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Evolution of singularities in a partially coherent
vortex beam
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We study the evolution of phase singularities and coherence singularities in a Laguerre–Gauss beam that is
rendered partially coherent by letting it pass through a spatial light modulator. The original beam has an on-
axis minumum of intensity—a phase singularity—that transforms into a maximum of the far-field intensity. In
contrast, although the original beam has no coherence singularities, such singularities are found to develop as
the beam propagates. This disappearance of one kind of singularity and the gradual appearance of another is
illustrated with numerical examples. © 2009 Optical Society of America
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ingular optics [1,2], the study of topological features of
ptical fields, has expanded in scope from phase singulari-
ies and polarization singularities [3–5] to coherence sin-
ularities. The latter kind occurs when the field at a cer-
ain frequency at one point is completely uncorrelated
ith the field at another point, at the same frequency

6–9]. Coherence singularities affect one of the most basic
roperties of a wave field, namely, its ability to produce
nterference patterns.

Vortex beams (sometimes called “dark core beams” or
doughnut beams”) have an on-axis zero of intensity, i.e.,

phase singularity [10]. They are widely used for the
uiding of atomic beams [11], for the trapping of cold
tomic clouds [12], and as optical tweezers for low-index
articles [13]. In addition, their relative insensitivity to
tmospheric turbulence makes them candidates for opti-
al communication [14]. The coherence properties of
ertain types of vortex beams have been studied by
onomarenko and colleagues [15,16]. Theoretical and ex-
erimental studies of correlations in the time domain
ere reported by Swartzlander and colleagues [17–19].
It is the aim of this paper to deepen the understanding

f the not yet completely clarified interplay between in-
ensity zeros (phase singularities) and coherence singu-
arities. We study a new type of beam, namely, a partially
oherent Laguerre–Gauss beam (LG). Such a beam may
e produced by letting a monochromatic, and hence fully
oherent, single mode of frequency � pass through a
hase screen [20,21], leaving its amplitude unchanged. In
he case of a LG1

0 mode propagating along the z axis, the
eld incident on the phase screen is given by the expres-
ion ([22], Sec. 16.4)

U�inc���,�� = A exp�i��� exp�− �2/4�S
2�, �1�

ith A a constant, �S the effective source width, and �
��cos � ,sin �� a two-dimensional vector that represents
1084-7529/09/040741-4/$15.00 © 2
position in the plane perpendicular to the z axis. The ac-
ion of the phase screen is twofold: it imprints a determin-
stic phase −� onto the beam, and in addition it random-
zes the phase with a Gaussian correlation function. This
an be achieved by means of a spatial light modulator
SLM). By averaging over different realizations of the
LM, a beam with the prescribed statistical behavior is
btained [23].

In the space-frequency domain, the statistical proper-
ies of a source may be characterized by its cross-spectral
ensity function [24]

W�0���1,�2,�� = �U�0�*��1,��U�0���2,���, �2�

here the asterisk denotes complex conjugation and the
ngular brackets indicate an ensemble average. The su-
erscript (0) indicates positions in the secondary source
lane �z=0� immediately behind the SLM (see Fig. 1). The
pectral degree of coherence is the normalized version of
he cross-spectral density, viz.,

��0���1,�2,�� =
W�0���1,�2,��

�S�0���1,��S�0���2,��
, �3�

ith

S�0���,�� = W�0���,�,�� = A2�2 exp�− �2/2�S
2�, �4�

he spectral density (or “intensity at frequency �”). The
pectral degree of coherence caused by the SLM is homo-
eneous and Gaussian, i.e.,

��0���1,�2,�� = ��0���2 − �1,�� = exp�− ��2 − �1�2/2��
2�,

�5�

ith �� the effective coherence length of the secondary
ource. On substituting from Eqs. (4) and (5) into Eq. (3)
e find that the cross-spectral density takes the form
009 Optical Society of America
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W�0���1,�2,�� = A2�1�2 exp�− ��1
2 + �2

2�/4�S
2�

�exp�− ��2 − �1�2/2��
2�. �6�

e notice that Eq. (4) indicates the presence of an on-axis
hase singularity in the source plane, i.e., S�0���=0,��
0. Coherence singularities occur when the phase of the
pectral degree of coherence is undefined, i.e., when ��0�

