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We investigate the coherence properties of unpolarized beams. Such beams form a much richer class than has
been previously realized. We illustrate our results by examples.
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1. Introduction

The connection between the state of polarization and

the state of coherence of optical wave fields has only

recently been investigated [1–6]. Polarization pheno-

mena have generally been described by means of ‘one-

point quantities’ (i.e. quantities that are a function of a

single point in space) such as the Stokes parameters,

Wiener’s coherency matrix and the degree of polariza-

tion [7]. Several years ago James [8] showed that the

degree of polarization can change on propagation. To

understand such changes it is necessary to generalize

Wiener’s coherency matrix and other correlation

matrices used in polarization optics to become func-

tions of two points rather than of a single point. Very

recent researches have shown that such a generaliza-

tion is necessary in order to elucidate, for example, the

following well-known theorem due to Gabriel Stokes

regarding the decomposition of an arbitrary beam into

polarized and unpolarized components [9]: . . . it is

always possible to represent the given group by a stream

of common light combined with a stream of elliptically

polarized light independent of the former. It has recently

been shown that this assertion is incorrect [10]: the

decomposition of a beam into a polarized part and an

unpolarized part is local (i.e. the decomposition may be

different at different points) rather than global [11–16].

To further clarify the situation, it is necessary to gain a

better understanding of unpolarized beams. The

behavior of such beams on propagation has not

previously been studied. Moreover, it is not generally

appreciated that unpolarized beams can differ in their

coherence properties. It is with the latter subject that

this paper is concerned.

Let us first discuss how an unpolarized beam can be

generated. One way to do so is to superpose two

independent beams that are linearly polarized in two

mutually orthogonal directions. The spectral density

(intensity at a fixed frequency !) of the composite,

unpolarized beam can be varied by the use of suitable

gray filters. Its coherence properties can be tailored, for

example, by passing the beam through a rotating

diffuser [17], or by reflecting it off (or transmitting it

through) a spatial light modulator [18].

We will illustrate our analysis by examining

unpolarized beams produced by three different kinds

of sources: a source with a Gaussian spectral density

distribution, a source with a truncated, uniform

spectral density that emits blackbody radiation, and a

source that generates a Laguerre–Gauss beam.

2. Beams generated by partially coherent

electromagnetic sources

In the space–frequency representation the state of

coherence and the state of polarization of a planar

stochastic source that generates a beam may be

characterized by its electric cross-spectral density

matrix ([4], Chapter 9), namely,

W ð0Þðq1, q2,!Þ ¼
W ð0Þ
xx ðq1, q2,!Þ W ð0Þ

xy ðq1, q2,!Þ

W ð0Þ
yx ðq1, q2,!Þ W ð0Þ

yy ðq1, q2,!Þ

 !

,

ð1Þ
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where

W
ð0Þ
ij ðq1,q2,!Þ ¼ hE�

i ðq1,!ÞEj ðq2,!Þi, ði¼x,y; j¼ x,yÞ,

ð2Þ

¼ S
ð0Þ
i ðq1,!ÞS

ð0Þ
j ðq2,!Þ

h i1=2
�
ð0Þ
ij ðq1,q2,!Þ:

ð3Þ

Here Ei(q,!) are the Cartesian components of the

electric vector at frequency ! at a point specified by a

position vector q in the source plane. The angular

brackets denote an ensemble average [4]. Furthermore,

S
ð0Þ
i ðq,!Þ �W

ð0Þ
ii ðq, q,!Þ is the spectral density

associated with component Ei, and �
ð0Þ
ij ðq1, q2,!Þ

represents the correlation between Ei at the point q1
and Ej at the point q2. The superscript (0) labels

quantities in the source plane. From knowledge of the

cross-spectral density matrixW(0) various properties of

the field in the source plane can be derived ([4],

Chapter 9). In particular, the spectral density at a point

q is given by the expression

Sð0Þðq,!Þ ¼ S ð0Þ
x ðq,!Þ þ Sð0Þy ðq,!Þ ¼ TrW ð0Þðq, q,!Þ,

ð4Þ

the spectral degree of coherence at a pair of points is

given by the formula

�ð0Þðq1, q2,!Þ ¼
TrW ð0Þðq1, q2,!Þ

Sð0Þðq1,!ÞS
ð0Þðq2,!Þ

� �1=2 , ð5Þ

and the degree of polarization at the point q is given by

the expression

Pð0Þðq,!Þ ¼ 1�
4DetW ð0Þðq, q,!Þ

½TrW ð0Þðq, q,!Þ�2

� �1=2

: ð6Þ

In these formulas Tr and Det denote the trace and the

determinant, respectively.

