉. (4.13)
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On substituting from Eq. (4.1) into Eq. (4.13) we find that

W (r1, r2, ω) =
1

λ2

∫

S

∫

S
W (0)(r′, r′′, ω)

eik(s2−s1)

s1s2
d2r′d2r′′, (4.14)

with

s1 =
∣

∣r1 − r′
∣

∣ , (4.15)

s2 =
∣

∣r2 − r′′
∣

∣ . (4.16)

From now on we omit the dependence of the various quantities on the
frequency ω. We assume that the field in the aperture is a Gaussian
Schell-model field ([Mandel and Wolf, 1995], Sec. 5.4) with uniform
intensity A2, i.e.,

W (0)(r′, r′′) =W (0)(ρ′,ρ′′) = A2e−(ρ′′−ρ′)2/2σ2

, (4.17)

where ρ = (x, y) is a two-dimensional transverse vector and σ is a positive
constant that is a measure of the effective transverse coherence length of
the field.

In the following we restrict our attention to observation points on the
z-axis, i.e. r1 = (0, 0, z1), r2 = (0, 0, z2). The factors si (i = 1, 2) in the
denominator of Eq. (4.14) can be approximated by the focal length f and
in the exponent they may be approximated by the expressions

s1 ≈ f − q̂′ · r1, (4.18)

s2 ≈ f − q̂′′ · r2, (4.19)

where q̂′ and q̂′′ are unit vectors in the directions Or′ and Or′′, respec-
tively. In cylindrical coordinates ρ and φ we thus find that

q̂′ · r1 ≈ −z1(1− ρ′
2
/2f2), (4.20)

q̂′′ · r2 ≈ −z2(1− ρ′′
2
/2f2). (4.21)

On making use of these expressions, Eq. (4.14) becomes

W (z1, z2) =

(

A

λf

)2 ∫ 2π

0

∫ a

0

∫ 2π

0

∫ a

0
e−[ρ′2+ρ′′2−2ρ′ρ′′ cos(φ′−φ′′)]/2σ2

×eik[−z1(1−ρ′2/2f2)+z2(1−ρ′′2/2f2)]ρ′ρ′′dφ′dρ′dφ′′dρ′′,(4.22)
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where we have used the relation dxdy = ρ dρdφ. Since

∫ 2π

0

∫ 2π

0
eρ

′ρ′′ cos(φ′−φ′′)/σ2

dφ′dφ′′ = 4π2I0

(

ρ′ρ′′

σ2

)

, (4.23)

with I0 denoting the modified Bessel function of order zero, we finally
obtain for the cross-spectral density the formula [Fischer and Visser,
2004]

W (z1, z2) = A2 k
2

f2

∫ a

0

∫ a

0
e−(ρ′′+ρ′)2/2σ2

I0

(

ρ′ρ′′

σ2

)

×eik[−z1(1−ρ′2/2f2)+z2(1−ρ′′2/2f2)]ρ′ρ′′dρ′dρ′′. (4.24)

The cross-spectral density can be normalized by defining the spectral de-
gree of coherence as

µ(z1, z2) ≡
W (z1, z2)

[S(z1)S(z2)]1/2
, (4.25)

with the spectral density distribution S(z) = W (z, z). Since S(z) is a
positive, real-valued function, the spectral degree of coherence µ(z1, z2)
and the cross-spectral density W (z1, z2) have the same phase.

4.4 A generalized Gouy phase

Let us introduce a generalized Gouy phase as the difference between the
phase of the cross-spectral density W (z1, z2) and the phase of eik(z2−z1),
i.e.

δµ(z1, z2) = arg[W (z1, z2)]− k(z2 − z1) (mod 2π). (4.26)

Here the subscript µ indicates that this definition pertains to the phase of
the cross-spectral density or, equivalently, the spectral degree of coherence.
The reference phases kz1 and kz2 are those of a plane wave of frequency
ω = kc, with c the speed of light, at positions z1 and z2, respectively. In
contrast to the classical Gouy phase, definition (4.26) involves the phase
of a two-point correlation function rather than that of a deterministic
wave field that only depends on a single spatial variable. In addition, two
reference phases are taken into account instead of one.
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Let us take the first observation point at origin O, i.e., z1 = 0. The
cross-spectral density of Eq. (4.24) now becomes

W (0, z2) = A2 k
2

f2

∫ a

0

∫ a

0
e−(ρ′′+ρ′)2/2σ2

I0

(

ρ′ρ′′

σ2

)

eikz2(1−ρ
′′2/2f2)ρ′ρ′′dρ′dρ′′,

(4.27)
and Eq. (4.26) reduces to

δµ(0, z2) = arg

[
∫ a

0

∫ a

0
e−(ρ′′+ρ′)2/2σ2

I0

(

ρ′ρ′′

σ2

)

e−ikz2ρ′′
2/2f2ρ′ρ′′dρ′dρ′′

]

.

(4.28)
Examples of the generalized Gouy phase are shown in Fig. 4.3 for different
values of the normalized transverse coherence length σ/a. It is seen that
δµ(0, z2) exhibits an anomalous phase behavior that is quite similar to that
of deterministic fields, with the phase near focus undergoing a rapid phase
change of π. In addition, the generalized Gouy phase obeys the following
relations:

δµ(0, 0) = 0 (4.29)

and
δµ(0, z2) + δµ(0,−z2) = 0, (4.30)

which are the statistical analogs of Eqs. (4.9) and (4.10) for the determin-
istic case. In fact, apart from a π/2 offset, which can be traced back to
the prefactor i in Eq. (4.1), they are identical.

On the other hand, there are some striking differences. For instance,
the modulation depth of the generalized Gouy phase is dependent on the
transverse coherence length of the incident field. It is small for incoherent
fields and increases in size as the coherence length is increased. In addi-
tion, the generalized Gouy phase has regions of both positive and negative
slope, unlike the coherent case for which the slope is always negative. The
implications of this for interference experiments will be discussed shortly.

Next we show that the classical phase anomaly is a special case of the
generalized Gouy phase. Repeating Eq. (4.13), we have that

W (z1, z2) = 〈U∗(z1)U(z2)〉. (4.31)

When the field is deterministic, only a single realization exists and the
cross-spectral density W (z1, z2) factorizes into the form

W (z1, z2) = U∗(z1)U(z2). (4.32)
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In that case the Gouy phase expressed by Eq. (4.26) becomes

δµ(z1, z2) = arg[U∗(z1)] + arg[U(z2)]− k(z2 − z1) (mod 2π). (4.33)

If we set z1 = 0, we get

δµ(0, z2) = arg[U(z2)]− kz2 + π/2 (mod 2π), (4.34)

where we made use of Eq. (4.4). It is seen that in this special case the
generalized Gouy phase, apart from an inconsequential constant, reduces
to the classical Gouy phase [given by Eq. (4.8)]. Furthermore, in the
coherent limit (σ → ∞) Eq. (4.28) can be solved analytically and we
obtain the result that near z = 0

δµ(0, z2) = −kz2a2/4f2, (4.35)

which is identical to the Gouy phase behavior of deterministic waves as
discussed in connection with Fig. 4.2.

The behavior of the spectral degree of coherence has been studied by
[Fischer and Visser, 2004]. An example, calculated from Eq. (4.25)
is shown for pairs of axial points z1 and z2 in Fig. 4.4. It is seen that
|µ(z1, z2)| is an oscillatory function of the distance |z1 − z2|.

Using Eq. (4.26) the generalized Gouy phase for axial points z1 and z2
is computed and displayed in Fig. 4.5. Here the value of the normalized
coherence length σ/a = 0.5. In this plot the diagonal line denotes the
Gouy phase of the cross-spectral density when z1 = z2. When the coher-
ence length of the field increases, the different contour lines move closer
together, as can be seen in Fig. 4.6 and Fig. 4.7.
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Figure 4.3: The generalized Gouy phase δµ(0, z2) of a focused partially
coherent field for different values of the transverse coherence length of
the field in the aperture. In these examples a = 1 cm, f = 2 cm, and
λ = 0.6328 µm.
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Figure 4.4: Color-coded plot of the modulus of the spectral degree of
coherence, |µ(z1, z2)| when the incident field has a normalized coherence
length σ/a = 0.5. In this example a = 1 cm, f = 10 cm, and λ =
0.6328 µm.

