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We analyze the coherence singularities that occur in the far field that is generated by a broad class of
partially coherent sources. It is shown that for rotationally symmetric planar quasihomogeneous sources the
coherence singularities form a two-dimensional surface in a reduced three-dimensional space. We illustrate our
results by studying the topology of the coherence singularity of a partially coherent vortex beam. We find that
the geometry of the phase singularity can be associated with conic sections such as ellipses, lines, and
hyperbolas.
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I. INTRODUCTION

There is a growing interest in the structure of wave fields
in the vicinity of points where certain field parameters are
undefined or “singular.” This has given rise to the new sub-
discipline of singular optics �1,2�. In the past few years,
many different types of singular behavior have been identi-
fied. For example, phase singularities occur at positions
where the field amplitude vanishes and hence the phase is
undefined �3�. Polarization singularities arise at locations
where the field is circularly or linearly polarized �4–10�.
There either the orientation angle of the polarization ellipse
or its handedness is undefined. Also the Poynting vector can
exhibit singular behavior at points where its modulus is zero,
and hence its orientation is undefined �11�. Topological reac-
tions of such singularities were studied in �12,13�.

Optical coherence theory �14� deals with the statistical
properties of light fields. In this theory, correlation functions
play a central role �15�. A form of singular behavior that is
slightly more abstract than those mentioned above occurs in
two-point correlation functions. At pairs of points at which
the field �at a particular frequency� is completely uncorre-
lated, the phase of the correlation function is singular
�16–21�. When the field at two such points is combined in an
interference experiment, no fringes are produced. These co-
herence singularities are points in six-dimensional space.
Their relationship to other types of singularities has only
recently been clarified �22–26�.

Thus far, only one study has been devoted to the descrip-
tion of the multidimensional structure of a specific coherence
singularity, namely, that of a vortex beam propagating
through turbulence �27�. In the present article, we analyze
the more general case of coherence singularities in the far
zone of the field generated by a broad class of partially co-
herent sources. These quasihomogeneous sources are often
encountered in practice. We analyze the generic structure of
the coherence singularities and also discuss the practical case
of a rotationally symmetric source. We illustrate our results
by applying them to a recently described new type of “dark
core” or vortex beam. For this beam all different cross sec-
tions of the singularity are shown to be conic sections in a
suitable coordinate system.

II. PARTIALLY COHERENT SOURCES

Consider a partially coherent planar secondary source,
situated in the plane z=0, that emits radiation into the half
space z�0 �see Fig. 1�. In the space-frequency domain, the
source is characterized by its cross-spectral density function
�14�

W�0���1,�2,�� = �U�0����1,��U�0���2,��� . �1�

Here U�0��� ,�� represents the source field at frequency � at
position �= �x ,y�, the asterisk indicates complex conjuga-
tion, and the angled brackets denote an ensemble average.
The spectral degree of coherence is the normalized form of
the cross-spectral density, i.e.,

��0���1,�2,�� =
W�0���1,�2,��

�S�0���1,��S�0���2,��
, �2�

with

S�0���,�� = W�0���,�,�� �3�

the spectral density �or “intensity at frequency �”� of the
source. For Schell-model sources �14� the spectral degree of
coherence only depends on position through the difference
�1−�2, i.e.,

��0���1,�2,�� = ��0���1 − �2,�� . �4�

The field in an arbitrary transverse plane z�0 is given by the
expression

U��,z,�� = �
�z=0�

U�0����,��G�� − ��,z,��d2��, �5�

where G��−�� ,z ,�� is an appropriate free-space Green’s
function �14�, Sec. 5.2. On substituting from Eq. �5� in Eq.
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FIG. 1. �Color online� Illustrating the notation.
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�1�, while interchanging the order of integration and en-
semble averaging, it follows that the cross-spectral density at
two arbitrary points ��1 ,z1� and ��2 ,z2� satisfies the equation

W��1,z1,�2,z2,�� =� �
�z=0�

W�0���1�,�2�,��G���1 − �1�,z1,��

� G��2 − �2�,z2,��d2�1�d
2�2�. �6�

The spectral density and the spectral degree of coherence at
arbitrary points are given by formulas that are quite similar
to Eqs. �2� and �3�, viz.,

���1,z1,�2,z2,�� =
W��1,z1,�2,z2,��

�S��1,z1,��S��2,z2,��
�7�

and

S��,z,�� = W��,z,�,z,�� . �8�

Coherence singularities are phase singularities of the spectral
degree of coherence. They occur at pairs of points at which
the field at frequency � is completely uncorrelated, i.e.,

���1,z1,�2,z2,�� = 0. �9�

III. QUASIHOMOGENEOUS SOURCES

An important subclass of Schell-model sources is formed
by so-called quasihomogeneous sources �14�. For such
sources the spectral density S�0��� ,�� varies much more
slowly with � than the spectral degree of coherence
��0���� ,�� varies with ��. This behavior, that often occurs in
practice, is sketched in Fig. 2.