The propagation of the cross-spectral density

matrix into the half-space z40 is given by the formula

([19], Section 5.6.1)

Wðq1, z1, q2, z2,!Þ

¼

ðð

ðz¼0Þ

W ð0Þðq01, q
0
2,!ÞG

�ðq1 � q
0
1, z1,!Þ

� Gðq2 � q
0
2, z2,!Þd

2�01d
2�02, ð7Þ

where

Gðq� q
0, z,!Þ ¼ �

ik

2pz
expðikzÞ exp ik q� q

0
�
�

�
�2=2z

h i
,

ð8Þ

is the Green’s function pertaining to the paraxial

Helmholtz equation, k¼!/c¼ 2�/� is the wavenum-

ber associated with frequency !, with c denoting the

speed of light in vacuum, and � is the wavelength.

From knowledge of W(q1, z1, q2, z2,!) the spectral

density of the beam, its degree of coherence

and its degree of polarization can all be derived

using expressions that are strictly similar to

Equations (4)–(6).

For a Schell-model source ([19], Section 5.3.2)

the field correlations depend only on the difference

q2� q1, i.e.

�
ð0Þ
ij ðq1, q2,!Þ � �

ð0Þ
ij ðq2 � q1,!Þ: ð9Þ

An important sub-class of Schell-model sources are

the so-called quasi-homogeneous sources. For such

sources the width of j�
ð0Þ
ij ðq2 � q1,!Þj is much smaller

than that of S
ð0Þ
i ðq,!Þ. This behavior is illustrated in

Figure 1.

For a quasi-homogeneous, uniformly polarized

source (i.e. a quasi-homogeneous source for which

the spectral degree of polarization and the spectral

polarization ellipse associated with the polarized por-

tion of the beam are the same at each source point) the

Figure 1. Illustrating the concept of a quasi-homogeneous source. (The color version of this figure is included in the online
version of the journal.)
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field in the source plane and the field in the far zone are

related by the following two reciprocity relations [20]:

Sð1Þðrs,!Þ ¼ ð2pkÞ2 ~Sð0Þð0,!Þ ~�ð0Þðks?,!Þ cos
2 �=r2,

ð10Þ

�ð1Þðr1s1, r2s2,!Þ ¼ ~Sð0Þ kðs2? � s1?Þ,!½ � exp½ikðr2 � r1Þ�

= ~Sð0Þð0,!Þ, ð11Þ

with

~Sð0Þð f,!Þ ¼
1

ð2pÞ2

ð

Sð0Þðq,!Þ expð�if � qÞd2�, ð12Þ

~�ð0Þð f,!Þ ¼
1

ð2pÞ2

ð

�ð0Þðq,!Þ expð�if � qÞd2�: ð13Þ

In these expressions s? is the projection (considered as

a two-dimensional vector) of the unit directional vector

s onto the xy-plane, and � is the angle which the

s-direction makes with the z-axis (see Figure 2). The

superscript (1) indicates points in the far zone. Since

we will study coherence properties of the far field,

we will only need the second reciprocity relation,

Equation (11). That equation implies that the spectral

degree of coherence of the beam in the far zone of a

planar, uniformly polarized, quasi-homogeneous

source is, apart from a geometrical factor, proportional

to the spatial Fourier transform of the spectral density

of the source.