4.5 The origin of the generalized Gouy phase

The physical origin of the classical Gouy phase has been discussed in [Visser

and Wolf, 2010]. In this section we show that a similar analysis explains
the π phase change that the generalized Gouy phase undergoes near focus.

Consider an astigmatic surface S′ with focal lines at C1 and C2. The
point Q represents the intersection of S′ and the z-axis (see Fig. 4.8), and
is taken as the origin of the coordinate system. The two focal lengths are
denoted by f1 = QC1 and f2 = QC2, respectively.
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Figure 4.5: The generalized Gouy phase of the cross-spectral density for
pairs of axial points z1 and z2 when the incident field has a normalized
coherence length σ/a = 0.5. In this example a = 1 cm, f = 10 cm, and
λ = 0.6328 µm.

Figure 4.6: The generalized Gouy phase of the cross-spectral density for
pairs of axial points z1 and z2 when the incident field has a normalized
coherence length σ/a = 1. In this example a = 1 cm, f = 10 cm, and
λ = 0.6328 µm.
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Figure 4.7: The generalized Gouy phase of the cross-spectral density for
pairs of axial points z1 and z2 when the incident field has a normalized
coherence length σ/a = 2. In this example a = 1 cm, f = 10 cm, and
λ = 0.6328 µm.

Figure 4.8: An astigmatic surface S′ with focal lines at C1 and C2. The
focal lengths QC1 = f1 and QC2 = f2. The distance from a point of
integration on S′ to the observation point P is denoted by s2.

According to Eq. (4.14) the cross-spectral density can be written as

W (r1, r2) =
1

λ2

∫

S′

∫

S′

W (0)(r′, r′′)
eik(s2−s1)

s1s2
d2r′d2r′′, (4.36)
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with s1, s2 given by Eqs. (4.15) and (4.16). If the distance between the
two focal lines may be assumed to be small, we have that

1

s1
≈ 1

s2
≈ 1

f
, (4.37)

where

f =
f1 + f2

2
. (4.38)

Hence

W (r1, r2) ≈
1

λ2f2

∫

S′

∫

S′

W (0)(r′, r′′)eik(s2−s1) d2r′d2r′′. (4.39)

The main contribution to this oscillatory integral comes from those points
where s1 and s2 are stationary, i.e. in the vicinity of the point Q in Fig. 4.8.
In that region the amplitude function W (0)(r′, r′′) may be approximated
by the value W (0)(0, 0). Also, since only the immediate neighborhood
around this stationary point contributes significantly to the integral, it is
justified to expand the limits of the integration in Eq. (4.39) to minus and
plus infinity. Thus we find that

W (r1, r2) ≈ C1
W (0)(0, 0)

λ2f2

∫ ∞

−∞
eiks2 d2r′′

∫ ∞

−∞
e−iks1 d2r′, (4.40)

with C1 a constant [Stamnes, 1986].
Next we restrict ourselves to axial points, i.e. r1 = (0, 0, z1), r2 =

(0, 0, z2). Then Eq. (4.40) can be written as

W (z1, z2) ≈ C2

∫ ∞

−∞
eiks2 d2r′′

∫ ∞

−∞
e−iks1 d2r′, (4.41)

where C2 is a constant. Let us first analyze the left-hand integral. Since
the equation of the surface S′ is approximately

z =
x2

2f1
+

y2

2f2
, (4.42)

we have that

s2 =
√

x2 + y2 + (z2 − z)2, (4.43)

≈ z2 + α1x
2 + α2y

2, (4.44)
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where

α1 =
f1 − z2
2f1z2

, (4.45)

α2 =
f2 − z2
2f2z2

. (4.46)

This way we find that

∫ ∞

−∞
eiks2 d2r′′ ≈ eikz2

∫ ∞

−∞
eik(α1x2+α2y2) dxdy. (4.47)

Now let us write ξ = x
√
k, µ = y

√
k, then Eq. (4.47) becomes

∫ ∞

−∞
eiks2 d2r′′ ≈ eikz2

∫ ∞

−∞
eiα1ξ2 dξ

∫ ∞

−∞
eiα2µ2 dµ. (4.48)

Since
∫ ∞

−∞
e±it2 dt = (1± i)

√

π

2
, (4.49)

we have that
∫ ∞

−∞
eiαξ

2

dξ = (1± i)

√

π

2|α| , (4.50)

according as α is positive or negative. Three cases can now be distin-
guished:

1) The point P lies to the left of C1 and C2, i.e., z2 < f1 < f2. In this
case α1, α2 > 0 and

∫

S′

eiks2 d2r′′ ≈ i2πz2e
ikz2

√

f1f2
(f1 − z2)(f2 − z2)

. (4.51)

2) The point P is located between C1 and C2, i.e., f1 < z2 < f2. In this
case α1 is negative and α2 is positive, and

∫ ∞

−∞
eiks2 d2r′′ ≈ 2πz2e

ikz2

√

−f1f2
(f1 − z2)(f2 − z2)

. (4.52)
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3) The point P lies to the right of C2, i.e., z2 > f2 > f1. Then α1, α2 < 0,
and

∫ ∞

−∞
eiks2 d2r′′ ≈ −i2πz2e

ikz2

√

f1f2
(f1 − z2)(f2 − z2)

. (4.53)

A comparison of Eqs. (4.51), (4.52) and (4.53) shows that when the point
P moves through the two focal lines at C1 and C2, the phase of the first
integral of Eq. (4.41) twice jumps by an amount of π/2. If now we take the
limit of the astigmatism going to zero, the surface S′ becomes spherical
and f1 = f2 = f . Also, the two successive π/2 phase jumps coincide to
yield a single π phase jump.

When we set z1 = (f2 + f1)/2 = f the second integral becomes
∫ ∞

−∞
e−iks1 d2r′ =

∫ ∞

−∞
e−ikf d2r′ = Constant. (4.54)

The value of this integral can be absorbed in a new constant C3, and we
obtain the expression

W (z1, z2) = C3

∫ ∞

−∞
eiks2 d2r′′. (4.55)

According to Eqs. (4.51)–(4.53), for a spherical surface the generalized
Gouy phase undergoes a π phase jump, just like its classical counter-
part. This discontinuous behavior is the result of the use of the method of
stationary phase in which the limit k → ∞ is studied. As is well known,
this limit yields the results of geometrical optics. The actual field, however,
satisfies the Helmholtz equation, the solutions of which are continuous. We
can therefore expect the π phase jump to be “smoothed out” into a rapid,
but continuous π phase change as is indeed seen in Fig. 4.3.

4.6 Implications for interferometry

It is well known that the fringe spacing in interference microscopy is typ-
ically irregular, and depends on both the numerical aperture and the
apodization [Creath, 1989; Foley and Wolf, 2005]. It has also re-
cently been established that the spatial coherence of the incident field
plays a role, although its treatment has been empirical to date.
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To quantitatively investigate the effects of spatial coherence on inter-
ference fringe spacing (and, ultimately, on interference metrology) and
the role that the generalized Gouy phase plays, we consider the Linnik
microscope [Kino and Korle, 1996]. Such microscope is a two-beam
interferometer which is widely used for studying the structure of reflecting
specimens. A sketch is shown in Fig. 4.9. In this figure, two identical
microscope objectives are placed in each arm. In one arm a reference ob-
ject is placed in the focal plane. In the other arm a test object can be
scanned through the focus. The superposition of the two reflected beams
is recorded as a function of the axial position z2. The detected interfer-
ence pattern is formed by the light emerging from the two axial points,
P1 = (0, 0, 0), P2 = (0, 0, z2). On making use of Eq. (4.25) we can write
the spectral density of this superposition as

|U(0) + U(z2)|2 = S(0) + S(z2) + 2
√

S(0)S(z2)Re[µ(0, z2)], (4.56)

which is commonly known as the spectral interference law [Mandel and

Wolf, 1995, Sec. 4.3].
It is clear from Eq. (4.56) that in an interferogram, in which the spec-

tral density of the superposition is recorded as a function of the distance
z2, the spacing of the ensuing fringe pattern is determined by µ(0, z2), the
spectral degree of coherence. When the field is fully coherent, the spectral
density of the field can be expressed analytically from Eqs. (4.4), (4.32)
and (4.56), as

S(M) = C2k
2a4

4f4
+ C2 4

z22
sin2

(

kz2
a2

4f2

)

+2C2 ka
2

f2z2
sin

(

kz2
a2

4f2

)

cos

[

kz2(1−
a2

4f2
)

]

. (4.57)

While for a partially coherent field, such as in our model, µ(0, z2) is char-
acterized by a single parameter, namely the transverse coherence length
σ of the field in the aperture. As was seen in Fig. 4.3, this parameter
has a significant influence on the phase behavior of the spectral degree of
coherence near focus.