For quasihomogeneous sources the field in the source
plane and the field in the far zone are related by two reci-
procity relations, namely,

S����s,�� = �2�k�2S̃�0��0,���̃�0��ks�,��cos2 �/r2, �10�

�����r1s1,r2s2,�� =
S̃�0��k�s2� − s1��,��

S̃�0��0,��
exp�ik�r2 − r1�� ,

�11�

with the two-dimensional spatial Fourier transforms given by
the expressions

S̃�0��f,�� =
1

�2��2� S�0���,��e−if·�d2� , �12�

�̃�0��f,�� =
1

�2��2� ��0���,��e−if·�d2� . �13�

In these formulas k=� /c is the wave number associated with
frequency �, c being the speed of light in vacuum, s� is the
projection of the unit direction vector s onto the xy plane,
and � is the angle that the s direction makes with the z axis
�see Fig. 1�. The superscript ��� indicates points in the far
zone. Equation �10� states that the far-field spectral density
of a planar secondary quasihomogeneous source is propor-
tional to the Fourier transform of its spectral degree of co-
herence. Equation �11� expresses that the far-field spectral
degree of coherence of such a source is, apart from a geo-
metrical factor, given by the Fourier transform of its spectral
density.

Even though Eq. �11� is quite general, it allows us to draw
several conclusions. First, the far-field spectral degree of co-
herence depends on the spectral density of the source, but is
independent of its spectral degree of coherence. Second, the
dependence of the far-field spectral degree of coherence on
the two distances r1 and r2 enters only through the factor
exp�ik�r2−r1��. This means that coherence singularities oc-
cur along certain pairs of observation directions s1
= �sin �1 cos 	1 , sin �1 sin 	1 ,cos �1� and s2
= �sin �2 cos 	2 , sin �2 sin 	2 ,cos �2� for which the prefactor

in Eq. �11� vanishes. Since S̃�0��0,�� is both finite and real,
this yields the two constraints

Re	S̃�0��k�s2� − s1��,��
 = 0, �14�

Im	S̃�0��k�s2� − s1��,��
 = 0, �15�

where Re and Im denote the real and imaginary parts, respec-
tively. These two conditions imply that generically �i.e.,
when they are independent and commensurate�, the coher-
ence singularities form a two-dimensional surface in the
four-dimensional ��1 ,	1 ,�2 ,	2� space.

Let us next consider the specialized case of a source
whose spectral density is mirror symmetric with respect to

both the x and the y axes. In that case the factor S̃�0��k�s2�

−s1�� ,�� that appears in Eq. �11� is real valued for all values
of its spatial argument �28� and hence condition �15� is lifted.
This means that the coherence singularity is a three-
dimensional volume in ��1 ,	1 ,�2 ,	2� space. Furthermore, if
the spectral density of the source is rotationally symmetric,
the spectral degree of coherence in the far zone depends on
the observation angles 	1 and 	2 only through their differ-
ence 	2−	1. We therefore conclude that for planar second-
ary rotationally symmetric quasihomogeneous sources the
coherence singularities are two-dimensional surfaces in the
reduced ��1 ,�2 ,	2−	1� space. An example of such a source
is examined in Sec. IV.