For an unpolarized source the field components Ex
and Ey at each point are uncorrelated and therefore,

the cross-spectral density matrix at coincident points

q1¼ q2¼ q is diagonal. Furthermore, we have for an

unpolarized source that ([4], Chapter 8)

Wð0Þ
xxðq, q,!Þ ¼Wð0Þ

yy ðq, q,!Þ, ð14Þ

and hence

W ð0Þðq, q,!Þ ¼ Aðq,!Þ
1 0

0 1

� �

, ð15Þ

with A(q,!) being positive. We note that Equation (15)

does not imply that when q1 6¼ q2, hE
�
i ðq1,!ÞEj ðq2,!Þi

is necessarily zero (i, j¼ x, y). The fact that there are no

additional constraints on the function A(q,!) (which

equals S(0)(q,!)/2) suggests, in view of Equation (11),

that unpolarized sources may differ in their coherence

properties, and in the coherence properties of the

beams that they generate. This will be illustrated by

example in the next section.

3. Some examples

We will analyze three different kinds of unpolarized

beams that are generated by planar, quasi-

homogeneous electromagnetic sources.

First we consider an unpolarized Gaussian Schell-

model source. We choose

Sð0Þx ðq,!Þ ¼ Sð0Þy ðq,!Þ ð16Þ

¼ A2 expð�q2=2�2Þ ð17Þ

and

�
ð0Þ
ii ðq2 � q1,!Þ ¼ exp½�ðq2 � q1Þ

2=2�2�, ð18Þ

�
ð0Þ
ij ðq2 � q1,!Þ ¼ 0 (if i 6¼ j): ð19Þ

If �� � the source will be quasi-homogeneous. The

parametersA, � and � have to satisfy certain constraints

due to the beam-like nature of the field [21], and also

because W(0)(q, q,!) is non-negative definite and

Hermitian [22,23]. Furthermore, the fact that the

effective coherence length � is the same for both

diagonal elements of the cross-spectral density matrix

ensures that the beam generated by the source will

remain unpolarized on propagation ([4], Section 9.4.3).

The reciprocity relation (11) now gives

�ð1Þðr1s1, r2s2,!Þ ¼ exp½�k
2�2ðs?2 � s?1Þ

2=2�

� exp½ikðr2 � r1Þ�: ð20Þ

In this example and in the ones that follow, we

take the two observation points in the far zone to be

symmetrically located with respect to the z-axis

(see Figure 3), with � denoting the angle which

Figure 2. Notation relating to radiation generated by a
planar, stochastic source. (The color version of this figure is
included in the online version of the journal.)

Figure 3. Two directions of observation that are symmetri-
cally located with respect to the z-axis. (The color version of
this figure is included in the online version of the journal.)
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the unit vectors s1 and s2 make with the axis. We then

have

r1 ¼ r2 ¼ r, s?2 ¼ �s?1, ð21Þ

and evidently

ðs?2 � s?1Þ
2 ¼ 4 sin2 �: ð22Þ

Consequently, Equation (20) then reduces to

�ð1Þðrs1, rs2,!Þ ¼ exp½�2k
2�2 sin2 ��, ðs?2 ¼ �s?1Þ:

ð23Þ

It is to be noted that the spectral degree of

coherence �(1)(rs1, rs2,!) is now real. It is also positive

and a monotonic function of the angle �. This behavior

is illustrated in Figure 4. It is seen that as the

(normalized) effective source size k� increases, the

distribution of the spectral degree of coherence of

the far field becomes narrower.

As a second example we consider a beam generated

by an unpolarized source with spectral density S(0)(!)

given by Planck’s law. We take the source to be an

illuminated circular aperture with radius a, in an

opaque screen (see Figure 5). Such a secondary source

can be produced, for example, by placing the aperture

in the far zone of a blackbody source. In this case

Sð0Þx ðq,!Þ ¼ Sð0Þy ðq,!Þ, ð24Þ

¼ Sð0Þð!Þ circ
�

a

� �
, ð25Þ

with

circðxÞ ¼
1 if x � 1,

0 if x4 1:

�

ð26Þ

It has recently been shown (contrary to claims in

the literature) that the radiation in the far zone of a

blackbody source is unpolarized [24]. The aperture

radius a is taken so that the angle it subtends at the

blackbody cavity is much larger than the angular width

of the Schell-model correlation function [25]. The

source is then quasi-homogeneous and we may apply

the reciprocity relation (11). Again we choose the two

points of observation to be symmetrically located with

respect to the z-axis (see Equation (21)). Then

�ð1Þðrs1, rs2,!Þ ¼ 2
J1ð2ka sin �Þ

2ka sin �
, ðs?2 ¼ �s?1Þ,

ð27Þ

where J1(x) is the Bessel function of the first kind and

first order. It is seen that �(1)(rs1, rs2,!) is again real,

but the degree of coherence is now ‘jinc-like’.1 In this

case, when the angle � increases the spectral degree of

coherence decreases, becomes negative and then pos-

itive again. This behavior is illustrated in Figure 6. It is

seen that as the radius a of the aperture is increased,

the effective angular width of the spectral degree of

coherence becomes smaller.

As a final example we consider a beam

generated by a quasi-homogeneous, unpolarized

Figure 4. The spectral degree of coherence of the far field
generated by a planar, unpolarized Gaussian Schell-model
source. The three curves correspond to different values of the
normalized effective source size k�. (The color version of this
figure is included in the online version of the journal.)

Figure 6. The spectral degree of coherence in the far zone of
an unpolarized beam emerging a circular aperture. The three
curves correspond to sources with different values of the
normalized aperture size ka. (The color version of this figure
is included in the online version of the journal.)

Figure 5. Notation relating to collimated blackbody radia-
tion emerging from a circular aperture. (The color version of
this figure is included in the online version of the journal.)
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Laguerre–Gauss source ([26], Section 16.4) and [27,28].

In this case

Sð0Þx ðq,!Þ ¼ Sð0Þy ðq,!Þ ð28Þ

¼ A2�2 exp½��2=2�2�, ð29Þ

and

�
ð0Þ
ii ðq2 � q1,!Þ ¼ exp½�ðq2 � q1Þ

2=2D2�, ð30Þ

�
ð0Þ
ij ðq2 � q1,!Þ ¼ 0 (if i 6¼ j): ð31Þ

If the effective coherence length, D, is much shorter

than � the source will be quasi-homogeneous. Just as in

the first example, the beam generated by the source

remains unpolarized on propagation since the effective

coherence length D is the same for both diagonal

elements of the cross-spectral density matrix.

Application of the reciprocity relation (11) (again

assuming two symmetrically located points of observa-

tion) and using the well-known expressions for the

Fourier transform of derivatives gives

�ð1Þðrs1, rs2,!Þ ¼ 1� 2k2�2 sin2 �
� �

expð�2k2�2 sin2 �Þ,

ðs?2 ¼ �s?1Þ: ð32Þ

The degree of coherence �(1)(rs1, rs2,!) of the far field

is again seen to be real, but its behavior is different from

that in the two cases discussed previously (see Figure 7).

With increasing values of the angle of observation �

the spectral degree of coherence decreases, then

becomes negative, and then tends asymptotically to

zero. When the parameter k� increases, the effective

angular width of the distribution becomes smaller.

4. Conclusions

We examined unpolarized beams generated by second-

ary, planar, stochastic electromagnetic sources of

different kinds. The quasi-homogeneous nature of the

sources which we considered make it possible to

employ reciprocity relations that yield analytic expres-

sions for the spectral degree of coherence of the far

field. We presented examples of beams produced by

unpolarized sources with (a) a Gaussian spectral

density distribution, (b) a uniform blackbody spectral

distribution, and (c) a Laguerre–Gauss spectral dis-

tribution. The coherence properties of the three types

of beams in the far zone were found to be quite

different. The results indicate that unpolarized radia-

tion can be generated not only by blackbodies, but by

many sources with different coherence properties. The

beams that such sources generate form a much broader

class than was previously realized.
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Note

1. Michelson and Pease used a similar expression as
Equation (27) in their famous work on determining
stellar diameters. For a further discussion of this point
see ([19], Section 7.2).

References

[1] Wolf, E. Phys. Lett. A 2003, 312, 263–267.

[2] Wolf, E. Opt. Lett. 2003, 28, 1078–1080.

[3] Roychowdhury, H.; Wolf, E. Opt. Commun. 2004, 226,

57–60.