For low NA fields, S(z2) is a slowly varying function compared to
µ(0, z2), which varies sinusoidally on the scale of the wavelength. For
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high NA fields, however, S(z2) changes much faster and the maxima of
the interference term in Eq. (4.56) are no longer coincident with those of
Re[µ(0, z2)].

source objective

reference object

objective

test object

detection

beam

ZZ

splitter

z 2

Figure 4.9: Sketch of a Linnik interferometer.

To quantify the effect of the state of coherence of the incident field on
the interference process, we have computed the spacing of the fringes for
three cases, each with the same (relatively high) numerical aperture and
varying degrees of spatial coherence: σ/a = 0.5, σ/a = 1, and σ/a = 50.
The results are listed in Table 4.1 for the first 11 fringes.

As can be seen, in all three cases, the spacings of the first several
fringes, which are primarily dictated by µ(0, z2), are larger than the free-
space wavelength. This increased spacing was discussed earlier for the
coherent case, and is due to the behavior of the Gouy phase. Accordingly,
if the fringe spacings were due solely to µ(0, z2), we would expect, in co-
herent case, that they would be identical except when the region between
the corresponding intensity maxima contains a phase discontinuity of the
Gouy phase. That this is not the case is due to the fact that the spectral
density S(z2) modulates the spectral degree of coherence [in Eq. (4.56)]
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and displaces additional maxima in the neighborhood of the discontinu-
ities. By contrast, for the partially coherent cases, a greater number of
fringes are inherently affected near the phase jumps of the generalized
Gouy phase. This is because the transition at the jumps is more gradual
(i.e. not a true discontinuity). Furthermore, as the field becomes less co-
herent, the size of the jumps (i.e. the modulation depth) decreases and the
transition near the jumps becomes smoother. Therefore, the fringe spacing
is highly irregular in all three cases, with the maximum fringe displace-
ment (♯8) occurring for the coherent case (σ/a = 50) and the maximum
fringe variation (greater number of affected fringes) and smallest fringe
displacement occurring for the least coherent case. The maximum fringe
displacements, given by the 8th fringe in each case, are 0.5944, 0.5579, and
0.4647, from least coherent to most coherent.

Table 4.1: Fringe spacings for three values of the transverse coherence
length σ. In all cases the aperture radius a = 1 cm, the focal length
f = 2 cm,and the free-space wavelength is λ = 0.6328 µm.

♯ σ/a = 0.5 σ/a = 1 σ/a = 50

1 0.6675 0.6702 0.6730
2 0.6671 0.6699 0.6730
3 0.6662 0.6695 0.6730
4 0.6642 0.6683 0.6729
5 0.6602 0.6657 0.6724
6 0.6509 0.6582 0.6702
7 0.6284 0.6311 0.6560
8 0.5944 0.5579 0.4647
9 0.6044 0.5926 0.5975
10 0.6368 0.6465 0.6652
11 0.6519 0.6601 0.6704

In Figs. 4.10 and 4.11, we have plotted the interferograms correspond-
ing to the first and third cases in Table 4.1 (σ/a = 0.5 and σ/a = 50).
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Figure 4.10: Interferogram for a fully coherent field (σ/a = 50) (red curve),
and for a partially coherent field (σ/a = 0.5) (blue curve). In both cases
a = 1 cm, f = 2 cm, and λ = 0.6328 µm.
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Figure 4.11: Same as Figure 4.10, but for larger values of the axial position
z2.

It is seen from Fig. 4.10 that the fringe spacing of the fully coherent
field (red curve) is initially somewhat larger than that of the partially co-
herent field (blue curve). However, Fig. 4.11 shows that for larger values
of z2 the fringes of the fully coherent field move closer together and the
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maxima of the fringe pattern go from trailing the partially coherent case
to leading it. This transition occurs around z2 = 4.5 µm, which is pre-
cisely the point where the slope of the generalized Gouy phase changes
from being negative to being positive (see the top panel of Fig. 4.3). Near
z2 = 6.0 µm the sign of the slope changes again and fringe spacing of the
partially coherent field again becomes smaller than that of the fully co-
herent field. The slope of the classical Gouy phase (as shown in Fig. 4.12)
is, apart from the discontinuities at the axial phase singularities, always
negative. Therefore such an effect does not occur for coherent fields.

−π/2

 (z)δ

z
2 
[   m]µ

-15 -10 -5 5 10 15

π/2

−π

−3π/2

Figure 4.12: The generalized Gouy phase δµ(0, z2) of a fully coherent field.
In this example a = 1 cm, f = 2 cm, and λ = 0.6328 µm.

4.7 Conclusions

We have defined a generalized Gouy phase for partially coherent fields. In
contrast to its traditional counterpart, this phase pertains to the spectral
degree of coherence, a two-point correlation function, rather than to the
phase of a deterministic wave field that depends only an a single point. It
was shown that the classical phase anomaly is a special case of the general-
ized Gouy phase. The generalized Gouy phase was examined numerically
and analytically for the broad class of Gaussian-correlated fields. It was
demonstrated that our findings have important implications for metrology
with partially coherent fields.
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Manifestation of the Gouy

phase in strongly focused,

radially polarized beams

This Chapter is based on

• X. Pang and T.D. Visser,
“Manifestation of the Gouy phase in strongly focused, radially po-
larized beams,”
Optics Express vol. 21, pp. 8331-8341 (2013).

Abstract

The Gouy phase, sometimes called the focal phase anomaly, is the curious
effect that in the vicinity of its focus a diffracted field, compared to a non-
diffracted, converging spherical wave of the same frequency, undergoes a
rapid phase change by an amount of π. We theoretically investigate the
phase behavior and the polarization ellipse of a strongly focused, radially
polarized beam. We find that the significant variation of the state of
polarization in the focal region, is a manifestation of the different Gouy
phases that the two electric field components undergo.

69
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5.1 Introduction

The phase anomaly is a measure of how the phase of a monochromatic,
focused wave field differs from that of a non-diffracted, converging spher-
ical wave of the same frequency. Since its first description by L.G. Gouy
in the 1890s [Gouy, 1890; Gouy, 1891], his namesake phase has been ob-
served under a wide variety of circumstances. Recently investigated sys-
tems range from vortex beams [Baumann et al., 2009; Philip et al., 2012]
to fields of surface plasmon polaritions [Zhu et al., 2007]. Surprisingly
many different explanations for the physical origin of this remarkable ef-
fect have been suggested (see [Visser and Wolf, 2010] and the ref-
erences therein). Because of its crucial role in many applications such
as mode conversion [Beijersbergen et al., 1993], coherence tomogra-
phy [Lamouche et al., 2004], the tuning of the resonance frequency of
laser cavities [Klaassen et al., 2004], and interference microscopy (Chap-
ter 4 of this theis), the Gouy phase continues to attract attention.