��1 ,�2 ,��=0. In that case, the combination of the fields
t �1 and �2 in a Young’s type experiment yields an inter-
erence pattern without spatial modulation. Equation (5)
mplies that no such singularities exist in the source
lane.
A source is said to be quasi-homogeneous if its spectral

egree of coherence ��0���� ,�� varies much more rapidly
ith �� than its spectral density S�0��� ,�� varies with �.

n that case the radiant intensity (defined as r2 times the
ar-field spectral density) and the spectral degree of co-
erence of the field in the far zone are related to the same
roperties in the source plane by the reciprocity relations
[24], Sec. 5.3.2)

J�s,�� = �2�k�2S̃�0��0,���̃�0��ks�,��cos2 �, �7�

�	��r1s1,r2s2,�� = S̃�0��k�s2� − s1��,��

�exp�ik�r2 − r1��/S̃�0��0,��, �8�

ith the two-dimensional Fourier transforms given by the
xpressions

S̃�0��f,�� =
1

�2��2 � S�0���,��e−if·�d2�, �9�

�̃�0��f,�� =
1

�2��2 � ��0���,��e−if·�d2�. �10�

ere k=2� /
 is the wavenumber associated frequency �,
� is the projection of the unit direction vector s onto the
y plane, and � is the angle that the s direction makes
ith the z axis (see Fig. 1). The superscript �	� indicates
oints in the far zone. On substituting from Eqs. (4) and
5) into Eqs. (9) and (10) while using the theorem for Fou-
ier transforms of derivatives, we find that

S̃�0��f,�� = �2 − f2�S
2��S

4A2 exp�− f2�S
2/2�/2�, �11�

�̃�0��f,�� = ��
2 exp�− f2��

2/2�/2�. �12�

n choosing the two observation points to be symmetri-
ally positioned with respect to the z axis, i.e., r1=r2=r
nd s =−s = �sin � ,0�, we obtain the formulas

ρ

O

z = 0

z

s1

s2

x

y
ρ

θ

Fig. 1. (Color online) Illustration of the notation.
2� 1�
J�s,�� = 2k2�S
4��

2A2 cos2 � exp�− k2��
2 sin2 �/2�, �13�

�	��rs1,rs2,�� = �1 − 2k2�S
2 sin2 ��exp�− 2k2�S

2 sin2 ��. �14�

hese last two results indicate that the character of the
eld singularities changes as the beam propagates: Eq.
13) shows that the on-axis intensity, a phase singularity
n the source plane, transforms into a maximum of the
ar-zone radiant intensity; and Eq. (14) implies that, in
ontrast to the source plane, there are pairs of points in
he far zone at which the field is completely uncorrelated.
oherence singularities, i.e., ��	��rs1 ,rs2 ,��=0, occur at
bservation points for which the term between square
rackets in Eq. (14) vanishes. This happens for observa-
ion angles �CS such that

sin �CS = �2k2�S
2�−1/2. �15�

t is to be noted that this behavior is quite different from
hat of the class of partially coherent vortex beams de-
cribed earlier [15,16]. Those beams, being an incoherent
uperposition of Laguerre–Gauss modes, retain their on-
xis phase singularity on propagation. We mention in
assing that Eq. (13) implies that in order for the field to
e beamlike, the source has to satisfy the condition

k2��
2/2 � 1. �16�

The reciprocity relations (7) and (8) describe the con-
ection between the field in the source plane and that in
he far zone. However, they do not describe how the initial
n-axis phase singularity changes on propagation or how
he coherence singularity comes into existence. In order to
nvestigate this, we study the propagation of the cross-
pectral density function to an arbitrary transverse plane.
e have ([24], Sec. 5.6.3)

W��1,�2,z,�� =��
�z=0�

W�0���1�,�2�,��G*��1,�1�,z,��

�G��2,�2�,z,��d2�1�d
2�2� , �17�

ith the paraxial Green’s function given by the expres-
ion

G��,��,z,�� = −
ik

2�z
exp�ikz�exp�ik�� − ���2/2z�. �18�

n substituting from Eqs. (6) into Eq. (17) we obtain after
ome calculations for the on-axis spectral density the for-
ula