IV. PARTIALLY COHERENT LAGUERRE-GAUSS
SOURCE

We illustrate our results thus far with the analysis of a
partially coherent source that generates a Laguerre-Gauss
beam �29�. For this source we have
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FIG. 2. �Color online� Illustrating the concept of
quasihomogeneity.
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S�0���,�� = A2�2 exp�− �2/2
S
2� , �16�

��0���2 − �1,�� = exp�− ��2 − �1�2/2
�
2 � , �17�

with A a real number, �= ���, and 
S and 
� the effective
widths of the spectral density and of the spectral degree of
coherence, respectively. If 
��
S the source is quasihomo-
geneous. Since

S̃�0��f,�� = �2 − f2
S
2�
S

4A2 exp�− f2
S
2/2�/2� , �18�

application of the reciprocity relation �11� yields

�����r1s1,r2s2,�� = �1 − k2�s2� − s1��2
S
2/2�

�exp�− k2�s2� − s1��2
S
2/2�

�exp�ik�r2 − r1�� . �19�

Because

�s2� − s1��2 = sin2 �1 + sin2 �2 − 2 sin �1 sin �2 cos�	1 − 	2� ,

�20�

it follows from Eq. �19� that coherence singularities occur
for those values of �1, 	1, �2, and 	2 for which

sin2 �1 + sin2 �2 − 2 sin �1 sin �2 cos�	1 − 	2� = 2/k2
S
2.

�21�

As remarked at the end of Sec. III, the dependence of the
spectral degree of coherence on the two angles 	1 and 	2 is
through their difference 	1−	2. From now on we set, with-
out loss of generality, 	2=0.

An example of the topology of the coherence singularity
is shown in Fig. 3, from which it can be seen that it forms a

saddlelike surface. Let us consider the �1=�2 cross section.
For small values of these two angles, there is no value of 	1
that corresponds with a point on the surface, i.e., there exist
no pairs of points at which the field is completely uncorre-
lated. When the angles are gradually increased to a critical
value �1=�2=�c a coherence singularity occurs at 	1=180°
�29�. For larger values ��1=�2��c� a value of 	1�180°
corresponds to a point on the surface. Since Eq. �21� shows a
dependence of the singularity on cos 	1, this means that the
initial singularity has unfolded into two pairs of singularities:
one for 	1 and one for −	1. It is noted that in this example
k2
S

2=10 for illustrative purposes. In Fig. 4 the more realistic
value of 1000 was used. It can be seen that the topological
features of the coherence singularity remain unchanged.

V. CONIC SECTIONS

In order to study the coherence singularity depicted in
Fig. 3 in more detail, it is instructive to rewrite Eq. �21� in
the form

x2 + y2 + 2xyz + G = 0, �22�

where

x = sin �1, �23�

y = sin �2, �24�

z = − cos 	1, �25�

G = − 2/k2
S
2. �26�

Although Eq. �22� is not a quadratic surface in �x ,y ,z� space,
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FIG. 3. �Color online� A two-dimensional coherence singularity
in ��1 ,�2 ,	1� space. In this example k2
S

2=10.
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FIG. 4. �Color online� A two-dimensional coherence singularity
in ��1 ,�2 ,	1� space. In this example k2
S

2=1000.
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both the horizontal and the vertical cross sections of the co-
herence singularity are quadratic curves. Horizontal cross
sections �i.e., fixing the value of z and hence of 	1� are conic
sections in �x ,y� space �30�; since x and y are limited to the
interval �0,1�, only parts of these conic sections are realized.
More specifically, if z=−1 the cross section takes the form of
two parallel lines. On increasing z it becomes an ellipse �with
a circle as a special case when z=0�, and finally, for z=1, it
becomes two parallel lines again �only one of which lies in
the physical domain of x and y�. Various cross sections of the
coherence singularity are shown in Fig. 5 for selected values
of z. Because of the interchangeable roles of x and y in Eq.
�22�, the cross sections are symmetric about the line x=y.

According to Eq. �22� vertical cross sections of the coher-
ence singularities �e.g., fixing the value of y and hence of �2�
are conic sections in �x ,z� space; since 0x1 and −1
z1, only parts of these conic sections are realized. More
specifically, if y=0 the cross section has the form of two
parallel lines �only one of which lies in the physical domain

of x and z�. On increasing y it becomes a branch of a hyper-
bola, two intersecting lines, and again a branch of a hyper-
bola. This is illustrated in Fig. 6. This concludes our identi-
fication of various cross section of the coherence singularity
with a variety of conic curves.

VI. CONCLUSIONS

We have analyzed the topology of coherence singularities
that occur in the far field generated by quasihomogeneous
sources. As an specific example we examined the coherence
singularity of a partially coherent vortex beam. Its cross sec-
tions were found to be different kinds of conic sections in a
modified coordinate system.
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FIG. 5. �Color online� Cross sections of the coherence singular-
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=−0.5, �c� z=0, �d� z=0.5, and �e� z=1.
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