When a beam of light is focused by a high-aperture system, the usual
scalar formalism no longer suffices, and an analysis of the Gouy phase must
then take the vector nature of the field into account. This has recently
been done for strongly focused, linearly polarized beams (see Chapter 2
of this thesis). It was found that the Gouy phases of the three Cartesian
components of the electric field exhibit quite different behaviors. An-
other example which requires a vectorial description is the focusing of
radially polarized beams [Youngworth and Brown, 2000; Mart́ınez-

Herrero and Mej́ıas, 2012]. Because of their intriguing properties, such
as a relatively small focal spot size [Dorn et al., 2003], these beams are
widely used in, for example, the probing of the dipole moment of individual
molecules [Novotny et al., 2001], high-resolution microscopy [Sheppard
and Choudhury, 2004], trapping of strongly scattering particles [Zhan,
2004b; Nieminen et al., 2008] and in dark-field imaging [Biss et al., 2006].
A review is presented in [Brown, 2011].

A first indication of the complicated phase behavior of focused, radially
polarized beams was the observation that their wave spacing near focus
is highly irregular [Visser and Foley, 2005]. This was followed by a
study of the Gouy phase of the longitudinal component of the electric
field vector at the focal plane [Chen et al., 2007]. In the present chapter,
the Gouy phase of the total electric field vector, consisting of a radial



Chapter 5. Gouy phase of a radially polarized beams 71

and longitudinal longitudinal component, is examined in the entire focal
region. It is found that the strong changes in the shape and orientation of
the polarization ellipse near focus is a consequence of the different Gouy
phases that these two components undergo.

5.2 Focused, radially polarized fields

Consider an aplanatic focusing system L of focal length f with a semi-
aperture angle α. The geometrical focus is indicated by O and is taken to

L

y

x

zO

α
f P

E

Figure 5.1: A high-numerical-aperture focusing system with an incident
beam that is radially polarized.

be the origin of a Cartesian coordinate system (see Fig. 5.1). A monochro-
matic, radially polarized beam with angular frequency ω is incident upon
the system. The electric and magnetic fields at time t at position r are
given by the expressions

E(r, t) = Re [e(r) exp(−iωt)] , (5.1)

H(r, t) = Re [h(r) exp(−iωt)] , (5.2)

respectively, where Re denotes the real part. Such a field may be gen-
erated, for example, by the superposition of two, mutually orthogonally
polarized, Hermite-Gaussian beams. If we assume that the entrance plane
of the focusing system coincides with the waist plane of the beam, then the
longitudinal component ez and the radial component eρ of the electric field
at a point P = (ρ, z) in the focal region are given by the equations [Visser
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and Foley, 2005]1

ez(ρ, z) = −ikf

∫ α

0
l(θ) sin2 θ cos1/2 θ

×eikz cos θJ0(kρ sin θ) dθ, (5.3)

eρ(ρ, z) = −kf
∫ α

0
l(θ) sin θ cos3/2 θ

×eikz cos θJ1(kρ sin θ) dθ, (5.4)

where Ji is the Bessel function of the first kind of order i and k = ω/c,
with c the speed of light in vacuum, is the wavenumber associated with
frequency ω. Furthermore, l(θ) denotes the angular amplitude function

l(θ)=f sin θ exp[−f2 sin2 θ/ω2
0], (5.5)

where ω0 is the spot size of the beam in the waist plane. Note that since
the incident electric field has no azimuthal component and the configura-
tion is invariant with respect to rotations around the z-axis, there is no
azimuthal component of the electric field in the focal region. The position
of an observation point P may be indicated by the dimensionless Lommel
variables u and v [Richards and Wolf, 1959], namely

u = kz sin2 α, (5.6)

v = kρ sinα. (5.7)

Eqs. (5.3) and (5.4) can then be rewritten as

ez(u, v) = −ikf2
∫ α

0
sin3 θ cos1/2 θ e−β

2 sin2 θ

×eiu cos θ/ sin2 αJ0
(

v sin θ

sinα

)

dθ, (5.8)

eρ(u, v) = −kf2
∫ α

0
sin2 θ cos3/2 θ e−β

2 sin2 θ

×eiu cos θ/ sin2 αJ1
(

v sin θ

sinα

)

dθ, (5.9)

1This was first derived in [Youngworth and Brown, 2000], but we adopt the
notation of [Visser and Foley, 2005].
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where

β = f/ω0, (5.10)

which denotes the ratio of the focal length of the system and the spot size
of the beam in the waist plane.

It follows from Eqs. (5.8) and (5.9) that the field obeys the following
symmetry relations:

ez(−u, v) = −e∗z(u, v), (5.11)

eρ(−u, v) = e∗ρ(u, v). (5.12)

5.3 Two Gouy phases

The Gouy phase δ is defined as the difference between the actual phase
of the field and that of a (non-diffracted) spherical wave converging to
the focus in the half-space z < 0 and diverging from it in the half-space
z > 0 ([Born and Wolf, 1999, Sec. 8.8, Eq. (48)]). For each individual
component of the electric field we therefore define a Gouy phase as

δz(u, v) = arg[ez(u, v)]− sign(u)kR, (5.13)

δρ(u, v) = arg[eρ(u, v)]− sign(u)kR, (5.14)

where R is the distance from the observation point to the geometrical
focus, i.e.

kR = k
√

z2 + ρ2 =
1

sinα

√

u2

sin2 α
+ v2, (5.15)

and sign(x) denotes the sign function

sign(x) =

{

−1 if x < 0,
1 if x > 0.

(5.16)

For the longitudinal field component ez, one finds from Eqs. (5.8), (5.11)
and (5.13) that the Gouy phase at two points that are symmetrically
located with respect to the focus satisfies the relation

δz(−u, v) + δz(u, v) = −π (mod 2π). (5.17)
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At the focus we have

δz(0, 0) = −π/2 (mod 2π). (5.18)

For the radial field component eρ, it follows from Eqs. (5.9), (5.12) and
(5.14) that the Gouy phase satisfies the symmetry relations

δρ(−u, v) + δρ(u, v) = 0 (mod 2π). (5.19)

Even though eρ = 0 when v = 0, it is useful to study the behavior of δρ
along a tilted ray through focus; for such a ray v ∝ |u|. Using the fact
that for small arguments Jn(x) ∼ xn [Abramowitz and Stegun, 1965,
p. 360] we find from Eq. (5.9) that along such a ray eρ ∼ −|u|. Hence

limu↓0 δρ(u, v) = limu↑0 δρ(u, v) = π (mod 2π). (5.20)

It is seen from Eqs. (5.8) and (5.9) that the electric field components
are characterized by two parameters, namely the semi-aperture angle α,
and the beam-size parameter β. These two parameters have a different
effect on the Gouy phase behavior as we will now demonstrate.

On the central axis of the system (v = 0) only the longitudinal field
component ez is non-zero. The Gouy phase pertaining to this component,
δz, is shown in Fig. 5.2 for various values of the semi-aperture angle α. It
is seen that the phase change of ez decreases as α increases. Unlike the π
phase jump of the longitudinal component in linearly polarized fields (see
Chap. 2 of this thesis), the Gouy phase here is continous at focus. Note
that the longitudinal coordinate u is dependent on the value of the semi-
aperture angle α [See Eq. (5.6)]. In Fig. 5.3 the Gouy phase δz is depicted
for selected values of the beam-size parameter β. For a decreasing beam
waist-size (ω0) the Gouy phase decreases as well. In these two figures,
the negative or positive slope of the Gouy phase means that the wave-
front spacings can be smaller or bigger than λ. This has been discussed
by [Visser and Foley, 2005].
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Figure 5.2: The Gouy phase δz along the optical axis (v = 0) of the
electric field component ez for selected values of the semi-aperture angle
α (blue curve: α = 40◦, red curve: α = 50◦, olive curve: α = 60◦). The
beam-size parameter β = 3.
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Figure 5.3: The Gouy phase δz along the optical axis (v = 0) of the
electric field component ez for selected values of the beam-size parameter
β = f/ω0 (green curve: β = 1, blue curve: β = 2, red curve: β = 3, olive
curve: β = 4). The semi-aperture angle α = 60◦.