S�� = 0,z,�� = W��1 = 0,�2 = 0,z,�� �19�

=	kA

z 
2�
0

	�
0

	

�1�
2�2�

2 exp�− �1�
2/2�+

2�exp�− �2�
2/2�−

2�

� I0��1��2�/��
2�d�1�d�2� , �20�

ith I0�x� the modified Bessel function of the first kind of
rder zero, and
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1

2�±
2 =

1

4�S
2 +

1

2��
2 ±

ik

2z
. �21�

quation (20) can be integrated numerically for z�
. An
llustration of the behavior of the scaled on-axis spectral
ensity z2S��=0,z ,�� is shown in Fig. 2, with the limiting
alue given by Eq. (4) added. It is seen that on propaga-
ion the phase singularity immediately evolves into a
nite-valued intensity that gradually rises toward its
symptotic value, namely, that of the radiant intensity in
he forward direction J�s= �0,0,1� ,��, as given by Eq.
13).

In Fig. 3 the spectral density S�� ,z ,�� is shown for sev-
ral cross sections of the beam. As can be seen, the on-axis
pectral density (initially a phase singularity) gradually
ises and changes from being a minimum in the source
lane to being a maximum in the far field.
The evolution of the coherence singularity is depicted

n Fig. 4. There the behavior of ���� ,z ,−� ,z ,��� is shown
hown for pairs of points on the lines of observation
rctan�� /z�=�CS, the angle defined by Eq. (15), i.e., the
wo lines on which a correlation singularity occurs in the
ar zone. The modulus of the spectral degree of coherence
radually decreases as the beam propagates and eventu-
lly becomes zero, meaning that the two points form a co-
erence singularity.
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ig. 2. (Color online) Scaled on-axis spectral density z2S��
0,z ,��, calculated from Eq. (20), normalized by the radiant in-

ensity in the forward direction J�s= �0,0,1� ,��. In this example
S=15
 and ��=4
.
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ig. 3. (Color online) Normalized spectral density S�� ,z ,��, cal-
ulated from Eq. (17), in several cross sections of the beam. In
his example � =15
 and � =4
.
S �
The behavior of the far-zone state of coherence is fur-
her analyzed by considering the spectral degree of coher-
nce of two observation points that lie on a circle centered
round the z axis [see Fig. 5(a)]. One point is kept fixed,
hereas the other point is moved around the circle; i.e.,
e choose

s1� = �sin �,0�, �22�

s2� = �sin � cos �,sin � sin ��, �23�

nd study the dependence of the spectral degree of coher-
nce as a function of the angle �. We now obtain from Eq.
8) the expression

1000 2000 3000
0.0

0.2

0.4

0.6

0.8

1.0

z [λ]

| ( , z, − , z, )|µ ωρρ ρρ

ig. 4. (Color online) Evolution of the modulus of the spectral
egree of coherence, as calculated from Eq. (17), along the two
irections of observation at which a coherence singularity occurs
n the far field. In this example �S=15
 and ��=4
.

ig. 5. (Color online) (a) Position of two far-zone observation
oints (dots) on a circle centered around the z axis. (b) The spec-
ral degree of coherence of the field at the two points as a func-
ion of the angle � for three values of �. In this example �S
15
 and � =4
.
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��	��rs1,rs2,�� = �1 − 2k2�S
2 sin2 � sin2��/2��

� exp�− 2k2�S
2 sin2 � sin2��/2��. �24�

quation (24) shows that the spectral degree of coherence
n this case is real valued. For small circles, for which the
ngle ���CS, ��	��rs1 ,rs2 ,�� is always positive and no co-
erence singularities occur [see Fig. 5(b)]. If �=�CS, there

s precisely one zero of the spectral degree of coherence,
nd the two points that lie diagonally opposite each other
n the circle ��=�� form a correlation singularity. When �
s further increased, two zeros occur; i.e., the singularity
nfolds into a doublet.
In summary, we have analyzed the behavior of a par-

ially coherent Laguerre–Gauss beam and found a new
ind of behavior of its singularities. The initial on-axis
hase singularity evolves into a maximum of the radiant
ntensity. In contrast, a coherence singularity gradually
evelops as the beam propagates. As the angle between
wo far-field observation points is increased, this singu-
arity unfolds into a doublet.
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