[4] Wolf, E. Introduction to the Theory of Coherence and

Polarization of Light; Cambridge University Press:

Cambridge, 2007.

[5] Gori, F.; Santarsiero, M.; Borghi, R.; Wolf, E. Opt. Lett.

2006, 31, 688–690.

[6] Li, Y.; Lee, H.; Wolf, E. Opt. Commun. 2006, 265, 63–72.

[7] Born, M.; Wolf, E. Principles of Optics: Electromagnetic

Theory of Propagation, Interference and Diffraction of

Light, 7th (expanded) ed.; Cambridge University Press:

Cambridge, UK, 1999.

[8] James, D.F.V. J. Opt. Soc. Am. A 1994, 11,

1641–1643.

Figure 7. The spectral degree of coherence of the far field
generated by a planar, unpolarized Laguerre–Gauss source.
The three curves correspond to sources with different values
of the parameter k�. (The color version of this figure is
included in the online version of the journal.)

Journal of Modern Optics 1373

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
V
r
i
j
e
 
U
n
i
v
e
r
s
i
t
e
i
t
,
 
L
i
b
r
a
r
y
]
 
A
t
:
 
2
0
:
0
8
 
1
7
 
A
u
g
u
s
t
 
2
0
0
9



[9] Stokes, G.G. Trans. Cambridge Phil. Soc. 1852, 9,

399–416; Reprinted in Swindell, W. (Ed.) Polarized

Light; Halsted Press: Stroudsburg, 1975.

[10] Wolf, E. Opt. Lett. 2008, 3, 642–644.

[11] Gori, F.; Santarsiero, M.; Piquero, G.; Borghi, R.;

Mondello, A.; Simon, R. J. Opt. A 2001, 3, 1–9.

[12] Korotkova, O.; Salem, M.; Wolf, E. Opt. Commun.

2004, 233, 225–230.

[13] Shirai, T.; Wolf, E. J. Opt. Soc. Am. A 2004, 21,

1907–1916.

[14] Shirai, T. Opt. Commun. 2005, 256, 197–209.

[15] Korotkova, O.; Wolf, E. Opt. Commun. 2005, 246,

35–43; notice that there is a misprint in Equation (2.8a).

[16] Korotkova, O.; Visser, T.D.; Wolf, E. Opt. Commun.

2008, 281, 515–520.

[17] Shirai, T.; Wolf, E. J. Mod. Opt. 2001, 48, 717–727.

[18] Dayton, D.C.; Browne, S.L.; Sandven, S.P.;

Gonglewski, J.D.; Kudryashov, A.V. Appl. Opt. 1998,

37, 5579–5589.

[19] Mandel, L.; Wolf, E. Optical Coherence and Quantum

Optics; Cambridge University Press: Cambridge, 1995.

[20] Korotkova, O.; Hoover, B.; Gamiz, V.L.; Wolf, E.

J. Opt. Soc. Am. A 2005, 22, 2547–2556.

[21] Korotkova, O.; Salem, M.; Wolf, E. Opt. Lett. 2004, 29,

1173–1175.

[22] Roychowdhury, H.; Korotkova, O. Opt. Commun. 2005,

249, 379–385.

[23] Gori, F.; Santarsiero, M.; Borghi, R.; Ramirez-

Sanchez, V. J. Opt. Soc. Am. A 2008, 25, 1016–1021.

[24] James, D.V.F. Opt. Commun. 1994, 109, 209–214.

[25] Lahiri, M.; Wolf, E. Opt. Commun. 2008, 281,

3241–3244.

[26] Siegman, A.E. Lasers; University Science Books: Mill

Hill, 1986.

[27] van Dijk, T.; Visser, T.D. J. Opt. Soc. Am. A 2009, 26,

741–744.

[28] van Dijk, T.; Schouten, H.F.; Visser, T.D. Phys. Rev. A

2009, 79, 033805.

1374 T.D. Visser et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
V
r
i
j
e
 
U
n
i
v
e
r
s
i
t
e
i
t
,
 
L
i
b
r
a
r
y
]
 
A
t
:
 
2
0
:
0
8
 
1
7
 
A
u
g
u
s
t
 
2
0
0
9