When v 6= 0, it follows from Eqs. (5.8) and (5.9) that both the lon-
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gitudinal component ez and the radial component eρ contribute to the
field. The two Gouy phases δz and δρ along an oblique ray through focus,
which makes an angle θ = 35◦ with the z-axis, are shown in Fig. 5.4. It
is clear that their respective behaviors are quite different. For example,
when −10 < u < −5 the oscillations of δz and δρ are out of phase. The
implications of this effect for the state of polarization will be discussed in
the next section.
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 ρ

Θ
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Figure 5.4: The Gouy phase of the longitudinal component ez (red curve)
and that of the radial component eρ (blue curve) along an oblique ray
through focus under an angle θ = 35◦. Here α = 40◦ and β = 1.

5.4 The Gouy phase and the state of

polarization

It is convenient to characterize the state of polarization of a two-dimensional
field by the four Stokes parameters ([Born and Wolf, 1999], Sec. 1.4).
For a beam propagating in the z-direction, these parameters are defined in
terms of ex and ey. For a focused, radially polarized fields the two non-zero
components of the electric field are ez and eρ. It is natural, therefore, to de-
fine the Stokes parameters in this case in terms of these components rather
than ex and ey [Schoonover and Visser, 2006; Mart́ınez-Herrero
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and Mej́ıas, 2010]. We thus define

S0 = |ez|2 + |eρ|2, (5.21)

S1 = |ez|2 − |eρ|2, (5.22)

S2 = 2|ez||eρ| cos δ, (5.23)

S3 = 2|ez||eρ| sin δ, (5.24)

where δ = arg[ez]− arg[eρ] = δz − δρ. The normalized forms s1 = S1/S0,
s2 = S2/S0, s3 = S3/S0, can be represented as a point on the Poincaré
sphere [Gbur, 2011, p. 316], as shown in Fig. 5.5. On the northern hemi-
sphere (s3 > 0), the polarization is right-handed (clockwise), whereas on
the southern hemisphere it is left-handed (counter-clockwise). On both
poles (s3 = ±1), the polarization is circular and on the equator (s3 = 0),
it is linear.

s
1 

s
2 

s
3 

 

 

z

ρ

Figure 5.5: The Poincaré sphere with Cartesian axes (s1,s2,s3) adapted
for focused, radially polarized fields.

Along a ray through focus, which makes an angle θ with the z-axis,
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we have

v = |u| tan θ/ sinα. (5.25)

From Eqs. (5.11) and (5.12) it immediately follows that

|ez(−u, v)| = |ez(u, v)|, (5.26)

|eρ(−u, v)| = |eρ(u, v)|. (5.27)

These two relations are illustrated in Fig. 5.6. They also imply that the
first Stokes parameter S0 is an even function in u. Using Eqs. (5.17) and
(5.19), it is seen that

[δz(u, v)− δρ(u, v)] + [δz(−u, v)− δρ(−u, v)] = π

(mod 2π), (5.28)

for the quantity δ, which is defined below Eq. (5.24), this implies that
cos[δ(−u, v)] = − cos[δ(u, v)] and sin[δ(−u, v)] = sin[δ(u, v)]. Thus we
find the following symmetry relations for the normalized Stokes parameters
along a ray through focus:

s1(−u, v) = s1(u, v), (5.29)

s2(−u, v) = −s2(u, v), (5.30)

s3(−u, v) = s3(u, v). (5.31)

An example is presented in Fig. 5.7. It is seen that S0, S1 and S3 are even,
whereas S2 is odd.
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Figure 5.6: The normalized moduli of the longitudinal component ez and
that of the radial component eρ of the electric field along an oblique ray
under an angle θ = 35◦ with the z-axis. Here we have chosen α = 40◦ and
β = 1.

The polarization ellipse may be characterized by two angular param-
eters (see Fig. 5.8). One is the orientation angle, ψ (0 ≤ ψ < π), which is
the angle between the z-axis and the major axis of the polarization ellipse.
The other is the ellipticity angle, χ (−π/4 ≤ χ < π/4). | tanχ| represents
the ratio of the axes of the ellipse. The values ±π/4 correspond to circular
polarization; whereas the value 0 indicates linear polarization. The sign
of χ distinguishes the two senses of handedness, i.e., it is right-handed
when χ > 0, and left-handed when χ < 0, see [Born and Wolf, 1999,
Sec. 1.4]. The two angular parameters can be expressed in terms of the
normalized Stokes parameters, as

ψ =
1

2
arctan

(

s2
s1

)

, (5.32)

χ =
1

2
arcsin(s3). (5.33)
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Figure 5.7: The Stokes parameters along an oblique ray through focus
which makes an angle θ = 35◦ with the z-axis (s1: blue curve, s2: red
curve, s3: olive curve). Here α = 40◦ and β = 1.
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Figure 5.8: Defining the angles ψ and χ of a polarization ellipse.

From the symmetry relations of s1, s2 and s3, it is seen that

ψ(−u, v) = π − ψ(u, v), (5.34)

χ(−u, v) = χ(u, v). (5.35)

Two kinds of polarization singularities can occur. When the polarization
ellipse is circular, the orientation angle ψ is undefined. This happens at
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so-called C-points. When the polarization is linear, the handedness is
undefined. This occurs at so-called L-points. When a system parameter,
such as the semi-aperture angle α, is varied in a continuous manner, these
polarization singularities can be created or annihilated. This has been
described in [Schoonover and Visser, 2006; Diehl et al., 2006].

The curves of the orientation angle ψ and the ellipticity angle χ along
an oblique ray under angle θ = 35◦ are displayed in Figs. 5.9 and 5.10.
In Fig. 5.9 it is seen that the orientation angle of the ellipse oscillates
somewhat along the ray. Also, a C-point is seen near u = ±1.2, where the
orientation angle ψ is singular. To the left of the C-point at u = −1.2,
the polarization ellipse is slightly larger in the ρ-direction than it is in the
z-direction. This situation is reversed to the right of that C-point. This
coincides with a π/2 jump of the angle ψ. In Fig. 5.10, these C-points
occur when the ellipticity angle χ takes on the value π/4. When χ equals
0, an L-point occurs, which happens near points such as u = ±2.9.

In Fig. 5.11 the polarization ellipse is shown for different positions
along an oblique ray. The ellipses at (u, v) and (u,−v) have the same el-
lipticity and handedness, whereas their orientations are mirror-symmetric.
The changes in the polarization ellipse are closely related to the two Gouy
phases, as we will now discuss. When u = −4, it is seen from Fig. 5.4
that δ = δz − δρ < 0, according to Eq. (5.24) the polarization is then
counter-clockwise which corresponds to a point on the southern half of
the Poincaré sphere. Near the point u = −2.87, δz = δρ, and hence the
field is linearly polarized with its handedness undefined, corresponding to
a point on the equator. In the vicinity of the focus, the Gouy phase differ-
ence, δz − δρ, is approximately π/2 (see Fig. 5.4) and when u = −1.2 the
moduli of the two components attain the same magnitude (see Fig. 5.6),
therefore the field there is circularly polarized which corresponds to a
point on the North pole. The field is linearly polarized at focus due to
the zero amplitude of the field component eρ. We also find that from
u = −4 to u = −1.2 the handedness of the polarization changes from
counter-clockwise, to undefined, to clockwise.
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Figure 5.9: The orientation angle ψ of the polarization ellipse along an
oblique ray through focus under an angle θ = 35◦. Here we have chosen
α = 40◦ and β = 1.
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Figure 5.10: The ellipticity angle χ of the polarization ellipse along an
oblique ray through focus under an angle θ = 35◦. Here we have chosen
α = 40◦ and β = 1.

It is seen from Figs. 5.12, 5.13, and 5.14 that along different oblique
rays through focus, the polarization ellipse goes through different shapes
and states of handedness. This behavior mirrors the different Gouy phases
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along these rays. In Fig. 5.12 (with θ = 10◦) the handedness is clockwise
at all observation points. This means that the Stokes parameter s3 > 0,
i.e. δz − δρ > 0. From Eq. (5.24) we see that this implies that the relative
change of the two Gouy phases is limited along this ray. This is also the
case for θ = 20◦, as can be seen from Fig. 5.13. In that case, however,
the ellipticity is considerably larger. If the obliquity angle θ is further
increased to 30◦ (see Fig. 5.14), the polarization ellipses becomes even
narrower. In addition, the handedness evolves from counter-clockwise to
clockwise, reflecting the fact that δz − δρ changes sign along the ray. Fi-
nally, the change in the orientation angle of the ellipses is seen to decrease
significantly when the angle θ is increased.

z

ρ

-4 -2.87 -1.2 0 1.2 2.87 4
u

Figure 5.11: Polarization ellipse of the field at selected points along an
oblique ray through focus. The ray is under an angle θ = 35◦. Also,
α = 40◦ and β = 1.
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Figure 5.12: Polarization ellipse of the field at selected points along an
oblique ray through focus. The ray is under an angle θ = 10◦. Also,
α = 40◦ and β = 1.
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Figure 5.13: Polarization ellipse of the field at selected points along an
oblique ray through focus. The ray is under an angle θ = 20◦. Also,
α = 40◦ and β = 1.
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Figure 5.14: Polarization ellipse of the field at selected points along an
oblique ray through focus. The ray is under an angle θ = 30◦. Also,
α = 40◦ and β = 1.

5.5 Conclusions

We have analyzed the phase behavior of strongly focused, radially polar-
ized fields. We found that the Gouy phase of the two components of the
electric field are quite different, and have different symmetries. Our results
show that the semi-aperture angle α and the beam-size parameter β can
both influence the Gouy phase. If we follow the polarization ellipse along
a tilted ray through focus, it is seen to “tumble”, i.e., it changes its ori-
entation, its shape and handedness. This behavior is due to the different
Gouy phases that the two components of the electric field undergo.
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This Chapter is based on

• X. Pang, D.G. Fischer and T.D. Visser,
“Wavefront spacing and the Gouy phase in the presence of primary
spherical aberration,”
to be submitted.

Abstract

We study the Gouy phase of a scalar wavefield that is focused by a lens
suffering from primary spherical aberration. It is found that the Gouy
phase has different behaviors at the two sides of the intensity maximum.
This results in a systematic increase of the successive wavefront spacings
around the diffraction focus. Since all lenses have some amount of spherical
aberration, this observation has implications for optical calibration and
metrology.
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6.1 Introduction

Because of its importance in interference microscopy and optical metrol-
ogy, the wavefront spacing of focused fields has been the subject of many
studies. Linfoot and Wolf [Linfoot and Wolf, 1956] derived that the
effective wavelength of a scalar field near focus is given by the expression
λeff = λ/(1− a2/4f2), where λ is the free-space wavelength, a is the aper-
ture radius and f denotes the focal length. More recently, the analysis of
strongly focused, linearly [Foley and Wolf, 2005] and radially polarized
beams [Visser and Foley, 2005] predicted a wavefront spacing that is
highly irregular. Experimental observations of fringe spacings have been
discussed in e.g. [Creath, 1989; Sheppard and Larkin, 1995;Wiegand

et al., 1998].
A measure of how an actual diffracted focused field differs from an ideal

spherical wave is provided by the Gouy phase (sometimes called the “phase
anomaly”). This is the sudden π phase shift that a focused field undergoes,
compared to a non-diffracted spherical wave of the same frequency [Gouy,
1890; Gouy, 1891]. Its physical origin has been discussed in [Visser and

Wolf, 2010]. Recently, it has been theoretically investigated in a variety
of configurations, such as high-numerical aperture systems (Chapter 2 and
Chapter 5 of this thesis), non-diffracting beams [Martelli et al., 2010]
(Chapter 3) and partially coherent focused fields (Chapter 4). Exper-
imental observations were reported in, e.g. [Ruffin et al., 1999; Mc-

Gowan et al., 2000; Chow et al., 2004; Hamazaki et al., 2006; Zhu
et al., 2007;Kandpal et al., 2007]. A precise knowledge of the Gouy phase
is crucial in a wide variety of metrological applications. Examples are mea-
surements of acceleration [Robertsson, 2007], distance [Coddington

et al., 2009], refractive indices [Kužel et al., 2010] and volumes [Andreas

et al., 2011].
In an actual focusing system aberrations are always present, especially

primary spherical aberration, perhaps the most common of the classical
Seidel aberrations [Born and Wolf, 1999]. It is of interest, therefore,
to examine the restrictions that a small amount of spherical aberration
puts on the accuracy levels that can be achieved in optical metrology and
calibration. In this Letter we analyze the influence of primary spheri-
cal aberration on the Gouy phase and the wavefront spacing. We derive
expressions for the phase behavior in terms of imaginary error functions
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that can easily be calculated. Our main result is that the Gouy phase at
the two sides of the diffraction focus (the point of maximum intensity) is
markedly different. This results in a systematic increase of the wavefront
spacing around the diffraction focus. We show by numerical examples that
even a small amount of spherical aberration (< λ) introduces a change in
the wavefront spacing that is significantly larger than is usually assumed.

6.2 A focused field with spherical aberration

Let us then consider an aberrated, converging, monochromatic wavefield
of frequency ω that emerges from a circular aperture with radius a (see
Fig. 6.1). The geometrical focus O is taken to be the origin of the coor-

Figure 6.1: Illustrating the notation.

dinate system, and f is the radius of a Gaussian reference sphere S. The
field in the focal region is given by the expression [Born and Wolf, 1999,
Sec. 9.1.1]

U(P ) = − i

λ

Ae−ikf

f

∫∫

S

eik[Φ+s]

s
dS, (6.1)

where k = 2π/λ represents the wavenumber, A is an amplitude, Φ denotes
the aberration function (see Fig. 6.2), and s is the distance from a point
of integration Q on S to the observation point P . For a wavefront with
spherical aberration [Born and Wolf, 1999, Sec. 9.3, Eq. (7)]

Φ(ρ) = A0ρ
4, (6.2)

with A0 the wave aberration at the edge of the exit pupil, and 0 ≤ ρ ≤ 1 a
scaled transverse distance. We notice that the focused field is rotationally
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Figure 6.2: An aberrated wavefront, the Gaussian reference sphere S and
the aberration function Φ(ρ, θ).

symmetric about the optical axis. The position of an observation point P
is indicated by the dimensionless Lommel variables u and v, i.e.

u = kz

(

a

f

)2

, (6.3)

v = k(x2 + y2)1/2
a

f
. (6.4)

After approximating the factor 1/s in Eq. (6.1) by 1/f , and applying the
usual Debye approximation s− f ≈ −q ·R, where q denotes a unit vector
in the direction OQ [Born and Wolf, 1999, Sec. 8.8.1 ], [Stamnes, 1986,
sec. 12.1.2], we find that

U(u, v;A0) = C

∫ 1

0
J0(ρv)e

i(−uρ2/2+kA0ρ4)ρ dρ, (6.5)
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where C = −ikA(a/f)2ei(f/a)
2u and J0 denotes the Bessel function of the

first kind of order 0. It follows from Eq. (6.5) that

U∗(u, v;A0) = −U(−u, v;−A0), (6.6)

which means that the axial intensity distribution obeys the symmetry
relation

|U(u, 0;A0)|2 = |U(−u, 0;−A0)|2, (6.7)

and that the phase of the field, arg[U(u, v;A0)], satisfies the formula

arg[U(u, v;A0)] + arg[U(−u, v;−A0)] = −π. (mod 2π) (6.8)

Equation (6.8) is a generalization of the expression

arg[U(u, v)] + arg[U(−u, v)] = −π, (6.9)

for a focused field without spherical aberration [Born and Wolf, 1999,
Sec. 8.8.4 ].

For axial points (v = 0), Eq. (6.5) can be written (omitting the v-
dependence from now on) as

U(u;A0) = −C (−1)3/4
√
π

4
√
kA0

e−iu2/16kA0

{

erfi

[

(−1)1/4(4kA0 − u)

4
√
kA0

]

+ erfi

[

(−1)1/4u

4
√
kA0

]}

, (6.10)

where erfi denotes the imaginary error function. It is seen from Eq. (6.10)
that the axial intensity distribution is symmetric about the position u =
2kA0 [Born and Wolf, 1999, Sec. 9.3]. When |A0| . λ, this point is
also the intensity maximum (“the diffraction focus”). For large values of
A0, there may be two peaks, as is illustrated in Fig. 6.3. It is also seen
that the distribution becomes wider with increasing A0.

6.3 The Gouy phase

The Gouy phase is defined as the difference between the actual phase of
the field and that of a non-diffracted spherical wave that converges to
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Figure 6.3: The axial intensity distribution for different values of the spher-
ical aberration parameter, A0 = 0 (blue curve), A0 = λ (red curve) and
A0 = 3.5λ (olive curve). Here, and in all the following examples, a/f is
taken to be 1/2.

the geometrical focus in the half-space z < 0 and diverges from it in the
half-space z > 0 [Born and Wolf, 1999, Sec. 8.8.4], i.e.

δ(u;A0) = arg[U(u;A0)]− sign(u)kR, (6.11)

with R the distance from the observation point to the geometrical focus,
i.e.

kR = k|z| =
(

f

a

)2

|u|, (6.12)

and sign(x) denotes the sign function

sign(x) =

{

−1 if x < 0,
1 if x > 0.

(6.13)

From Eqs. (6.8) and (6.11), we find that the Gouy phase satisfies the
relation

δ(u;A0) + δ(−u;−A0) = −π (mod 2π). (6.14)

The dependence of the Gouy phase on the amount of spherical aberra-
tion is shown in Fig. 6.4. It is seen that the oscillations of the Gouy phase
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in front of the diffraction focus decrease when the parameter A0 increases.
Notice that the three curves are parallel at the respective diffraction foci
(u = 1.3, 3.1, 12.6). This is explained by noting that it follows from
Eq. (6.10) that ∂arg[U(2kA0;A0)]/∂u = (f/a)2 − 1/4, which is indepen-
dent of the value the aberration parameter (see Appendix).
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Figure 6.4: Gouy phase of the field along the axis for different values of
the aberration parameter A0.

The field at geometrical focus can be calculated from Eq. (6.10), which
gives

U(0;A0) = ikA
(

a

f

)2 (−1)3/4
√
π

4
√
kA0

erfi[(−1)1/4
√

kA0]. (6.15)

This expression implies that the phase, and equivalently, the Gouy phase,
at (u, v) = (0, 0) depends on the aberration parameter A0, but not on the
value of f/a. This is illustrated in Fig. 6.5. Notice that the symmetry
relation Eq. (6.8) is also satisfied.

However, for practical purposes, the diffraction focus (the position of
maximum intensity, when |A0| . λ) is more important than the geo-
metrical focus. It is therefore of interest to examine the Gouy phase at
u = 2kA0. The field there can be written as

U(2kA0;A0) = ikA
(

a

f

)2 (−1)3/4
√
π

2
√
kA0

ei2kA0(f/a)2

×e−ikA0/4erfi(
√

ikA0/2), (6.16)
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Figure 6.5: The phase, and equivalently, the Gouy phase at the geomet-
rical focus (u, v) = (0, 0) for different values of the spherical aberration
parameter A0.

which shows that the phase of the field there depends on A0, and also on
a/f . However the Gouy phase is only dependent on A0 and is shown in
Fig. 6.6. Notice that the Gouy phase at the diffraction focus can attain
any value.

As mentioned above, all these results are derived while making use of
the Debye approximation. However, if one pursues a high level of accu-
racy, as in metrology, this may introduce a slight error in the calculated
wavefront spacings [Sheppard, 2000]. We therefore evaluate Eq. (6.1)
for on-axis points, without making use of the Debye approximation. This
yields the expression

U(u;A0) = −ikA
(

a

f

)2

e−ikf

∫ 1

0
eik(s+A0ρ4)ρ dρ, (6.17)

with

s = f

[

1 +

(

uf

ka2

)2

+
2u

ka2

√

f2 − a2ρ2

]1/2

. (6.18)

The Gouy phase and the intensity distribution of the field along axis
calculated from Eq. (6.17) are shown in Figs. 6.7 and 6.8 for two opposite
values of the aberration parameter A0. These two figures illustrate the
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Figure 6.6: The Gouy phase of the field at point (2kA0, 0).

approximate symmetry relation (6.14). But more importantly, they show
a highly antisymmetric behavior of the Gouy phase with respect to the
diffraction focus. From this observation we may expect that the wavefront
spacing before and after the diffraction focus will be different.
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Figure 6.7: The Gouy phase and the intensity distribution of the field
along the axis for the case A0 = −λ/4.

We define the wavefront spacings as the distance between the successive
roots of the expression Re[U(u;A0)] = 0. The axial wavefront spacings for
three cases (A0 = 0, A0 = λ/4 and A0 = −λ/4) are listed in Table 6.1.
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Figure 6.8: The Gouy phase and the intensity distribution of the field
along the axis for the case A0 = λ/4.

The spacings are labeled by the index N , with N = 1 indicating the
distance between the first zero for which u > 2kA0, and the nearest zero
at a smaller value of u. From the Table several trends can be deduced:

• For the case of an aberration-free lens (A0 = 0) the wavefront spac-
ings are somewhat irregular, but consistently larger than the effective
wavelength λeff = λ/(1 − a2/4f2) = 1.0667λ derived in [Linfoot
and Wolf, 1956] on the basis of the Debye approximation.

• For a small amount of spherical aberration (A0 = λ/4), the wave-
front spacings increase with increasing N . This means that the spac-
ings to the right of the diffraction focus (N ≥ 1) are systematically
larger than those to the left of the diffraction focus (N ≤ −1). The
difference between the smallest and the largest spacing (N = −4
and N = 4) is more than 1%. This is considerably larger than the
typically aspired metrological accuracy levels.

• When the aberration parameter is slightly increased (not shown)
the systematic increase in wavefront spacing with increasing N gets
larger.

• For negative values of the aberration parameter (A0 = −λ/4) the
wavefront spacings decrease with increasing N . This is in agreement
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with the symmetry expressed by Eq. (6.6), and Figs. 6.7 and 6.8.

Table 6.1: Wavefront spacings [in free-space wavelengths λ] near the
diffraction focus for different amounts of spherical aberration, for the case
a/f = 1/2.

N A0 = 0 A0 = λ/4 A0 = −λ/4
-4 1.06683 1.06087 1.08080
-3 1.06871 1.06530 1.07540
-2 1.06948 1.06767 1.07304
-1 1.06982 1.06918 1.07162
1 1.06995 1.07034 1.07050
2 1.06991 1.07144 1.06935
3 1.06971 1.07279 1.06789
4 1.06923 1.07495 1.06567

6.4 Conclusions

In summary, we have derived expressions for the Gouy phase of a focused
field in the presence of primary spherical aberration. Its behavior around
the diffraction focus is found to be highly asymmetric. This coincides with
a wavefront spacing that is systematically larger on one side of the inten-
sity maximum than on the other side. The distance between successive
wavefronts is found to increase with increasing spherical aberration, and
is typically larger than predicted by previous analyses that relied on the
Debye approximation. Since even for an amount of spherical aberration
∼ λ/4 the difference in fringe spacing can exceed 1%, these results may
put restrictions on the accuracy that can be achieved in optical metrology
and calibration.
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Apendix - The axial wavefront spacing near a

diffraction focus

In this part, we will derive the axial wavefront spacing near a diffraction
focus. Firstly, we can write Eq. (6.10) into two functions as

U(u;A0) = U1(u;A0)× U2(u;A0), (19)

where

U1(u;A0) = −C (−1)3/4
√
π

4
√
kA0

e−iu2/16kA0 , (20)

U2(u;A0) = erfi

[

(−1)1/4(4kA0 − u)

4
√
kA0

]

+erfi

[

(−1)1/4u

4
√
kA0

]

. (21)

Since d erfi(x)/dx = 2ex
2

/
√
π, we find that

∂U2

∂u
|u=2kA0

= 0, (22)

together with U2(2kA0, 0;A0) 6= 0, hence we can obtain the conclusion
that

∂arg[U2]

∂u
|u=2kA0

= 0. (23)

While, for the function U1, one can find that

∂arg[U1]

∂u
=

(

f

a

)2

− u

8kA0
, (24)

and at the diffraction focus it becomes

∂arg[U1]

∂u
|u=2kA0

=

(

f

a

)2

− 1

4
. (25)

Also Eq. (19) indicates that

arg[U ] = arg[U1] + arg[U2], (26)
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adding Eqs. (23), (25) the slope of the phase near the diffraction focus is

∂arg[U ]

∂u
|u=2kA0

=

(

f

a

)2

− 1

4
. (27)

If we adopt the variable z rather than u, the slope of the phase, ∂arg[U ]/∂z
equals the wavenumber k for a non-diffracted wave. From Eq. (6.3), the
slope of the phase ∂arg[U ]/∂u should be (f/a)2 in a non-diffracted field.
So Eq. (27) shows that near the diffraction focus the phase changes more
slowly than it does in a non-diffracted field. It also indicates that the axial
wavefront spacing, λeff , around the diffraction focus is larger than λ, i.e.

λeff = λ(f/a)2/[(f/a)2 − 1/4] = λ/(1− a2/4f2), (28)

which is exactly the same result that was found for an aberration-free field
by [Linfoot and Wolf, 1956].
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Samenvatting

De Nederlandse titel van dit proefschrift luidt: Gedaantes van Gouy: de

fase anomalie in optische golfvelden. De verschillende hoofdstukken zijn
gebaseerd op reeds verschenen artikelen. Alleen het laatste hoofdstuk
moet nog worden ingediend. Hoofdstuk 1 bevat, naast een inleiding over
geometrische- en golf-optica, een korte beschrijving van concepten die in
latere delen worden gebruikt. Allereerst bespreken we het centrale thema
van dit proefschrift, de Gouy fase. Dat is het opmerkelijke verschijnsel dat
de fase van een gefocusseerd veld, vergeleken met die van een bolgolf van
dezelfde frequentie, een plotselinge verandering ter grootte van π onder-
gaat. Verschillende verklaringen voor de fysische oorzaak hiervan worden
besproken. Daarna worden enkele begrippen uit de singuliere optica en
de coherentietheorie kort toegelicht. In Hoofdstuk 2 wordt het focusseren
van een elektromagnetische bundel met lineaire polarisatie behandeld. Het
elektrische vectorveld verkrijgt drie componenten. We laten zowel ana-
lytisch als numeriek zien dat deze drie verschillende Gouy fases hebben.
Ook de fasesingulariteiten van deze veldcomponenten worden besproken.
Hoofdstuk 3 gaat over de recent ontdekte Airy-bundels. Deze lichtbundels
hebben de unieke eigenschap dat ze een gekromd traject volgen. Voor
het ideale geval van een oneindig brede bundel kunnen we exacte vergeli-
jkingen voor het fasegedrag afleiden. Met numerieke simulaties laten we
zien dat deze formules uitstekende benaderingen zijn voor Airy-bundels
zoals die in het laboratorium worden gemaakt. In Hoofdstuk 4 staan
partieel coherente velden centraal. Zulke velden hebben een stochastis-
che fase, en hun Gouy fase valt dus niet te definiëren. Het statistische
gedrag wordt beschreven door correlatiefuncties met een fase die wel goed
gedefinieerd is. We laten zien dat bij het focusseren van partieel coherente
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velden deze functies een zogenaamde gegeneraliseerde Gouy fase vertonen,
waarvan de klassieke fase anomalie een speciaal geval blijkt te zijn. Deze
gegeneraliseerde fase verklaart het onregelmatige patroon dat in sommige
interferentie opstellingen wordt geobserveerd. Het onderwerp van Hoofd-
stuk 5 is radieel gepolariseerde lichtbundels. Vanwege hun toepassing in
optical trapping is het van belang om het polarisatiegedrag te kennen.
Het blijkt, als we de reis van het licht door het focus volgen, dat de elek-
trische polarisatie-ellips ”tuimelt.” We laten zien dat dit een gevolg is van
de verschillende Gouy fases die de twee componenten van het elektrische
veld ondervinden. In Hoofdstuk 6, tenslotte, analyseren we de invloed van
primaire sferische aberratie op het fasegedrag van gefocusseerde scalaire
velden. Het blijkt dat een minimale hoeveelheid aberratie van minder
dan een golflengte, zoals die in ieder praktisch systeem aanwezig is, een
belangrijke afwijking van ∼ 1% in de effectieve golflengte oplevert. Dit
resultaat heeft implicaties voor optische metrologie en kalibratie.



Biography

Xiaoyan Pang was born in Yanshi, China, on 2 December 1983. She re-
cieved her Bachelor’s degree in Electronics and Information Engineering
from Northwestern Polytechnical University, China in June 2007. She
obtained a Master degree in Electromagnetic Field and Microwave Tech-
nology from the same University. During her Master’s study, her research
topic was on the design of a multi-polarization antenna. Since 2009, she
has been working on her Ph.D. reseach which is about physical optics with
Prof. T.D. Visser in the Netherlands. Her work is funded by the China
Scholarship Council.

117



118



Acknowledgments

Foremost, I would like to express my sincere gratitude to my supervisor
Prof. T.D. Visser for giving me the opportunity to pursue my Ph.D. and
for his supervision. As a researcher, he is always curious, creative and
critical. While working with him, every research is like a ‘treasure hunt’
and the most important thing is to find clues-ask the right questions, which
I will be reminding myself all the time. Prof. T.D. Visser, thank you for
your tolerance, encouragement and care during my Ph.D. study and I will
never forget these days when you were driving me to hospital for my eye
disease.

Besides my supervisor, I have had the honor of collaborating with
Prof. E. Wolf, Prof. G. Gbur and Dr. D.G. Fischer. Their suggestions
and work have contributed a lot to the papers that we wrote together. I
would really like to thank them for that. In addition, I would like to show
my appreciation to my reading committee for their valuable comments.

The China Scholarship Council (CSC) allowed me to go to the Nether-
lands, and I am always grateful for that.

My wonderful office mate Shreyas, you are so positive and dare to do
challenges and create your own life. I would like to express my appreciation
to you for all your help, especially at the police station when my wallet was
stolen. Also thank you very much for the spirited discussions. I believe
that you will win more splendor in your life.

I would like to thank my friends Wenbo, Song, Qing, Liran, Liyuan,
Huaizhou, Xinyue for their help in my Ph.D. life. I also would like to
thank the ‘family’ group: Xuexue and Yao for their company. A special
thanks to Jianing for his support during my tough time. I wish you success
with your career. I would like to thank Zili and Mrs Wang on 14th floor

119



120

for many pleasant chats. Thanks to the warm lady Anna Hoek for all her
care. I also want to thank the beautiful lady, Anjar for her encouragement.

Finally, I would like to give my deepest gratitude to my parents for all
their love, support and unwavering belief in me. I would like to thank my
sister, Xiaodong for your unconditional love and you are really a wonder
in my life.

Xiaoyan
September 2013


	Contents
	Introduction
	Geometrical optics and physical optics
	The Gouy phase
	Singular optics
	Coherence theory
	Outline of this thesis

	Phase anomaly and phase singularities of the field in the focal region of high-numerical aperture systems 
	Introduction
	Focusing systems with a high angular aperture 
	Phase singularities 
	The Gouy phase anomaly
	Conclusions

	The Gouy phase of Airy beams
	Introduction
	The Schrödinger equation and the paraxial wave equation
	Green's function and Hankel function
	The Gouy phase of Airy beams

	A generalized Gouy phase for focused, partially coherent wavefields and its implications for optical metrology
	Introduction
	Fully coherent focused fields
	Partially coherent focused fields
	A generalized Gouy phase
	The origin of the generalized Gouy phase
	Implications for interferometry
	Conclusions

	Manifestation of the Gouy phase in strongly focused, radially polarized beams
	Introduction
	Focused, radially polarized fields
	Two Gouy phases
	The Gouy phase and the state of polarization
	Conclusions

	Wavefront spacing and the Gouy phase in the presence of primary spherical aberration
	Introduction
	A focused field with spherical aberration
	The Gouy phase
	Conclusions

	Bibliography
	List of publications
	Samenvatting
	Biography
	Acknowledgments

